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Abstract

In models of plant volatile isoprenoid emissions, the instantaneous compound emission
rate typically scales with the plant’s emission capacity under specified environmental
conditions, also defined as the emission factor, ES. In the most widely employed plant
isoprenoid emission models, the algorithms developed by Guenther and colleagues5

(1991, 1993), instantaneous variation of the steady-state emission rate is described as
the product of ES and light and temperature response functions. When these models
are employed in the in atmospheric chemistry modeling community, species-specific
ES values and parameter values defining the instantaneous response curves are typ-
ically considered as constant. In the current review, we argue that ES is largely a10

modeling concept, importantly depending on our understanding of which environmen-
tal factors affect isoprenoid emissions, and consequently need standardization during
ES determination. In particular, there is now increasing consensus that variations in at-
mospheric CO2 concentration, in addition to variations in light and temperature, need to
be included in the emission models. Furthermore, we demonstrate that for less volatile15

isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by
the compound synthesis and volatility, and because of these combined biochemical
and physico-chemical properties, specification of ES as a constant value is incapable
of describing instantaneous emissions within the sole assumptions of fluctuating light
and temperature, as are used in the standard algorithms. The definition of ES also20

varies depending on the degree of aggregation of ES values in different parameteriza-
tion schemes (leaf- vs. canopy- or region-level, species vs. plant functional type level),
and various aggregated ES schemes are not compatible for different integration mod-
els. The summarized information collectively emphasizes the need to update model
algorithms by including missing environmental and physico-chemical controls, and al-25

ways to define ES within the proper context of model structure and spatial and temporal
resolution.
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1 Introduction

Volatile organic compounds (VOC) are major determinants of atmospheric oxidative
capacity and play important roles in formation of secondary organic aerosols and cloud
condensation nuclei with important implications for the Earth’s climate (Chameides et
al., 1988; Claeys et al., 2004; Engelhart et al., 2008; Fuentes et al., 2000; Kiendler-5

Scharr et al., 2009; Kulmala et al., 2004; Mentel et al., 2009; Peñuelas and Staudt,
2010; Spracklen et al., 2008; Tunved et al., 2006). VOC emissions from plants are
particularly relevant for these atmospheric processes as worldwide emissions from
vegetation exceed anthropogenic emissions by more than an order of magnitude (e.g.,
Guenther et al., 1995). Only in highly industrialized areas, human-produced VOC may10

exceed the contribution from vegetation, but even there, biogenic emissions peak when
high temperatures and levels of radiation foster photochemical reactions, and thus,
biogenic emissions do significantly contribute to air photochemistry in urban areas as
well (Chameides et al., 1988; Karlik and Winer, 1999, 2001).

Among plant-released compounds, volatile isoprenoids, isoprene and methylbutenol15

(C5), monoterpenes (C10) and sesquiterpenes (C15), deserve special attention be-
cause of high reactivity in the atmosphere and their large contribution, often more than
90%, to total plant emissions. Atmospheric chemistry and transport and chemistry-
climate models require accurate estimation of volatile isoprenoid emission rates with
satisfactory spatial and temporal resolution. For biome to global-scale predictions of20

air chemistry and climate, BVOC emission estimates with a spatial resolution of 100–
10000 km2, depending on the process studied, can be satisfactory, but for regional air
quality, the emission estimates need to be of very high temporal (∼1 h) and spatial (1–
50 km2) resolution to appropriately account for the source variability (Eder et al., 1993;
Fiore et al., 2003; Logan, 1989; Loughner et al., 2007). Such high resolution data25

are obtained using predictive models that require climatic forcing variables, information
on plant leaf area, architecture of plant stands, species composition and isoprenoid
emission potentials as input data and provide instantaneous emission rates as model
output.
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Ü. Niinemets et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

In these models, the key characteristic determining the emission capacity of veg-
etation is the emission factor (ES), separately determined for different classes of
volatile isoprenoids, isoprene, monoterpenes and sesquiterpenes. As originally de-
fined (Guenther et al., 1991, 1993), ES is the steady-state emission rate standardized
for instantaneous variations in environmental drivers. In the initial form of the models,5

ES was standardized for leaf temperature (commonly and arbitrarily taken as TL =30◦C)
and light intensity (commonly and arbitrarily taken as Q= 1000 µmol m−2 s−1). Such a
definition allowed for convenient simulation of volatile isoprenoid fluxes as the product
of ES and the normalized light and temperature functions, so called Guenther et al. al-
gorithms (Guenther et al., 1991, 1993). A similar logic, defining the emission capacity10

and modifying this by environmental drivers is used in all upcoming emission mod-
els, even if including more detailed process-based descriptions of various biochemical
steps and resulting environmental dependencies (Martin et al., 2000; Niinemets et al.,
1999, 2002c; Zimmer et al., 2000).

At the time of its initial definition, ES was considered as a species-specific constant15

and the shapes of light and temperature response functions were considered constant
as well (Guenther et al., 1991, 1993). Up to present, the majority of atmospheric mod-
eling exercises continue to be established on the premise of constant ES and response
function shapes. However, over recent years it has become increasingly evident that
apart from light and temperature, additional short- and medium-term drivers play an20

important role in modifying the emission rates (Arneth et al., 2007; Heald et al., 2009;
Possell et al., 2005). In some recent efforts, modelers have grappled with ways to in-
clude some of these additional factors in their simulations (Arneth et al., 2007; Heald
et al., 2009; Possell et al., 2005), while others have retained the simpler structure of
the original models. As a result, the concept of ES has become conceptually “opaque”25

and variable.
In particular, CO2 concentration response functions have been developed (Arneth

et al., 2007; Possell et al., 2005; Wilkinson et al., 2009), and it has been suggested
that CO2 concentrations also need standardization in defining ES (Wilkinson et al.,
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2009). In addition, it has been demonstrated that the standardized emission rates
as well as the shape of the temperature response curve can vary depending on the
rate of temperature change (e.g., fast vs. slow temperature response curves, Singsaas
et al., 1999; Singsaas and Sharkey, 2000). Furthermore, for less volatile mono- and
sesquiterpenes, it has been shown that the steady-state assumption underlying ES and5

environmental response curves is often not satisfied due to simultaneous controls of
emissions by the rate of synthesis and volatility (Grote and Niinemets, 2008; Niinemets
and Reichstein, 2002; Noe et al., 2006, 2010; Schurgers et al., 2009a). This evidence
collectively suggests that ES is a modeling concept that depends on the understand-
ing of the biological, environmental and physico-chemical factors limiting isoprenoid10

emission and, thus, varies in dependence on the model structure.
Of course, every model is incomplete in its representation of true biochemical and

physico-chemical processes, and ES is differently defined depending on the assump-
tions carried in each model. This recognition should compel us to continually assess
missing processes and their importance to the uncertainties contained in model pre-15

dictions, as well as to identify strategies for model improvement. It is within this spirit
that we have undertaken the current analysis as a means to evaluate the current state-
of-affairs of isoprenoid emission models and definitions of ES. In this synthesis, we
will begin by reviewing the traditional “Guenther” algorithms that have been so widely
used in the modeling of plant isoprenoid emissions. We will attempt to define these20

algorithms within the context of our knowledge about biochemical processes, thus es-
tablishing a mechanistic justification for their use. We also review the way the species-
specific leaf-level ES values are aggregated in higher scale emission models, and the
potential for aggregation errors during the scaling of emission estimates from the leaf-
to landscape-scales. Apart from strong biological sources of variation, definitions of25

ES differ depending on the underlying model algorithms and degree of aggregation,
and can be a chief reason for large between-model discrepancies of simulated emis-
sion totals (e.g., Arneth et al., 2008 for a compilation of respective global extrapolation
exercises).
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We use the overall analysis to emphasize that ES as a modeling concept should al-
ways correspond to the structure, time-step and spatial resolution of the model used,
and to highlight the prime areas for future experimental work needed for model im-
provement and application in highly variable field environments. In this analysis, we fo-
cus on instantaneous environmental responses, and consider acclimation of isoprenoid5

emission to environmental conditions as much as this is needed to understand the vari-
ability in the shape of environmental response curves and development of novel models
(induced emissions). For acclimation, developmental and stress responses in ES we
refer to the accompanying paper (Niinemets et al., 2010).

2 Models and definitions of ES10

The definition of ES, the emission rate under arbitrarily chosen standard conditions,
largely depends on an understanding of the rapid emission controls and on the form of
the specific emission model that is used. In the past, it has been considered safe to fix
only light intensity and leaf temperature to derive ES values for isoprene, a compound
that is rapidly synthesized from a small carbon pool in chloroplasts. Moreover, it was15

considered sufficient to fix only temperature for monoterpenes emitted from a large
pool in specialized storage tissues such as resin ducts and resin blisters in conifers
(Guenther et al., 1991, 1993; Tingey et al., 1980). Later, it was observed that in several
species lacking specialized storage tissues, monoterpene emissions depend on light
availability, in a manner similar to isoprene (Loreto et al., 1996c; Staudt and Seufert,20

1995). It was further found that in species with large monoterpene reservoirs in storage
tissues, light-dependent monoterpene emissions can also occur (e.g., Staudt et al.,
1997).

Discovery of the light-dependent emissions in both the non-storing and storing
species caused us to re-assess the definition of ES for monoterpene emissions, and25

made clear that light, in addition to temperature, must be fixed in determining monoter-
pene ES. To complicate matters even further, it was discovered that species lacking
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specialized storage tissues, can exhibit light-dependent and light-independent emis-
sions, which can potentially interfere with each other (Kahl et al., 1999; Loreto et al.,
1996a; Niinemets and Reichstein, 2002; Schuh et al., 1997). Thus, we were forced
to develop mixed models or dynamic models for prediction of ES, especially for the
emission of isoprenoids with higher molecular mass (Niinemets and Reichstein, 2002;5

Schuh et al., 1997).
Apart from light and temperature, isoprene emissions also vary in response to

changes in CO2 concentration (Jones and Rasmussen, 1975; Loreto and Sharkey,
1990; Mgalobilishvili et al., 1978; Monson and Fall, 1989). This physiological evidence
has been neglected so far, and only recently, the importance of standardization of10

CO2 concentration inside the leaf for determination of ES values has been recognized
(Wilkinson et al., 2009).

The above discussion emphasizes that the definition of ES depends on what envi-
ronmental factors are considered as operative in altering the emission rate and thus
needing standardization during the emission measurements. The definition of ES is15

also different when the emissions come from a large pool of preformed compounds, or
are immediately synthesized, or when they come simultaneously from both large exist-
ing pools and from de novo synthesis. Thus, the choice of the emission model used can
crucially alter ES estimations. In the following sections, various model approaches are
summarized and model-specific sources of variation in emission rates are analyzed.20

2.1 Modeling standardized responses of volatile isoprenoids to key
environmental factors in steady-state conditions

Since the early 1990’s, two prominent models, the so-called “Guenther et al., algo-
rithms”, have been used to simulate the responses of isoprene emissions to incident
quantum flux density (Q, light intensity) and leaf temperature (TL) and the release of25

monoterpenes from storage tissues with regard to dependence on temperature (Guen-
ther, 1991, 1993, 1995, 1999, 1996c). In the case of isoprene, the emission algo-
rithm was constructed on the premise that the emissions are driven by the combined
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coupling of isoprenoid biosynthesis to photosynthetic processes and the temperature-
dependence of enzyme activity, while the monoterpene release model was based on
monoterpene vaporization and diffusion out of the storage tissues, i.e., on physical
processes (see Guenther, 1999; Guenther et al., 1991, 1993, 1995, 1996c). Later, the
isoprene emission algorithm was also employed to simulate methylbutenol (Harley et5

al., 1998; Schade et al., 2000) and light-dependent monoterpene emissions in species
lacking specialized monoterpene storage tissues (Bertin et al., 1997; Ciccioli et al.,
1997b; Dindorf et al., 2006; Kesselmeier et al., 1997; Kuhn et al., 2002; Steinbrecher
et al., 1997). Additionally, CO2 response functions have recently been added to the
Guenther et al. algorithms (Wilkinson et al., 2009), as well as to emission models that10

seek to link isoprenoid production directly to photosynthetic metabolism (Arneth et al.,
2007; Schurgers et al., 2009a).

According to the Guenther et al. type of models, the volatile isoprenoid emission
rate, E , is a product of the standardized emission rate, ES, and non-dimensional light
f (Q) and leaf temperature f (TL) and CO2 f (Ci) functions:15

E =ESf (Q)f (TL)f (Ci). (1)

The functions f (Q), f (TL) and f (Ci) are normalized to 1.0 at standardized conditions
used for ES determination. For monoterpene emissions from storage compartments,
f (Q)= f (Ci)=1 in all cases.

2.1.1 The light dependence (f(Q) function)20

The dependence of isoprenoid emissions on incident quantum flux density (Q) was
originally described by a model similar to that used to simulate the net CO2 assimilation
rate and its dependence on incident quantum flux density (Guenther et al., 1991),
the so-called Smith’s function (Smith, 1937; Tenhunen et al., 1976). This response
function represents a classic rectangular hyperbola, with the emission rate approaching25
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an asymptote as Q approaches infinity:

f (Q)=
CL1αQ√
1+α2Q2

, (2)

where α is the apparent (standardized) quantum yield of isoprenoid emission and CL1
is the scaling constant to force the function to 1.0 at the standardized value of Q (com-
monly taken as 1000 µmol m−2 s−1).5

The metabolic basis for the f (Q) function is not well understood. It is known that the
2-C-methyl-D-erythritol 4-phosphate (MEP) pathway that leads to the synthesis of both
isoprene and monoterpenes occurs in the chloroplasts, and is dependent on ATP and
NADPH produced in the light-dependent reactions of photosynthesis (e.g., Lichten-
thaler et al., 1997; Schwender et al., 1997). Additionally, the rate of production of glyc-10

eraldehyde 3-phosphate (G3P), a primary product of photosynthesis, and a primary
substrate of isoprene and monoterpene biosynthesis, is dependent on light intensity in
rectangular hyperbolic fashion (Magel et al., 2006; Rasulov et al., 2009). Thus, there is
good reason to believe that the rectangular hyperbolic shape of the f (Q) function truly
reflects a shape similar to that of the photosynthetic light response function.15

In the initial model parameterization, values of α= 0.0027 and CL1 =1.066 were used
for isoprene (Guenther et al., 1991), and these values have been used in unmodified
form in the majority of subsequent modeling studies that have employed the Guenther
et al. (1991, 1993) algorithms. However, there is evidence of significant variation in the
shape of the light response curve, in particular among species (Fig. 1a, b), and within20

leaves from different canopy positions (Fig. 1a, b). Acclimation to low light conditions
increases the apparent quantum yield for an incident light, α, implying that the light
function saturates at lower light intensities. Enhanced α in leaves from lower canopy
likely reflects more efficient light harvesting in these leaves, compatible with greater
foliage chlorophyll contents in low light (Niinemets, 2007 for a review).25

In addition, analysis of light dependencies of methylbutenol (Harley et al., 1998;
Schade et al., 2000) and light-dependent monoterpene emissions (Schuh et al., 1997;
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Staudt et al., 2003) also simulated by the same algorithm demonstrates that the shape
of the response curves can be different for these volatile isoprenoids than the response
shape for isoprene (Sect. 2.2.2). Taken together, this evidence strongly suggests that
using constant parameters of the light response function, α and CL1, in large-scale
simulation analyses, has no empirical justification. In BVOC emission models, more5

effort should be devoted to gaining adequate parameterizations for the light response
functions. Although quantitative relationships with integrated canopy light environment
or canopy leaf area index have not been developed, variations in α have been occa-
sionally included in emission models, varying its value with cumulative leaf area index
from canopy top to bottom (Guenther et al., 1999).10

2.1.2 The temperature dependence (f(TL) function) for de-novo synthesized
isoprenoids

In the Guenther et al. (1991, 1993) algorithms, an Arrhenius type response was used
for the temperature function, f (TL), of isoprene emission. This function describes a
curve with an optimum at Tm:15

f (TL)=
exp

[
CT1(TL−TS)

RTSTL

]
1+exp

[
CT2(TL−Tm)

RTSTL

] , (3)

where CT1 and CT2 are the parameters (J mol−1) characterizing the activation and de-
activation energy of the emission, R is the gas constant (8.314 J mol−1 K−1), TL is the
absolute leaf temperature and TS is the standard temperature (typically 303.16 K) at
which f (TL)=1. In initial temperature response function parameterization (Guenther et20

al., 1991, 1993), the values used were CT1 =95000 J mol−1, CT2 =230000 J mol−1 and
Tm = 314 K. Later, an additional non-dimensional empirical parameter CT3 has been
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added (Guenther, 1997):

f (TL)=
exp

[
CT1(TL−TS)

RTSTL

]
CT3+exp

[
CT2(TL−Tm)

RTSTL

] . (4)

CT3 as originally introduced was taken as 0.961 (Guenther, 1997) to account for the
circumstance that the original parameterization proposed in Guenther et al. (1993) did
not yield f (TL) = 1.0 at 30 ◦C. However, we note that combinations of CT1, CT2 and Tm5

can be found that satisfy the criterion f (TS) = 1.0 without the need for an additional
parameter.

In the atmospheric modeling community, the temperature response function is often
used as originally developed, even using the initial default parameterization of Guen-
ther et al. (1991, 1993). This approach does not consider that the temperature re-10

sponse of isoprene emission is variable due to reasons not yet fully understood. The
mechanistic basis for the temperature response function (Eq. 3) stems from enzyme
kinetics, and Eq. 3 can be successfully parameterized to fit the in vitro temperature
response of the isoprene synthase enzyme reaction (Lehning et al., 1999; Monson et
al., 1992; Niinemets et al., 1999). Although the shapes of temperature responses of15

isoprene emission and isoprene synthase are similar, there are several important dif-
ferences. In particular, isoprene synthase has a higher optimum temperature than iso-
prene emission and the “standard” isoprene emission curve by Guenther et al. (1991,
1993) lies well below that for isoprene synthase (Fig. 2, Lehning et al., 1999; Monson
et al., 1992), (s. also Niinemets et al., 1999 for the comparison of isoprene emission20

responses and synthase activity). In addition, the observed temperature dependence
of isoprene emission differs depending on how measurements are made. When mea-
surements are carried out fast, waiting no more than 3–4 min. at each temperature
step, the temperature response curve of isoprene emission has a higher optimum than
if measurements are conducted slowly, waiting until an apparent steady-state (30 min.25

and more) is reached (Singsaas et al., 1999; Singsaas and Sharkey, 2000).
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The discrepancy from isoprene synthase enzyme kinetics and rapid time-dependent
changes in temperature response curves (Niinemets et al., 2010 for longer-term
acclimation-type changes) suggest that the temperature response of isoprene emis-
sion does not solely reflect enzyme kinetics, but also changes in the immediate iso-
prene precursor, dimethylallyldiphosphate, DMADP, pool size (Niinemets et al., 1999).5

It is likely that with increasing temperature, isoprene synthase activity increases up to
temperatures close to the point of irreversible thermal damage of chloroplasts (Fig. 2),
while the DMADP pool size starts to decrease already under mild heat stress condi-
tions that are inhibitory for photosynthetic CO2 uptake (production of glyceraldehyde
3-phosphate) and photosynthetic electron transport that are both needed for DMADP10

formation (Niinemets et al., 1999). Thus, the discrepancy between isoprene synthase
and DMADP pool size becomes larger the longer the leaf stays at supraoptimal tem-
peratures (Fig. 2 for the comparison of fast vs. slow temperature responses of isoprene
emission and Singsaas et al., 1999; Singsaas and Sharkey, 2000).

Apart from the time-dependent effects, the temperature optimum can also be af-15

fected by physiological acclimation to growth temperature regime. Plants of the de-
ciduous vine Mucuna pruriens have been shown to have lower temperature optima
of isoprene emission when the growth temperature was decreased (Monson et al.,
1992). The shape of the temperature response curve has also been shown to vary
among the leaves from the top and bottom of tree canopies (Harley et al., 1996, 1997).20

This evidence collectively demonstrates that the shape of the isoprene temperature
response function cannot be taken as constant, but it varies with the rate of change in
leaf temperature and can also be modified upon acclimation to different environmental
conditions (e.g., Mayrhofer et al., 2005; Wiberley et al., 2005). Modifications in the
optimum temperature of isoprene emission in dependence on past temperature envi-25

ronment have been embedded in MEGAN (Guenther et al., 2006), but the quantitative
data for parameterization of such relationships are very limited (Pétron et al., 2001).

1245

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/1233/2010/bgd-7-1233-2010-print.pdf
http://www.biogeosciences-discuss.net/7/1233/2010/bgd-7-1233-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 1233–1293, 2010

The emission factor
of volatile

isoprenoids
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2.1.3 The temperature dependence (f(TL) function) for stored isoprenoids

For species with monoterpenes stored in specialized leaf tissues, only physical evap-
oration and diffusion were originally suggested to control the emission rate and f (TL)
has been defined as (Guenther et al., 1991, 1993):

f (TL)=exp
[
β(TL−TS)

]
, (5)5

where β (K−1) is the temperature response coefficient characterizing the exponential
increase of monoterpene vapor pressure and velocity of diffusion with temperature.
In chemistry and biology, the temperature dependence of processes is often described
according to the Q10, the rate at temperature T+10 ◦C relative to the rate at temperature
T . Q10 values are then used to characterize the exponential increase in process rates10

as a function of temperature. Q10 and β are related as:

Q10 =exp(10β), (6)

In the original parameterization of the Guenther et al. (1993) algorithms, a value of
β=0.09 K−1 was employed, corresponding to a Q10 value of 2.46.

Again, in many past and contemporary simulation analyses, β has been considered15

constant. Yet, recent studies have demonstrated significant interspecific and seasonal
variation in β values for the sum of total emitted monoterpenes (Komenda and Kopp-
mann, 2002; Llusià and Peñuelas, 2000; Ruuskanen et al., 2007; Tarvainen et al.,
2005). Monoterpenes largely differ in volatility (saturated vapor pressure, partition-
ing between gas, liquid and lipid phases, Sect. 2.2) at given temperature (Table 1,20

Copolovici and Niinemets, 2005; Niinemets and Reichstein, 2002). Thus, these varia-
tions in β values may reflect interspecific and seasonal differences in the composition of
emitted monoterpenes (Sect. 2.4). Although quantitative measurements of sesquiter-
pene volatility are rare, sesquiterpenes are generally characterized by lower volatility
than monoterpenes, and large differences in volatility occur among various sesquiter-25

penes as well (Bowles, 2003; Helmig et al., 2003; Paluch et al., 2009). Varying temper-
ature response coefficients have been reported for mono- and sesquiterpenes emitted
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by the same species (Ruuskanen et al., 2007), and differing β values have been ob-
served for different mono- and sesquiterpenes (Llusià and Peñuelas, 2000; Tarvainen
et al., 2005), supporting the association of β values with compound volatility.

Nevertheless, the β values for any given mono- and sesquiterpene have been ob-
served to vary during the season (Peñuelas and Llusià, 1999; Tarvainen et al., 2005),5

occasionally more than 4-fold for given monoterpene species (Tarvainen et al., 2005).
Such changes may reflect modifications in monoterpene diffusion conductance from
the site of storage to the ambient atmosphere, but there is currently no experimental
data to inform us about such changes. An alternative explanation might be that in field
studies, a limited temperature range is available for estimation of β values. In seasonal10

climates, the range is shifted to lower temperatures in the beginning and end of the
growing season and to higher temperatures in mid-season. As the rise of compound
vapor pressure with temperature is not strictly exponential, but is typically fitted by a
three-parameter Antoine equation (Copolovici and Niinemets, 2005; van Roon et al.,
2002), β for a given terpene will somewhat vary over different ranges of temperature.15

Thus, the variation in β values recovered in seasonal field studies may reflect inade-
quacy of the single parameter temperature response function.

A further shortcoming of current models of the monoterpene emission temperature
responses is that some species, which were traditionally considered to emit monoter-
penes only from storage tissues, have now been shown to also emit monoterpenes20

that have been synthesized from recently-assimilated CO2. These emissions are pre-
dicted to depend on temperature according to Eq. 3 and also depend on light ac-
cording to Eq. 2. For instance, the temperate evergreen conifer Pinus sylvestris has
been previously considered to be only a storage emitter (Janson, 1993). However,
using stable carbon isotope (13C) labeling to distinguish slow and fast turnover pools25

of monoterpenes, it was found that about 30% of emissions rely on de novo synthe-
sis (fast turnover pools) in this species (Shao et al., 2001, see also the Sect. 2.3 for
the light-dependent emissions of induced monoterpenes in other conifers). In such
species with the emissions coming from both storage and de novo synthesis, modeling
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the temperature responses of emissions solely by Eq. 5 will be inadequate. β will in-
evitably have to be defined as a mixed parameter depending on the temperature effects
on enzyme activity and physico-chemical properties of specific monoterpenes, includ-
ing diffusion conductance. In addition, dependence of emissions on light suggests
that values of β may also differ among past studies due to lack of standardization5

for light during measurements of temperature response curves (e.g. measurements in
darkness vs. measurements under light). With this new knowledge in hand, further
experimental studies are called for to gain insight into causes of variations in β values
in emitters with terpene storage tissues.

2.1.4 CO2 dependence (f(Ci) function)10

Apart from light and temperature, within leaf CO2 concentrations (intercellular CO2
concentration, Ci) also vary during the day as the result of changes in stomatal conduc-
tance (a measure of stomatal openness), especially under low atmospheric humidities
and in plants experiencing soil water deficit. These short-term (also called “instanta-
neous”) influences of Ci are different than the effects of growth CO2 concentration on15

ES (for reviews see Arneth et al., 2007; Niinemets et al., 2010; Young et al., 2009). The
instantaneous influences of Ci on isoprenoid emissions likely affect the partitioning of
metabolites between the chloroplast and cytosol of plant cells (Rosenstiel et al., 2003),
whereas the effect of growth CO2 concentration likely affects the expression of key en-
zymes (Loreto et al., 2007; Rosenstiel et al., 2004). The CO2-dependence function20

that is used to calculate E in Eq. 1, refers to the instantaneous influence of Ci.
Observations used to support parameterization of f (Ci) demonstrated that isoprene

emission rates decrease with increasing CO2 concentration above the current ambi-
ent CO2 concentrations of ca. 385 µmol mol−1, while the emissions increase at sub-
ambient CO2 concentrations (Fig. 3, Loreto and Sharkey, 1990; Monson and Fall,25

1989; Monson et al., 1991; Rasulov et al., 2009; Sharkey et al., 1991; Wilkinson et
al., 2009). Fewer studies have further demonstrated that after the initial increase of
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isoprene emissions at lower CO2, the emissions level off and decrease again at Ci

values below 100–150 µmol mol−1 (Fig. 3, Loreto and Sharkey, 1990; Rasulov et al.,
2009).

Few studies have looked at the CO2 responses of higher molecular mass isoprenoid
emissions. The immediate CO2 effects are expected to be small for terpene emis-5

sions from storage tissues, but effects similar to isoprene emissions are predicted
for emissions of de novo synthesized terpenes. In agreement with this expectation,
monoterpene emission rates were not different at 350 and 700 µmol mol−1 in terpene-
storing species Rosmarinus officinalis (Peñuelas and Llusià, 1997). However, contrary
to the predictions, monoterpene emission rates from the foliage of evergreen broad-10

leaved Quercus ilex that does not have specialized terpene storage tissues was also
not significantly different between 350 and 1500 µmol mol−1 in Loreto et al. (1996b)
and between 350 and 700 µmol mol−1 in Staudt et al. (2001a), although photosynthe-
sis was stimulated by 1.4–1.8-fold by higher CO2 in these studies. Differently from
these two studies, monoterpene emission rate was reduced at 1000 µmol mol−1 rela-15

tive to 350 µmol mol−1 in the same species in the study of Rapparini et al. (2004). In
addition, in a manner similar to that for isoprene, Loreto et al. (1996b) demonstrated
a reduction of monoterpene emission in CO2-free air in Q. ilex. Clearly more work
on instantaneous CO2 responses of mono- and especially sesquiterpene emissions is
needed (Peñuelas and Staudt, 2010).20

Definition of f (Ci) in Eq. 1 has been attempted based on biochemical knowledge of
isoprene synthesis (Wilkinson et al., 2009). In particular, it has been assumed that iso-
prene production at different CO2 concentrations is determined by the partitioning of
intermediates for DMADP synthesis between the cytosol and chloroplasts (Wilkinson et
al., 2009). At low Ci, f (Ci) was assumed to increase due to enhanced transport of triose25

phosphates from the cytosol into chloroplasts (Wilkinson et al., 2009), while at high
CO2 concentration, f (Ci) was suggested to decrease due to increased use of phospho-
enolpyruvate (PEP) in the cytosol by the enzyme PEP carboxylase, and thus decreased
transport of PEP into the chloroplast for use in producing isoprenoid compounds in the
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MEP pathway (Loreto et al., 2007; Monson et al., 2007; Rosenstiel et al., 2003). Thus,
as Ci is increased due to increases in stomatal conductance or increases in ambient
CO2 concentration, less substrate is made available for chloroplastic processes, such
as DMADP synthesis, and the isoprene emission rate decreases. In contrast, when Ci
is decreased, such as during moderate water stress, less PEP will be diverted away5

from DMADP synthesis, and isoprene biosynthesis rate will increase. Combining the
two different processes and simplifying, Wilkinson et al. (2009) proposed the following
empirical equation to describe the dependence of isoprene emissions on short-term
variation in Ci:

f (Ci)=Emax−
EmaxC

h
i

Ch
∗ +Ch

i

, (7)10

where Emax is the isoprene emission rate normalized to a reference concentration,
taken as 400 µmol mol−1 and h and C∗ are empirical coefficients. This function de-
scribes data obtained over the Ci range of ca. 150–1000 µmol mol−1 reasonably well
(Fig. 3). However, the mechanism proposed cannot explain the reduction of isoprene
emissions below ca. 150 µmol mol−1 (Fig. 3). In addition, the shape of the f (Ci) func-15

tion varies among plants adapted to different atmospheric CO2 concentrations (Fig. 3,
Wilkinson et al., 2009), complicating the use of Eq. 7 for simulation of the CO2-
response in plants in different CO2 atmospheres.

Alternative approaches, such as the control of isoprene (Rasulov et al., 2009) and
monoterpene (Niinemets et al., 2002c) synthesis by energy supply from photosyn-20

thetic electron transport have been suggested to describe the full CO2 dependence of
volatile isoprenoid emission, and semi-empirically included in predictive models (Ar-
neth et al., 2007; Schurgers et al., 2009a). Such an approach can be promising as
it allows description of both light and CO2 responses of isoprene by the same mech-
anism, although it has not yet been conclusively shown that the CO2 dependence of25

isoprene emission is caused by dynamics in photosynthetic electron transport. More
experimental work is needed to determine the basis for the exact shape of the CO2
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responses functions, the biochemical basis for the effect of growth CO2 concentration
on the shape of the response, and the interactions between f (Ci) and f (Q) and f (TL).

2.2 Key differences between the emission algorithms of highly volatile isoprene
and less volatile mono- and sesquiterpenes emitted in light-dependent
manner5

As noted in Sect. 2.1, several species have specialized storage tissues such as resin
ducts, oil glands, and glandular trichomes for terpene storage. In such species, large
compound storage pools are generally in equilibrium with the compound concentration
in the leaf gas-phase, and emissions are predicted by simplified models based on tem-
perature effects on compound vaporization and diffusion out of storage pools (Eq. 5).10

After the detection of the light-dependence of monoterpene emissions in broad-leaved
species lacking specialized storage tissues (Loreto et al., 1996c; Staudt and Seufert,
1995), and analogous findings for sesquiterpenes (Hansen and Seufert, 2003), the iso-
prene emission algorithm (Eqs. 1–3) has been applied to simulate light- and tempera-
ture dependent emission of these other compounds (e.g., Bertin et al., 1997; Ciccioli15

et al., 1997b; Dindorf et al., 2006; Kesselmeier et al., 1997; Kuhn et al., 2002; Pio et
al., 2005). However, monoterpenes and sesquiterpenes have lower volatility than iso-
prene, and the crucial question is to what extent use of the isoprene emission algorithm
is justified.

2.2.1 Non-specific storage of isoprenoids20

Volatility is a basic physico-chemical characteristic of any emitted organic compound.
Volatility can be characterized by the gas/water partition coefficient (Henry’s law con-
stant, H) that describes the partitioning of the compound to the gas phase, and oc-
tanol/water (KOW) partition coefficient that characterizes the partitioning of the com-
pound to the lipid phase (Niinemets et al., 2004). The smaller the value of H , the25

more a compound tends to be stored (concentrated) in the leaf liquid phase, and the
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larger the value of KOW, the more a compound tends to be stored in the leaf lipid phase
(Niinemets and Reichstein, 2002; Niinemets and Reichstein, 2003). The ratio KOW
to non-dimensional form of Henry’s law constant gives the octanol to air partition co-
efficient KOA (Chen et al., 2003; Copolovici et al., 2005; Meylan and Howard, 2005).
For isoprene and monoterpenes, the values of KOW vary by more than two orders of5

magnitude, the values H by over four orders of magnitude, and the values of KOA by
over five orders of magnitude (Table 1). Typically, the values of H and KOW are low for
oxygenated water-soluble compounds such as the monoterpene alcohols linalool and
α-terpineol, and the values of H and KOW are large for non-oxygenated monoterpenes
(Table 1, Copolovici and Niinemets, 2007; Copolovici et al., 2005). In contrast, isoprene10

has a large H and a low KOW, implying that this compound is preferably partitioned to
the gas phase with minor storage capacity in the leaf liquid and lipid phases.

Depending on the specific physico-chemical characteristics, certain monoterpenes
can be non-specifically stored within the leaves of species that lack dedicated monoter-
pene storage tissues (Loreto et al., 1996b; Staudt and Seufert, 1995). Those com-15

pounds with low H (e.g., linalool, 1,8-cineole) can be stored in the leaf liquid phase
(Niinemets et al., 2002b; Noe et al., 2006). Compounds with high KOW such as non-
oxygenated mono- and sesquiterpenes can be stored in the leaf lipid phase consisting
of lipid bilayers in various membrane structures and other leaf hydrophobic regions
(cuticle, lignified cell wall regions) (Niinemets and Reichstein, 2002; Noe et al., 2006,20

2008). Such a non-specific storage of monoterpenes inside leaves can be important
in modifying the time-dependent kinetics of emissions, implying that control over emis-
sions is shared between monoterpene synthesis and volatility. While monoterpene
synthesis in these species is believed to be rapidly modified by temperature and light,
non-specific storage induces time-lags between compound synthesis and emission.25

The presence of a foliar pool of “old” monoterpenes synthesized previously is sup-
ported empirically by labeling experiments that switch between 12CO2 and 13CO2 and
concomitant monitoring of changes in the fractions of 12C- and 13C-labelled monoter-
penes (Loreto et al., 1996a; Noe et al., 2006, 2010). All these experiments demonstrate
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important time-lags from hours to tens of hours between the start of 13C-labelling and
attainment of a steady-state 13C-labelled monoterpene emission rate (Fig. 4).

The presence of non-specific storage also implies that emissions do not respond
immediately to modifications in environmental variables (Fig. 4). For instance, due to
non-specific storage, emissions may increase slower than predicted by a steady-state5

light-response function (Eq. 2), and emissions may continue for more than half an hour
into the dark period (Fig. 4, Niinemets et al., 2002a; Peñuelas et al., 2009). This type of
pattern is in marked contrast with the isoprene emission model that predicts an instant
response of emissions to light (Eqs. 1–2). In addition, as different emitted monoter-
penes have different volatilities (Table 1), the time-lags induced due to non-specific10

storage are different for different terpenes (Niinemets and Reichstein, 2002; Noe et
al., 2006). This leads to time-dependent modifications in the fractional composition of
emitted monoterpenes under non-steady state conditions (Niinemets and Reichstein,
2002).

Niinemets and Reichstein (2002) and Noe et al. (2006) have developed a dynamic15

model to consider the effects of non-specific storage on monoterpene emission kinet-
ics. At least two pools, S1 (nmol m−2) and S2 (nmol m−2) with varying time-kinetics
(time constant k1 and k2, s−1) were needed to simulate monoterpene emission rate at
time t(Niinemets and Reichstein, 2002; Noe et al., 2006):

E (t)=k1S1 (t)+k2S2 (t), (8)20

where the pool kinetics are given as:

dS1 (t)
dt

=ηI−k1S1 (t) (9)

dS2 (t)
dt

= (1−η)I−k2S2 (t). (10)

Analytical solution of the model is provided in Niinemets and Reichstein (2002). In
these equations, η is the fraction of monoterpenes going to pool S1, and 1-η is the25
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fraction going to pool S2. The rate of compound synthesis, I , can be simulated by the
standard Guenther et al. (1991, 1993) model (Eq. 1), with corresponding instantaneous
light- (Eq. 2), temperature- (Eq. 3) and CO2- (Eq. 7) response functions. The pool S1
was presumed to exist in the leaf liquid phase and S2 in the lipid phase. The half-time
of non-specific storage varies from minutes (pool S1) to hours (pool S2), depending on5

the monoterpene physico-chemical characteristics, indicating that non-specific storage
effects need consideration in simulating monoterpene emissions in species lacking
specialized storage. Overall, employing the non-specific storage model provides a
good fit to the data (Fig. 4).

2.2.2 Implications of non-specific storage on ES and the shape of the light and10

temperature response functions

In addition to the above mentioned factors driving variability in light (2.1.1) and tem-
perature (2.1.2) responses of isoprene emission, non-specific partitioning of monoter-
penes into internal leaf tissues can alter both the temperature and light-responses of
monoterpene emission rate, and such effects are particularly significant for modeling15

the dynamics of monoterpene emissions. Studies on the light-dependence of monoter-
pene emissions in species lacking specialized storage tissues have demonstrated that
the light response of emissions has a different shape than the rectangular hyperbola
produced by the isoprene response function (Schuh et al., 1997; Staudt et al., 2003).
In particular, the initial part of the monoterpene emission response to light is often sig-20

moidal (Fig. 5). To parameterize the sigmoidal rise of the emissions as light intensity
increases, it has been suggested to modify the Guenther et al. algorithm (Eq. 2) as
(Schuh et al., 1997):

f (Q)=CL1m

 αmQ√
1+α2

mQ2


2

, (11)
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where CL1m and αm are the modified light response function parameters. This function
has been shown to fit light-dependent monoterpene emissions better than the original
isoprene emission algorithm (Fig. 5a, Dindorf et al., 2006; Schuh et al., 1997; Staudt
et al., 2003). However, the sigmoidal shape of the light-response of monoterpene
emissions likely results from non-specific monoterpene storage (Fig. 5b). Reaching a5

steady-state emission rate at any given light intensity can be time-consuming, taking
tens of minutes (see e.g., Fig. 4a). In leaves with empty non-specific storage pools, the
emission rate is initially less than the synthesis rate. In typical measurements of light
response curves, starting from low light with a gradual increase of light, non-specific
storage leads to apparent sigmoidal shape of the light response curve (Fig. 5b).10

Although the sigmoidal light response curves can be parameterized with the modified
equation (Eq. 11), the subsequent model would not be effective in describing time-
lags between changes in light intensity and monoterpene emission rate that occur,
for example, during the course of a day (Fig. 4). To parameterize such patterns, a
dynamic model (Eq. 8) is needed. In fact, such time-lags can be successfully simulated15

by deploying a simplified lag factor in the models rather than applying sigmoidal light-
response functions.

To further account for monoterpene release in darkness and better parameterize the
temperature dependence of existing models (e.g., Fig. 4a), it has been suggested to
combine the light-dependent emission model (emission rate EL) and the model de-20

veloped for species with specialized storage tissues (emission rate ES) (Schuh et al.,
1997):

E =EL+ES. (12)

In this mixed algorithm used to simulate emissions in broad-leaved deciduous tree
species Fagus sylvatica and herb species Helianthus annuus, emission from the non-25

specific storage pool, ES, was exponentially dependent on temperature similar to Eq. 5,
while EL was described as dependent on light according to Eq. 11 and on temperature
according to Eq. 3, and separate emission factors were used for EL and ES. Thus,
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under given conditions, this mixed model predicts that ES adds a constant factor to
the total flux. However, the size of the non-specific storage pool very much depends
on the previous conditions, implying, for instance, that the emission rate in darkness
decreases in time and that the response of the emission to given increase or decrease
in light level depends on how long the leaf has been under given conditions (Fig. 4a,5

Loreto et al., 1996a; Niinemets et al., 2002a). Such effects can only be simulated by a
model based on dynamic pools (Eq. 8).

Although the mixed model (Eq. 12) predicts a stronger temperature response than
the standard Guenther et al. (1991) model, it cannot predict bursts of emission following
short-term increases in temperature such as occur during a single day (Fig. 6) and for10

hot days that follow cold days (e.g., Niinemets et al., 2002a). Such phenomena reflect
the circumstance that when ambient temperatures are low, monoterpenes are non-
specifically stored in leaf liquid- and aqueous pools, and released with faster rates than
the rate of synthesis that is predicted by the increase in leaf temperature alone. Unlike
the case for isoprene emission (Fig. 2), monoterpene emissions are characterized by15

large apparent Q10 (emission rate at the temperature T + 10 ◦C relative to the rate at
T ), even larger than those for monoterpene synthase activity (Fig. 6). Again, this large
Q10 value may reflect filling of the monoterpene pools under low temperature when
compound volatility limits the emission rate, and transient emptying of these pools at
higher temperature (Fig. 6). Parameterization and simulation of such hysteresis effects20

in the temperature response is possible only with a dynamic model such as Eq. 8.
From the evidence we have presented, it is clear that light-dependent monoterpene

emissions reflect the contribution of both de novo monoterpene synthesis and emission
of monoterpenes from storage. The value of ES will approach the rate of monoterpene
synthesis, I , as a steady state is approached. It is important to recognize the differ-25

ence between the standardized emission rates when directly applying the Guenther et
al. (1991, 1993) isoprene emission model and when using a dynamic model. In the
dynamic model approach, the appropriate ES needed is ES = I . For the steady-state
model, even the best estimate of ES yielding the smallest sum of error squares (minSS)
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between the predictions (Epred) simulated by Eq. 1 and observations (Eobs) during the
day (where n is the number of measurements conducted during the day),

minSS =
i=n∑
i=1

(
Epred,i−Eobs,i

)2, (13)

will overestimate the emissions under some conditions, e.g., after induction of syn-
thesis in the morning hours when light increases, and underestimate the emissions5

under other conditions, e.g., after reduction of synthesis in the afternoon when light de-
creases. Furthermore, the value of ES that best fits the daily time-course of emissions
with a steady-state model does not necessarily coincide with the value of ES measured
under standardized conditions of 30 ◦C and 1000 µmol m−2 s−1. This conceptual diffi-
culty further underscores that ES is a modeling concept, depending on what model is10

used and even how the model is parameterized, e.g. measuring ES values under stan-
dardized conditions or deriving ES from Eq. 13 as the best fit value from field measured
time-courses (Epred = f (ES), Eq. 1).

This evidence collectively demonstrates that the use of steady-state temperature-
and light dependencies developed for isoprene emission (e.g., the Guenther algo-15

rithms) in simulating the emissions of higher molecular mass compounds is likely to
carry significant uncertainties and errors in the estimation of emissions from vegeta-
tion experiencing diurnal fluctuations in leaf temperature and light intensity. This is
clearly an area that should receive high priority in future research.

2.3 Towards the construction of models for induced emissions20

In the previous section, we focused on constitutive emissions present only in certain
species. Yet, emissions of volatile compounds can be triggered by various biotic and
abiotic stress factors in essentially all plant species (Arimura et al., 2009; Brilli et al.,
2009; Niinemets, 2010; Wu and Baldwin, 2009). Furthermore, foliage sesquiterpene
emissions are mostly associated with stress (Duhl et al., 2008; Hakola et al., 2006), and25
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emissions of homoterpenes, C11 compound DMNT (4,8-dimethylnona-1,3,7-triene)
and C16 compound TMTT (4,8,12-trimethyltrideca-1,3,7,11-tetraene) are exclusively
associated with stress, in particular, with biotic stress (Arimura et al., 2009; Herde et
al., 2008; Vuorinen et al., 2007; Wu and Baldwin, 2009). The stress-driven monoter-
pene emissions are often dominated by specific stress-marker compounds such as5

the oxygenated monoterpenes linalool and non-oxygenated ocimenes (Blande et al.,
2005; Cardoza et al., 2002; Martin et al., 2003; Pinto et al., 2007; Staudt and Bertin,
1998; Staudt et al., 2003). In addition to these specific compounds, a blend of monoter-
penes can often be elicited that resembles the emissions in constitutive emitters such
as emissions of α- and β-pinene, limonene etc. (Brilli et al., 2009; Huber et al., 2005;10

Paré and Tumlinson, 1998). To further complicate matters, such typical monoterpene
emissions can be triggered in species emitting these compounds constitutively (Huber
et al., 2005; Staudt and Lhoutellier, 2007). Clearly, stress-induced emissions cannot
always be separated from the modulation of constitutive emissions by environment and
physiology and also because the stressors are not always directly visible (e.g., small15

sap-sucking herbivores such as spider mites).
An important implication of induced emissions is that standardized emission factors

(ES) can vary widely depending on whether plants have been exposed to or are suffer-
ing from certain biotic or abiotic stresses. The presence of induced emissions can ex-
plain why species found to be non-emitters in some studies, are subsequently observed20

to be strong emitters in other studies. For example, temperate deciduous broad-leaved
Betula spp. have been found to be low mono- and sesquiterpene emitters in some stud-
ies and during certain times of the year, with emission rates in standardized conditions
only on the order of 0.1–0.4 µg g−1 hr−1 (Hakola et al., 1998, 2001; König et al., 1995).
In other studies and at other times of the year, they have been found to be moderately25

strong emitters, with ES values on the order of 1.5–8 µg g−1 hr−1 and the emissions
dominated by the monoterpenes linalool and ocimenes, and by sesquiterpenes (Hakola
et al., 1998, 2001; König et al., 1995; Owen et al., 2003; Steinbrecher et al., 1999).
In analogous manner, a large variability, more than 80-fold, is present in ES values
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in the Mediterranean evergreen conifer Pinus pinea (Fig. 7). In this species, emis-
sions during the wet and cool season are dominated by the monoterpene limonene
(constitutive emissions), while the emissions in the hot dry season are dominated by
the monoterpenes linalool and trans-β-ocimene (induced emissions) (Niinemets et al.,
2002b; Staudt et al., 1997, 2000). Importantly, even in the constitutive emitters, the5

induced emissions can by several-fold exceed constitutive emissions (Fig. 7).
Currently, the variation in ES values due to induced emissions cannot be consid-

ered in simulation models. There is encouraging evidence that stress dose versus
induced emission relationships can be derived (Beauchamp et al., 2005; Karl et al.,
2008; Niinemets, 2010), making it possible to include induced emissions in future mod-10

els. Despite this evidence, there is currently limited information on the stress thresholds
leading to elicitation of induced emissions and also on how the stress thresholds vary
with species constitutive and induced tolerance to given environmental driver and bi-
otic stress (Niinemets, 2010). Evidently, much more experimental work is needed for
quantitative incorporation of induced emissions into large scale predictive models.15

The other important issue with induced emissions is that the induced monoterpenes
(Brilli et al., 2009; Niinemets et al., 2002b; Ortega et al., 2007; Staudt et al., 1997),
DMNT (Staudt and Lhoutellier, 2007), and sesquiterpenes (Hansen and Seufert, 2003;
Staudt and Lhoutellier, 2007) are often emitted in light-dependent manner. For constitu-
tive emitters, the presence of parallel induced emissions can greatly complicate efforts20

to characterize ES. For instance in Pinus pinea, low-level constitutive emissions domi-
nated by limonene are only dependent on temperature (Staudt et al., 1997, 2000) and
can be simulated by Eq. 5. In contrast, the induced emissions dominated by linalool
and trans-β-ocimene depend both on light and temperature (Niinemets et al., 2002b;
Staudt et al., 1997) and are better simulated by Eqs. 2 and 3. Thus, the total emission25

rate (induced and constitutive) can be simulated using the mixed model (Eq. 12). In
reality, this situation is rendered even more complex due to physico-chemical effects
resulting from the non-specific storage of induced monoterpenes (Niinemets et al.,
2002b; Noe et al., 2006), requiring the use of a dynamic model (Eqs. 8–10). Thus, in
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conifer species where the emissions are typically assumed to be simulated by only one
simple temperature-dependent equation (Eq. 5), parameterization of daily time-courses
may necessitate the use of a complex array of models. Given the fundamentally differ-
ent controls on constitutive and induced emissions, it is important to separately define
the emission potentials for constitutive (standardized emission rate in the absence of5

induced emissions) and induced (standardized emission rate in the absence of consti-
tutive emissions) emissions.

2.4 Consideration of alterations in mono- and sesquiterpene compositions in
models

Terpene-emitting species release simultaneously many different compounds. This re-10

flects the presence of several different terpene synthases in plant foliage as well as
production of several terpenes by the same terpene synthases (Alonso and Croteau,
1993 for a review). For instance, monoterpene emitting species can release more than
20 different monoterpenes (Niinemets et al., 2002c) (for a review of monoterpenes re-
leased from the foliage of Quercus ilex). In isoprenoid emission and modeling studies,15

ES for monoterpenes is generally taken as a sum of all monoterpenes emitted and ES
for sesquiterpenes as a sum of all sesquiterpenes. Because the reactivity of different
terpenes with OH radicals and ozone differs several orders of magnitude (Atkinson and
Arey, 2003b; Atkinson and Arey, 2003a; Calogirou et al., 1999), for reliable air quality
simulations, it is highly relevant to consider the variations in the composition of emitted20

terpene blends as well. There are multiple factors that can affect the composition of the
emitted compounds, and we provide here only a brief overview of the key determinants.

In terpene-storing species, it is well-known that different genotypes have varying
foliage terpene compositions (e.g., Canard et al., 1997; Hayashi and Komae, 1974; To-
bolski and Hanover, 1971). In non-storing species, it has also been demonstrated that25

genotype affects the emission compositions, reflecting differences in the expression of
various terpene synthases. For instance, in Mediterranean evergreen sclerophyll Quer-
cus ilex, monoterpene emissions of some populations are dominated by α-pinene and

1260

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/1233/2010/bgd-7-1233-2010-print.pdf
http://www.biogeosciences-discuss.net/7/1233/2010/bgd-7-1233-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 1233–1293, 2010

The emission factor
of volatile

isoprenoids
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β-pinene, while in other populations by limonene (Niinemets et al., 2002c; Staudt et
al., 2001b). Analogous observations have been made for another Mediterranean scle-
rophyll Quercus suber (Staudt et al., 2004). Apart from the strong genetic component,
there is evidence of environmental effects such as water, nutrient and light availabilities
on terpene composition in terpene-storing species (Firmage, 1981; Letchamo et al.,5

1994; Merk et al., 1988; Schiller, 1993; Voirin et al., 1990).
Leaf age and seasonality have also been shown to affect the composition of stored

terpenes (Hall and Langenheim, 1986; Rohloff, 1999). In addition, variation in the
composition of emissions during the season has been demonstrated for terpene stor-
ing and non-storing species (Bertin et al., 1997; He et al., 2000; Kuhn et al., 2004;10

Llusià and Peñuelas, 2000; Sabillón and Cremades, 2001; Staudt et al., 1997, 2000).
Interestingly, in constitutive isoprene emitters, young leaves that do not yet have de-
veloped the capacity for isoprene emission may be significant monoterpene emitters
(Brilli et al., 2009; Kuhn et al., 2004). With development of isoprene emission capacity,
monoterpene emissions decrease and cease in fully mature non-stressed leaves (Brilli15

et al., 2009; Kuhn et al., 2004).
In addition, growth under elevated CO2 can modify the composition of emissions in

non-storing species (Loreto et al., 2001). So far, such variations are imperfectly un-
derstood, but may reflect selective expression of different monoterpene synthases in
different conditions (Loreto et al., 2001) (for changes in monoterpene synthase activ-20

ities under elevated CO2). As discussed in Sect. 2.3, environmental and biotic stress
elicits expression of a variety of mono- and sesquiterpenes, and thus, stress-induced
emissions typically have different composition than constitutive emissions.

In addition to the biological factors, emission compositions in species without special-
ized storage can transiently change due to differences in compound physico-chemical25

characteristics (Eq. 8, Table 1), for instance after dark-light transfers. Due to differ-
ences in the capacity for non-specific storage, compounds with lower volatility take
longer to reach a steady-state tissue concentration. Thus, after switching on the light,
the emissions will be initially dominated by compounds with greater volatility, while after
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switching off the light, emissions will be dominated by compounds with lower volatil-
ity (Niinemets and Reichstein, 2002). In addition, analogous effects can occur after
rapid changes in the rate of monoterpene synthesis such as after light or temperature
change. Such physico-chemical effects emphasize the importance of analyzing the
emission compositions in steady-state.5

These data collectively demonstrate that variation in emission composition occurs
among the populations of the same species and can also occur in dependence on en-
vironmental drivers and seasonality. We plead that the information of the composition
of emitted compounds be published together with the sum of the emissions (ES).

2.5 Scaling ES in models10

ES in the emission models have been originally defined as species-specific values on
the leaf scale (Guenther et al., 1991, 1993). Further plant functional type specific
emission factors (Guenther et al., 1995), and landscape-level (Guenther et al., 1999)
emission factors still defined on the basis of leaf area were constructed. Ultimately,
average canopy-level integrated emission factors have been defined (Guenther et al.,15

2006). These canopy-level values were expressed on the basis of ground surface area
differently from all previous ES definitions (Guenther et al., 2006). As the scaled-up
values are outcomes of models, the aggregated emission factors are subject to vary
with the algorithms used for integration of isoprenoid fluxes. Here we analyze the
way ES values are used and aggregated in different model schemes, potentials and20

limitations of various scaling routines and the compatibility of aggregated ES values
scaled up in various manner.

2.5.1 Leaf-level emission factors scaled to canopy, landscape and biome

Leaf-scale species-specific estimates of ES can be directly used to simulate canopy
and landscape level BVOC emission fluxes using soil-vegetation-atmosphere transfer25

(SVAT) models (e.g., Baldocchi and Meyers, 1998; Baldocchi et al., 1999) similar to
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the schemes widely used for simulation of plant carbon gain (Caldwell et al., 1986;
Falge et al., 1997; Ryel, 1993). SVAT models are typically 1-D layered models or 3-D
models that describe the variation in light, temperature and humidity in dependence
on the amount of leaf area and leaf area distribution of the vegetation (e.g., Baldocchi,
1991; Baldocchi et al., 1999; Cescatti and Niinemets, 2004). At the regional scale,5

species-specific ES values of dominant species are still typically employed (Guenther
et al., 1994, 1996b; Keenan et al., 2009).

In addition to employing appropriate light, temperature and CO2 response functions
(Eqs. 1–7), a series of biological factors such as leaf age, and long- and short-term
acclimation responses in ES are important to consider (Grote, 2007; Niinemets et al.,10

2010). For accurate integration, distribution of foliage of different emitting species within
the canopy is needed. Canopy models with varying complexity can be used in inte-
gration schemes, e.g. models including spatial aggregation and 3-D heterogeneity vs.
simple Lambert-Beer models with random dispersion of foliage elements (Baldocchi,
1997; Cescatti and Niinemets, 2004). Although ES is the key predictor of the emission15

potentials of given vegetation, the structure of the canopy model, as well as the quality
of leaf area and canopy architecture data can potentially introduce as much or even
more variation in predicted emission fluxes as the prescribed ES values (Keenan et al.,
2010).

At the biome- and global-scales, emission factors are typically determined for plant20

functional types (PFT), ES,PFT, based on the species-specific ES estimates obtained
from screening studies conducted all across the world (Arneth et al., 2007; Guenther
et al., 1995; Guenther et al., 2006). These functional-type specific ES estimates signif-
icantly simplify the large-scale integration of emission fluxes. However, the accuracy of
ES,PFT values depends on the way the weighted average of species-specific ES values25

is obtained. While global average ES,PFT values can be derived for each PFT, species
composition within a given PFT, will significantly affect the predicted emissions. For
instance, both deciduous North-American species Fagus grandifolia and Quercus alba
will fall in broad-leaved deciduous PFT, but F. grandifolia is an isoprene non-emitter,
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while Q. alba is a strong isoprene emitter. Thus, isoprene emissions of areas domi-
nated by Fagus will be overestimated by average ES,PFT for broad-leaved forests, while
the emissions from areas dominated by Quercus will be underestimated. The spatial
resolution of emission inventories can be significantly improved by including available
vegetation species coverage data (Guenther et al., 2006). In any case, it is important5

to keep in mind that any PFT-level emission factor is a modeled characteristic that de-
pends both on leaf-level ES values as well as on species coverage estimates. Errors in
species coverage estimates can potentially bias the emission predictions as much as
errors in prescription of ES, and become potentially relevant when vegetation compo-
sition changes doe to changes in environmental conditions (Schurgers et al., 2009b).10

In large-scale emission models, use of layered or 3-D models that specify environ-
mental conditions for each layer or 3-D canopy element, voxel, is complicated by the
need for high amount of detailed structural information for model parameterization. Yet,
typically only spatial information for integrated traits such as canopy leaf area index and
plant functional type is available. As an alternative to the detailed multi-layered models,15

big-leaf canopy models have been developed that approximate the canopy as a single
big leaf (Amthor, 1994; Lloyd et al., 1995). The key limitation of single big leaf mod-
els is associated with inherent non-linearity of plant physiological responses to light
and temperature. As the result, simple integration that does not consider that under
sunny conditions there are sunlit and shaded foliage at any location in the canopy, over-20

estimates the true fluxes: this is a mathematical consequence of Jensen’s inequality
theorem for concave functions (Niinemets and Anten, 2009 for a review). Such integra-
tion problems are partly overcome by development of two big-leaf models, consisting
of a sunlit and a shaded big-leaf (Dai et al., 2004; de Pury and Farquhar, 1997).

All big leaf type models assume that the responses of the entire canopy to light25

and temperature can be approximated with functions similar to those used for single
leaves. Certain “optimum” variation in foliage physiological potentials within the canopy
is assumed, and thus, only the upper canopy leaf physiological potentials are used
for analytical integration of whole canopy responses to above-canopy environmental
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conditions (Amthor, 1994; Dai et al., 2004; de Pury and Farquhar, 1997). In these
models, the “optimum” variation is defined as linear decrease of foliage physiological
potentials with long-term light availability from top to bottom of the canopy (Amthor,
1994; Dai et al., 2004; de Pury and Farquhar, 1997). With such assumption, the typi-
cal ES values estimated for high-light exposed foliage, and ES,PFT values derived from5

these, can be used in the area-dependent integration of large-scale fluxes. Such big-
leaf approaches have been used in global isoprene and monoterpene simulations with
LPJ-GUESS (Arneth et al., 2008; Arneth et al., 2007; Schurgers et al., 2009a). So
far, the condition of “optimal” variation of ES through the canopy still awaits experimen-
tal verification, although for photosynthesis, we have learned that the variation is not10

satisfying the optimality criteria (Friend, 2001; Niinemets and Anten, 2009).

2.5.2 Canopy-level emission factors in integration schemes

In the integration schemes outlined above, ES values used are still leaf-scale emission
factors determined for unshaded foliage. Alternatively, in the recent isoprene emission
model MEGAN, canopy-scale isoprene emission factor, Ecan was defined (Guenther15

et al., 2006) that is not only standardized for temperature and light as ES tradition-
ally was, but also for leaf area index and for many biological factors (Niinemets et al.,
2010 for a review). The canopy-scale emission factor is a modeled characteristic that
is based on available leaf-level ES estimates for given species that are further com-
bined with a canopy model to yield values of Ecan (Guenther et al., 2006). PFT-specific20

values of Ecan can be further derived combining ES estimates of species belonging
to given plant functional type and linking these again to a canopy model (Guenther
et al., 2006). Canopy-level isoprene emission fluxes are then calculated using empir-
ical relationships between above-canopy average incident quantum flux density and
temperature (Guenther et al., 2006).25
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The potential advantage of the canopy-scale approach is that at this scale, isoprenoid
emission fluxes (production of BVOC by vegetation minus decomposition in the ambi-
ent atmosphere) can be measured by eddy-covariance techniques (Baldocchi et al.,
1999; Fuentes and Wang, 1999; Fuentes et al., 1999; Guenther et al., 1996a; Huber et
al., 1999; Rinne et al., 2002; Spirig et al., 2005). Thus, canopy-level estimates of the5

emission factor, Ecan,mes, can be directly derived, skipping the tedious leaf to canopy
integration step. However, canopy-level emission rates obtained from eddy flux mea-
surements are instantaneous values, while MEGAN runs with average temperature and
light conditions. Due to non-linearities inherent to light and temperature responses, use
of instantaneous values of Ecan,mes derived from the flux measurements would system-10

atically overestimate the predicted emission fluxes using average light and temperature
as driving variables (Niinemets and Anten, 2009 for a review of integration problems).
In addition, flux measurements, are often not conducted in stands having a “standard”
LAI, and converting the values of Ecan,mes to a standard LAI again requires a canopy
model, Thus, apart from the fact that Ecan values in MEGAN are derived from leaf-level15

estimates using a canopy model (Guenther et al., 2006), the values of Ecan employed
in MEGAN are not equivalent to Ecan,mes estimates from flux measurements.

In summary, in large-scale integration schemes, it is highly relevant to clearly specify
how the emission factor used for scaling emission fluxes is determined. Integration
models currently include both emission factors that are directly derived from leaf-level20

estimates and emission factors that include a great deal of modeling. It is important to
consider that these different emission factors cannot be used interchangeably in differ-
ent models. Particular care should be taken in applying the modeled and aggregated
emission factors, e.g., as Ecan applied in MEGAN (Guenther et al., 2006). Being a mod-
eled variable means that any change in light and temperature response function and25

their parameterization applied in the emission model, and time-resolution of climatic
drivers would require re-computation of Ecan values.
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3 Conclusions

The emission models used worldwide to simulate volatile isoprenoid emission fluxes
from vegetation for further use in atmospheric chemistry models are largely based on
Guenther et al. (1991, 1993) algorithms. The strength of these algorithms has been
the conceptual simplicity provided to modelers in that they need only the standardized5

emission factors, ES, and being able to simulate the emission fluxes using the light
and temperature functions specified by Guenther et al. (1991, 1993), for which input
data are readily worldwide available. However, our knowledge of the factors influenc-
ing ES, and its application to different scales of consideration, has greatly increased
since the original development of the Guenther at al. algorithms. Significant varia-10

tions in plant responses to environmental drivers light and temperature, and to so far
unaccounted environmental drivers such as CO2 have been highlighted and emission
induction by biotic and abiotic stresses and modifications in emission compositions
have been demonstrated. Recent studies have also observed important variability in
the share of emission controls between compound synthesis and physico-chemical15

factors. The existence of this knowledge means the days of simple emission source
modeling are past. Our purpose in writing this paper is to provide greater depth in the
understanding of those who wish to simulate isoprenoid emissions and stimulate the
development of novel approaches, such as dynamic emission models, to include the
contemporary understanding of emission controls in future emission simulations.20
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sion factor of volatile isoprenoids: stress, development and acclimation responses, Biogeo-15

sciences, submitted, 2010.
Noe, S. M., Ciccioli, P., Brancaleoni, E., Loreto, F., and Niinemets, Ü.: Emissions of monoter-
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Ü. Niinemets et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

ilex leaves to emit monoterpenes, New Phytol., 158, 61–73, 2003.
Staudt, M., Mir, C., Joffre, R., Rambal, S., Bonin, A., Landais, D., and Lumaret, R.: Isoprenoid

emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific
genetic introgression, New Phytol., 163, 573–584, 2004.

Staudt, M., and Lhoutellier, L.: Volatile organic compound emission from holm oak infested5

by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves,
Tree Physiol., 27, 1433–1440, 2007.

Steinbrecher, R., Hauff, K., Rabong, R., and Steinbrecher, J.: Isoprenoid emission of oak
species typical for the Mediterranean area: source strength and controlling variables, Atmos.
Environ., 31, 79–88, 1997.10
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Vuorinen, T., Nerg, A.-M., Syrjälä, L., Peltonen, P., and Holopainen, J. K.: Epirrita autumnata

induced VOC emission of silver birch differ from emission induced by leaf fungal pathogen,5

Arthropod-Plant Inte., 1, 159–165, 2007.
Wiberley, A. E., Linskey, A. R., Falbel, T. G., and Sharkey, T. D.: Development of the capacity

for isoprene emission in kudzu, Plant Cell Environ., 28, 898–905, 2005.
Wilkinson, M. J., Monson, R. K., Trahan, N., Lee, S., Brown, E., Jackson, R. B., Polley, H.

W., Fay, P. A., and Fall, R.: Leaf isoprene emission rate as a function of atmospheric CO210

concentration, Glob. Change Biol., 15, 1189–1200, 2009.
Winer, A. M., Fitz, D. R., and Miller, P. R.: Investigation of the role of natural hydrocarbons in

photochemical smog formation in California. Contract No. AO-056-32, prepared for the Cal-
ifornia Air Resources Board, Statewide Air Pollution Research Center, Riverside, California,
U.S.A. Springfield, Virginia, U.S.A., 1983.15

Wu, J. and Baldwin, I. T.: Herbivory-induced signalling in plants: perception and action, Plant
Cell Environ., 32, 1161–1174, 2009.

Young, P. J., Arneth, A., Schurgers, G., Zeng, G., and Pyle, J. A.: The CO2 inhibition of terres-
trial isoprene emission significantly affects future ozone projections, Atmos. Chem. Phys., 9,
2793–2803, 2009,20

http://www.atmos-chem-phys.net/9/2793/2009/.
Zimmer, W., Brüggemann, N., Emeis, S., Giersch, C., Lehning, A., Steinbrecher, R., and Schnit-

zler, J. P.: Process-based modelling of isoprene emission by oak leaves, Plant Cell Environ.,
23, 585–595, 2000.

1285

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/1233/2010/bgd-7-1233-2010-print.pdf
http://www.biogeosciences-discuss.net/7/1233/2010/bgd-7-1233-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/9/2793/2009/


BGD
7, 1233–1293, 2010

The emission factor
of volatile

isoprenoids
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Table 1. Variation in physico-chemical characteristics of isoprene, non-oxygenated monoter-
penes and monoterpene alcohols α-terpineol and linalool at 25 ◦C.

Compound1 Henry’s law Octanol/water Octanol/air
constant, Hxy partition coefficient, KOW partition coefficient, KOA

mol/mol air
mol/mol water

mol/mol octanol
mol/mol water

mol/mol octanol
mol/mol air

Isoprene 4266 29.09 0.00682
α-Terpinene 1914 866.5 0.453
α-Pinene 7435 3392 0.456
β-Pinene 3772 4599 1.219
α-Phellandrene 3052 6601 2.163
β-Phellandrene 3052 6684 2.190
S-(−)-Limonene 1577 5537 3.511
R-(+)-Limonene 1563 5490 3.512
Terpinolene 1457 5148 3.532
γ-Terpinene 1433 5354 3.735
Linalool 1.162 104.5 89.90
α-Terpineol 0.1238 105.6 853.1

1 The compounds were ranked according to increasing values of KOA.
Data for isoprene as revised in Niinemets and Reichstein (2003),
data for other compounds from Copolovici and Niinemets (2007, 2005).
The convention of units as in Staudinger and Roberts (2001).
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Ü. Niinemets et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 1. The rate of isoprene emission in relation to incident quantum flux density (light intensity, Q) in temperate
broad-leaved deciduous species Quercus alba (a), data modified from Harley et al. (1997) and Liquidambar styraciflua
(b), data modified from Harley et al. (1996) studied in leaves from the lower and upper canopy. The emission rate was
standardized with respect to the rate measured at Q of 1000 µmol m−2 s−1 that is the typical light intensity at which the
isoprenoid emission factor, ES, is defined (Guenther et al., 1991, 1993). The light response function (Eq. 2) was fitted
to the data and the model parameters, α, the apparent quantum yield, and CL1, the scaling coefficient, are shown for
the different responses. In addition, the original light-response function reported by Guenther et al. (1991) is shown in
both panels (red lines).
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Fig. 2. Comparison of the temperature responses of isoprene synthase activity in Populus tremuloides (data
from Monson et al., 1992), the “standard” isoprene emission curve by Guenther et al. model (1991, 1993) as re-
parameterized (1997, Eq. 4) to yield a value of 1.0 at 30 ◦C, and the measurements of isoprene emission rate in Quer-
cus rubra (data from Singsaas et al., 1999). These measurements were either conducted rapidly (4 min. at each leaf
temperature, fast curve) or slowly (30 min. at each temperature, slow curve). In all cases the data were standardized
with respect to the measurements at 30 ◦C, yielding the temperature response function of isoprene emission.
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Fig. 3. Isoprene emission rate in relation to intercellular CO2 concentration (Ci) in Quercus rubra plants grown at
an ambient CO2 concentration of 350 µmol mol−1 (data from Loreto and Sharkey, 1990) and in Populus tremuloides
plants grown at ambient CO2 concentrations of 400 and 1200 µmol mol−1 (data from Wilkinson et al., 2009). Data for
P. tremuloides were fitted by Eq. 7, while an empirical non-linear relationship with a maximum was used to fit the data
for Q. rubra.
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Fig. 4. Interaction of physiological and physico-chemical factors in determining the total light-dependent monoterpene
emission rate in the Mediterranean evergreen sclerophyll Quercus ilex (a) (modified from Ciccioli et al., 1997b) and
light-dependent emissions of monoterpene trans-β-ocimene in the Mediterranean conifer Pinus pinea (b) (modified
from Noe et al., 2006) at a constant temperature of 30 ◦C. (a) depicts the transient of the emission rates after light-
dark changes, while (b) depicts the emissions of 13C-labelled trans-β-ocimene following the switch from 12CO2 to
13CO2, and after a steady-state was reached in labeled trans-β-ocimene emissions, from 13CO2 to 12CO2. Given that
the synthesis of monoterpenes relies on a small chloroplastic carbon pool, application of a simple steady-state model
initially developed for isoprene (Guenther et al., 1991) suggests that monoterpene emission rate immediately tracks the
altered light intensity (a) and that in all the emitted trans-β-ocimene molecules at least one carbon atom is labeled by
13C (b, simulation without the storage pool). In reality, reaching the steady-state is time-consuming due to non-specific
monoterpene storage within the leaf liquid and lipid phases (Niinemets and Reichstein, 2002; Noe et al., 2006). This
leads to time-lags in reaching the maximum monoterpene emission rates and continued release of monoterpenes from
darkened leaves (a), as well as to time-lags in trans-β-ocimene labeling with 13C and de-labeling after swapping back
to 12CO2. The best fit to the data can be obtained with a model including two leaf monoterpene pools, the faster pool
presumably located in the leaf liquid phase and the slower pool presumably located in the leaf lipid phase (Niinemets
and Reichstein, 2002; Noe et al., 2006). For (a), the half-time for the faster pool was 0.078 h, while the half-time was
2.05 h for the slower pool (Niinemets and Reichstein, 2002). For (b), the corresponding half-times obtained were 0.03 h
for the faster, and 0.26 h for the slower pool (Noe et al., 2006).
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Fig. 5. Light-responses of monoterpene emission rate in the Mediterranean evergreen sclerophyll Quercus ilex
grown under high and low light and comparison with Guenther et al. (1991) standard emission response (Eq. 2) (a)
(data from Staudt et al., 2003), and (b) simulated responses of monoterpene emissions using a steady-state algorithm
(Guenther et al., 1991) and a dynamic algorithm that considers the effect of non-specific storage on monoterpene
emissions (Eq. 8, Niinemets and Reichstein, 2002). In the dynamic simulation, the synthesis rate of monoterpene
emission at any light intensity was predicted by Guenther et al. (1991) algorithm, and the light level was increased
by 50 µmol m−2 s−1 steps in every 2 min. In (a), the data were fitted by modified light-response function suggested by
Schuh et al. (1997, Eq. 10).
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Fig. 6. Temperature effects on monoterpene emission rates from foliage of the broad-leaved evergreen Mediter-
ranean sclerophyll Quercus ilex (symbols), on monoterpene synthase activity (solid line) and α-pinene octanol-to-air
partition coefficient (KOA, dashed line) that characterizes the equilibrium size of non-specific monoterpene pool in the
leaves (a), and time-dependent changes in monoterpene emissions from Q. ilex leaves after changes in temperature
from 20 ◦C to 33 ◦C (b). In all cases, the data were normalized with respect to the value measured at 30 ◦C. The emis-
sion rate data in (a) are from Bertin and Staudt (1996, open squares), Staudt and Seufert (1995, filled squares), Staudt
and Bertin (1998, open circles) and Loreto et al. (1998, filled circles) (Niinemets, 2004 for details on data compilation
and fitting). The data in (b) are from Ciccioli et al. (1997a). All measurements were conducted at saturating light and
cuvette CO2 concentrations of approximately 350 µmol mol−1. The measurements of monoterpene synthase activity
are from Fischbach et al. (2000) and the KOA estimations from Copolovici et al. (2005, Table 1). Physico-chemical
factors likely explain differences between the rates of monoterpene emission and synthesis. As more monoterpenes
can be non-specifically stored within the leaves at low temperatures, the emission rates are less than the synthase
activity, while at higher temperatures, monoterpenes that have been accumulated at lower temperatures are released.
Accordingly, leaves can transiently emit less or more monoterpenes than immediately synthesized. Emission of stored
monoterpenes after switching to higher temperature likely explains the monoterpene emission burst in (b).
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Ü. Niinemets et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 7. Estimates of monoterpene emission rate under standardized conditions (leaf temperature, TL = 30 ◦C, incident
quantum flux density, Q= 1000 µmol m−2 s−1), “the emission factor” (ES) from the foliage of Mediterranean evergreen
conifer Pinus pinea (data of Corchnoy et al., 1992; Kesselmeier et al., 1997; Owen et al., 1997, 1998, 2001, 2002;
Owen and Hewitt, 2000; Pio et al., 1993; Sabillón and Cremades, 2001; Seufert et al., 1997; Staudt et al., 1997, 2000;
Street et al., 1997; Winer et al., 1983). The estimates of ES (n= 43) were ranked from the smallest to the largest.
In studies demonstrating low ES, the emissions were typically dominated by the monoterpene limonene and were not
light-dependent (constitutive emissions). High emission rates were typically dominated by the monoterpenes linalool
and trans-β-ocimene that are considered as typical stress-induced monoterpenes. These emissions were both light-
and temperature dependent (e.g., Niinemets et al., 2002b; Staudt et al., 1997). Thus, conceptually, the constitutive
emissions can be predicted by Eq. 5, induced emissions by Eq. 1, and total emissions by Eq. 12. However, due to non-
specific storage of induced monoterpenes (Noe et al., 2006), a dynamic model is needed to describe these emissions
(Eq. 8–10).
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