Appendix

1 Ecosystem model

The implementation of the ecosystem model is a modification of previous work [1, 2]. The main difference is the introduction of an additional detritus compartment which allows to simulate differing decay time scales of phosphorous and nitrogen. The seven prognostic variables are: nitrate, phosphate, (non-nitrogen-fixing) phytoplankton, zooplankton, two detritus compartments describing nitrogen and phosphorus content and dissolved oxygen. Each prognostic variable C is determined following:

$$\frac{\partial C}{\partial t} = T + sms,\tag{1}$$

where T represents all diffusive and advective transport terms. sms denote the source minus sink terms, which describe the biogeochemical interactions as follows: Phytoplankton (P) equation:

$$\operatorname{sms}\left(\mathbf{P}\right) = \overline{J}\mathbf{P} - G\left(\mathbf{P}\right)\mathbf{Z} - \mu_{\mathbf{P}}\mathbf{P} \tag{2}$$

Zooplanton (Z) equation:

$$\operatorname{sms}\left(\mathbf{Z}\right) = \gamma_1 G\left(\mathbf{P}\right) \mathbf{Z} - \gamma_2 \mathbf{Z} - \mu_{\mathbf{Z}} \mathbf{Z}^2 \tag{3}$$

Nitrogen detritus (D_N) equation:

$$\operatorname{sms}\left(\mathbf{D}_{\mathrm{N}}\right) = (1 - \gamma_{1}) G\left(\mathbf{P}\right) \mathbf{Z} + \mu_{\mathrm{P}} \mathbf{P} + \mu_{\mathrm{Z}} \mathbf{Z}^{2} - \mu_{\mathrm{D}_{\mathrm{N}}} \mathbf{D}_{\mathrm{N}} - w_{s} \frac{\partial \mathbf{D}_{\mathrm{N}}}{\partial z}$$
(4)

Phosphorus detritus (D_P) equation:

$$\operatorname{sms}\left(\mathrm{D}\right) = (1 - \gamma_{1}) G\left(\mathrm{P}\right) \mathrm{Z} + \mu_{\mathrm{P}} \mathrm{P} + \mu_{\mathrm{Z}} \mathrm{Z}^{2} - \mu_{\mathrm{D}_{\mathrm{P}}} \mathrm{D}_{\mathrm{P}} - w_{s} \frac{\partial \mathrm{D}_{\mathrm{P}}}{\partial z}$$
(5)

Nitrate (NO_3) equation:

$$\operatorname{sms}(\mathrm{NO}_3) = (\mu_{\mathrm{D}}\mathrm{D} + \gamma_2 \mathrm{Z}) \left(1 - 0.8R_{\mathrm{O:N}} r_{sox}{}^{NO3}\right) - \overline{J}\mathrm{P}$$
(6)

Phosphate (PO_4) equation:

$$\operatorname{sms}\left(\mathrm{PO}_{4}\right) = \mu_{\mathrm{D}}\mathrm{D} + \gamma_{2}\mathrm{Z} - \overline{J}\mathrm{P} \tag{7}$$

1.1 Phytoplankton growth

The function $\overline{J} = \overline{J}(I, NO_3, PO_4)$ provides the growth rate of non-diazotrophic phytoplankton determined from irradiance $(I), NO_3, PO_4$,

$$J(I, \mathrm{NO}_3, \mathrm{PO}_4) = \min\left(J_I, J_{max}u_{\mathrm{NO}3}, J_{max}u_{\mathrm{PO}4}\right),\tag{8}$$

The maximum growth rate J_{max} is a function of temperature (T):

$$J_{max}\left(\mathbf{T}\right) = a \cdot \exp\left(\frac{\mathbf{T}}{T_b}\right) \tag{9}$$

such that growth rates increase by a factor of ten over the temperature range of -2 to 34 °C. We use $a = 0.6 d^{-1}$ for the maxim growth rate at 0 °C. Under nutrient-replete conditions, the light-limited growth rate J_I is calculated according to:

$$J_I = \frac{J_{max} \alpha I}{\left[J_{max}^2 + \left(\alpha I\right)^2\right]^{1/2}} \tag{10}$$

where α is the initial slope of the photosynthesis vs. irradiance (P-I) curve.

Nutrient limitation is represented by the product of J_{max} and the nutrient uptake rates $u_{\text{NO3}} = \text{NO}_3/(k_{\text{NO3}} + \text{NO}_3)$ and $u_{\text{PO4}} = \text{PO}_4/(k_{\text{PO4}} + \text{PO}_4)$, with $k_{\text{PO4}} = k_{\text{NO3}}R_{\text{PO4:NO3}}$ providing the respective nutrient uptake rates.

1.2 Grazing

Zooplankton grazing of (non-nitrogen-fixing) phytoplankton $G(\mathbf{P})$ is parameterized using a Holling type III function:

$$G(\mathbf{P}) = \frac{g\epsilon \mathbf{P}^2}{g + \epsilon \mathbf{P}^2} \tag{11}$$

1.3 Sinking of Detritus

The rate of sinking of Detritus w_s is a linear function of depth z but can not exceed a maximum value of w_{Dmax} :

$$w_s = w_s (z) = \min \left(w_{\rm D0} + m_w \, z, w_{\rm Dmax} \right). \tag{12}$$

1.4 Ecosystem model parameters

Parameter	Symbol	Value	Units
Phytoplankton (P) Coefficients			
Initial slope of P-I curve	α	0.025	$day^{-1}/(Wm^{-2})$
Maximum growth rate	a	0.6	day^{-1}
E-folding temperature of biotic rates	T_{b}	15.65	$^{\circ}\mathrm{C}$
Half-saturation constant for N uptake	$k_{\rm NO3}$	0.5	${ m mmol}{ m m}^{-3}$
Specific mortality rate of (non nitrogen-fixing)			
phytoplankton	$\mu_{ m P}$	0.03	day^{-1}
Zooplankton (Z) Coefficients			
Assimilation efficiency	γ_1	0.75	
Maximum grazing rate	g	2.0	day^{-1}
Prey capture rate	ϵ	1.0	$(\rm mmolm^{-3})^{-2}\rm day^{-1}$
(Quadratic) mortality	$\mu_{ m Z}$	0.2	$(\rm mmolm^{-3})^{-2}\rm day^{-1}$
Excretion	γ_2	0.03	day^{-1}
Detrital (D) Coefficients			
Detrital nitrogen remineralization rate	$\mu_{ m D_N}$	0.05	day^{-1}
Euphotic layer detrital phosphorus remineralization rate	$\mu_{\mathrm{D_{P}s}}$	0.1	day^{-1}
Detrital phosphorus remineralization rate	$\mu_{\mathrm{D}_{\mathrm{P}}}$	0.05	day^{-1}
Sinking speed at surface	$w_{ m D0}$	7	m day - 1
Increase of sinking speed with depth	m_w	0.04	day^{-1}
Maximum sinking speed in water column	w_{Dmax}	40	m day - 1

References

- A. Oschlies and V. Garçon, 1999: An eddy-permitting coupled physical-biological model of the North Atlantic. Part I: Sensitivity to advection numerics and mixed layer physics. *Global Bio*geochem. Cycles, 13.
- [2] A. Schmittner, A. Oschlies, X. Giraud, M. Eby, and H.L. Simmons, 2005: A global model of the marine ecosystem for long term simulations: sensitivity to ocean mixing, buoyancy forcing, particle sinking and dissolved organic matter cycling. *Global Biogeochem. Cycles*, 19.