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The authors thank the referee #1 for his/her very valuable review of the manuscript.
Our responses to referee’s comments are as follows.

Q: Zhang et al. compare different methods to reduce the impact of systematic errors
of observational data on the inversion of ecosystem model parameters. They apply
these methods to the inversion of photosynthetic capacity in a process based ecosys-
tem model against artificial observations of Leaf Area Index (LAI). The artificial LAI
data were created by adding different types of systematic error (fixed, proportional,
fixed+proportional and binomial) and random error (Gaussian with mean zero and

C4848

standard deviation proportional to true value) to LAl output of the vegetation model.
Of the three method which are compared, the z-score normalization (normalization of
observations by mean and standard deviation) provides posterior estimates for photo-
synthetic capacity that are close to the true values, which had been used to produce
the artificial data. Therefore the authors conclude that the z-score normalisation should
generally be applied to observations in the context of model parameter inversion. While
the authors successfully demonstrate the effectiveness of the z-score normalization to
minimize the impact of systematic errors of observations on inverted parameter values
in the presented cases of artificial data, they fail to sufficiently analyse the normal-
ization method and to discuss prerequisites, implicit assumptions and disadvantages.
Additionally the presented artificial data account for only a part of probable kinds of
errors, which influence an inversion against real world data.

A: Thanks for the summary and comments. We agree with the referee in the necessary
of discussing the prerequisites, implicit assumptions and disadvantages of normaliza-
tion method in the context of model parameter inversion and considering other kinds of
errors. We did consider the application of the normalization method against real world
data. In fact, we originally designed to discuss it in the second manuscript. Taking the
referee’s comments, we further analyzed why and when the normalization methods
work, added sentences to discuss the prerequisites, implicit assumptions and disad-
vantages of normalization method, revised the expression in the section of conclusion,
and gave an example of the application of the z-score normalization method to the real
MODIS LAl data in the revised manuscript.

Q: An inversion of model parameter values against real observational data is simultane-
ously influenced by random and systematic errors of observations and by model error.
The systematic error does not need to be similar or follow similar rules for all parts of
the dataset: some data may be differently biased than others; even the direction of the
bias may be different in different parts of the dataset. The examples of artificial data
that are presented here, account for only one kind of systematic error in each set of
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data. It would be useful to analyse the impact of the normalization if different parts
of the dataset are differently biased, and in combination with model error. Could the
combination of different error types lead to spurious results? To which extend would
these be due to model error or data error?

A: Thanks for the good suggestion. We agree with the referee that systematic errors
may be different in different parts of the data. As suggested by the referee, we con-
ducted new experiments where different systematic errors were added to two different
parts of the LAl data. We divided all model points into two groups randomly using boot-
strap sampling. The result showed that the z-score normalization method still worked
well when the two parts of the data had a similar magnitude. For example, when one
part of the LAl data were added a systematic error of C4 and the other part were added
a system error of D4, the relative errors of estimated three parameters were reduced
from 17.9%, 6.7%, 18.2% with taking no normalization to 3.6%, 3.3%, 0% with taking
z-score normalization. On the other hand, the effect of the z-score normalization was
weakened when the two parts of the data had a big difference in magnitude. For ex-
ample, when the two parts of the LAl data were added respective systematic errors
of A1 and B1, the relative errors of estimated three parameters without normalization
were 17.9%, 10.0%, and 27.3%, while those with z-score normalization were 17.9%,
6.7%, and 9.1%, respectively. Compared with the estimation without normalization, the
z-score normalization had a limited effect on reducing the error of estimated vcmax,25,
but still greatly improved the estimation of parameters a1 and topt.

It is still difficult to quantify the model error stemming from model structure due to im-
perfect assumptions, simplification, formulations and understanding of underlying pro-
cesses. In our manuscript, we calculated the cost function based on normalized model
output and normalized observation. The normalization of observations successfully re-
duced the impact of systematic errors when using the synthetic data. We inferred that
the impact of model error might be reduced by the normalization either. We would fur-
ther quantify the impact of model error when the model structural uncertainty analysis
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method is available.

Q: The model would not be optimized to reproduce the observed data values, but the
observed data pattern, while the reproduced values could be quite different. The results
of an inversion of model parameters against normalised observational data can no
longer be directly validated against the given kind of observations, as the normalization
assumes/accounts for a bias in the data.

A: In the original manuscript, we generated the synthetic data on the basis of model
output with assigned values of parameters and different types of errors, which provided
the known true value and error. When we searched the optimized parameters, we did
not compare the absolute values but the pattern between “observed” data and mod-
eled output, as the referee suggested. Moreover, we calculated the relative errors of
estimated parameters compared with the assigned values to examine the performance
of parameter estimation.

Q: The approach is based on a cost function in which the square difference of obser-
vations is divided by the variance of observed data (sigmaEE2, equ. 1 and 2). The
normalization (eqn. 5) is based on the same sigma (standard deviation of observa-
tions). On the other hand, the examples cited (Rayner et al. 2005 and Kaminski et al.
2002) are based on an error covariance matrix, which provides the opportunity to ad-
dress a specific variance term to each single observation (sigmaEE2_i). Lasslop et al.
(2008) have shown that deriving individual estimates for the random error component
may improve parameter retrieval in the inversion. Additionally they derive the random
error component with respect to deviation from a model, not based on the variance of
observations.

A: There are different choices of weights in the cost function for parameter estimation.
Some use the variance of observations (Wang et al, 2001; Luo et al., 2003) or the
error covariance of observations (Knorr & Kattge, 2005); some of the others use the
standard deviation of residuals (Braswell et al., 2005; Sacks et al., 2006). Lasslop et
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al. (2008) pointed out that standard deviation of the observations with similar meteo-
rological conditions is better than the standard deviation of residuals of the gapfilling
algorithm in describing the error standard deviation. However, Trudinger et al (2007)
compared the choice of weights in the cost function, including constant weights and
changing weights varied for each observation, and found that weighting by noisy ob-
servations was not particularly successful. Here we compared two different weights.
One was the standard deviation of observations as used in the original manuscript; the
other was the standard deviation of residuals that varied with observations. We found
that the difference in weight did not influence the optimization of model parameters in
our study. Considering spatial heterogeneity of remote sensing data in different pixels,
we used the standard deviation of MODIS LAI observations varied for each pixel as the
weight in the cost function.

Q: How should the posterior uncertainty ranges of the parameter values be interpreted
if the observations have been normalized (fig 5, 6 and 7)? Do posterior parameter
estimates have the same uncertainty ranges if they are derived without normalization,
in cases where no systematic error has been added to the observations? This aspect
should be analyzed. Figure 2 should be added to Figure 6 and 7, including uncertainty
ranges of posterior parameter estimates based on not normalized observations.

A: Fig. 5-7 did not present the posterior uncertainty of the parameter values but the
uncertainty due to random errors added to the “true” values. The optimization method
used in our study was not based on the Bayesian theory and therefore could not obtain
the posterior uncertainty. Optimized parameter values were searched within the same
range whether the observation and model output were normalized or not. As suggested
by the referee, we added the interpretation on different uncertainty ranges of the pa-
rameter values when the observations have normalized in the revised manuscript. In
fact, we included the standard deviation of parameter vemax based on no normalized
observations in Figure 2, but the values were very small and even can not be seen. The
results indicated that the estimation of parameters without normalization is influenced
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more strongly by systematic errors than random errors.

Q: Often different kinds of observations are used for parameter inversion. Is the nor-
malization of observations applicable in these cases (e.g. Knorr and Kattge, 2005 or
Santaren et al. 2007)?

A: The aim of this manuscript is to find a way to take into systematic errors account
and utilize the spatial information for parameter estimation against remotely-sensed
observations with similar systematic errors. The normalization of observations is not
suitable for observations of carbon and water fluxes measured by eddy covariance
techniques, because flux data measured in different sites have different error proper-
ties. To clarify the purpose of using normalization methods, we revised the title and
corresponding text in introduction, discussion, and conclusion. We adjusted the title
to “Reducing impacts of systematic errors in LAl observation on inversing ecosystem
model parameters using different normalization methods”.

Q: The inversion of model parameters against observational data is often based on a
Bayesian approach, including prior information of parameter estimates (e.g. Rayner et
al. 2005). Is the normalization consistently applicable in a Bayesian context?

A: We agree with the reviewer in that the Bayesian approach (for example, the Markov-
chain Monte Carlo method) has been widely used in estimating model parameters
against observation data in recent years. To inverse target model parameters, the cost
function for measuring the distance between data and model and the search strat-
egy for finding the optimum values are two basic choices. The Bayesian approach
is more efficient in estimating many parameters simultaneously and can provide the
posterior probability distributions for parameters to be estimated. There are many
other approaches can be used to find the optimum values, such as the Levenberg-
Marquardt algorithm, the Kalman filter algorithm, simulated annealing and genetic algo-
rithms (Rayner et al. 2005). Different optimization techniques were found equally suc-
cessful at estimating parameters in the Optimisation InterComparison (OptIC) project

C4853



(Trudinger et al. 2007). In our manuscript, the normalization methods affect not the
search strategy but the cost function. We think if the normalization method can be ap-
plicable in a simple search method, then it should have the potential to be applicable
in a Bayesian context.

Q: These are some aspects that would need to be analyzed or discussed before the
zscore normalization might be applied to invert ecosystem model parameters against
real world data. Other aspects to be analyzed may still be missing. Although the
normalization of observations successfully reduced the impact of systematic errors in
the presented cases of artificial data, | would therfore conclude that the manuscript
does not yet provide sufficient background to apply the method in the context of real
world data. The analysis of the z-score normalization method is too simplistic.

A: As suggested by the referee, we conducted additional model experiments and anal-
ysis on the z-score normalization method. Furthermore, we used the real MODIS LAI
product data to estimate the three model parameters related to LAI, and compared the
results of estimated parameters between the z-score normalization and no normaliza-
tion. As stated above, we took the standard deviation of MODIS LAl values in a 10 km
grid as the weight in the cost function. According the cost distribution as showed in
Fig. 10 in the revised manuscript, the optimized values of Vemax,25An, al, and topt
with the estimation taking z-scored normalization were 33.6 zmol m-2 s-1, 5.6, 220C.
While those with the estimation taking no normalization were 31.9 umol m-2 s-1, 5.64,
and 260C, respectively. Compared with the estimation using z-scored normalization,
the estimate from absolute values of MODIS LAI observation underestimated the pa-
rameter Vcmax,25 by 5% and overestimated the parameter topt by 18%. Taking the
parameter topt as an example, the estimation with taking z-score normalization was
more reasonable. The optimum temperature of photosynthesis is one of vegetation
properties, ranges between 15 and 300C for most C3 plants, among which the opti-
mum temperature of photosynthesis for deciduous trees of the temperate zone ranges
between 20 and 250C (Larcher, 2001, Physiological Plant Ecology). As for the decidu-
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ous needle-leaf forest in the cool temperate zone in this study, the estimated topt taking
no normalization overestimated the optimum temperature of photosynthesis.

Q: One question with respect to the description of the method: Page 10453 “: : : xmax
and xmin are the maximum and minimum of observation or simulation respectively,
xmean and sigma are the mean and standard deviation of observation respectively.”
According to this description simulated xi would be normalized by observation xmean
and sigma? | would guess simulated xi should be normalized by simulated xmean and
sigma?

A: Thanks for the question. As mentioned by the referee, simulated xi was normalized
by simulated xmean and sigma in our study. To clarify it, we revised the sentence in
the revised manuscript.

Please also note the supplement to this comment:
http://www.biogeosciences-discuss.net/6/C4848/2010/bgd-6-C4848-2010-
supplement.pdf
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