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Abstract

A coupled Bayesian model selection and geostatistical regression modeling approach
is adopted for empirical analysis of gross primary productivity (GPP) at six AmeriFlux
sites, including the Kennedy Space Center Scrub Oak, Vaira Ranch, Tonzi Ranch,
Blodgett Forest, Morgan Monroe State Forest, and Harvard Forest sites. The analy-5

sis is performed at a continuum of temporal scales ranging from daily to monthly, for
a period of seven years. A total of 10 covariates representing environmental stimuli
and indices of plant physiology are considered in explaining variations in GPP. Similar
to other statistical methods, the proposed approach estimates regression coefficients
and uncertainties associated with the covariates in a selected regression model. How-10

ever, unlike traditional regression methods, the presented approach also estimates the
uncertainty associated with the selection of a single “best” model of GPP. In addition,
the approach provides an enhanced understanding of how the importance of specific
covariates changes with temporal resolutions. An examination of trends in the impor-
tance of specific covariates reveals scaling thresholds above or below which covariates15

become significant in explaining GPP. Results indicate that most sites (especially those
with a stronger seasonal cycle) exhibit at least one prominent scaling threshold be-
tween daily to 20-day temporal scale. This demonstrates that environmental variables
that explain GPP at synoptic scales are different from those that capture its season-
ality. At shorter time scales, radiation, temperature, and vapor pressure deficit exert20

most significant influence on GPP at most examined sites. However, at coarser time
scales, the importance of these covariates in explaining GPP declines. Overall, unique
best models are identified at most sites at the daily scale, whereas multiple compet-
ing models are identified at larger time scales. In addition, the selected models are
able to explain a larger fraction of the observed variability for sites exhibiting strong25

seasonality.
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1 Introduction

Vegetation ecosystem dynamics are governed by processes operating over a wide
range of spatio-temporal scales (Levin, 2003; Osmond, 1989). A key challenge in un-
derstanding these dynamics lies in determining factors that govern gross primary pro-
ductivity (GPP) and ecosystem respiration (RE) at specific scales of interest. Over the5

years, understanding of vegetation dynamics that influence GPP and RE has improved
considerably at small scales (Jarvis, 1995). However, the transfer of this knowledge
to larger spatial and longer temporal scales remains difficult and fraught with potential
errors, due to spatio-temporal heterogeneity of vegetation dynamics (Gardner et al.,
2001; Bradford and Reynolds, 2006). These scaling issues also complicate modeling10

of responses to climate change, because the range of scales over which specific gov-
erning processes can be assumed to remain consistent is poorly understood (Jarvis,
1993). Consequently, biospheric model predictions have large uncertainties, in part
because the importance of process-based functional relationships is not known at dif-
ferent spatio-temporal scales. To reduce this uncertainty, improved understanding of15

the varying influence of eco-climatic drivers on GPP and RE is required across a broad
range of spatio-temporal scales. With respect to temporal scale, the sensitivities of
GPP and/or RE to these drivers can be established by examining these cycles at flux
tower sites (Ma et al., 2007; Pielke, 2000).

In general, longer records (typically ≥5 years) of continuous net ecosystem exchange20

(NEE) measurements are needed to assess the importance of eco-climatic drivers
influencing GPP and RE at different time scales (Baldocchi et al., 2001; Ito et al.,
2005). These long term measurements provide a holistic perspective of an ecosys-
tem, by measuring its response to a range of climatic conditions and extremes (Barr
et al., 2007; Bradford and Reynolds, 2006; Gilmanov et al., 2006; Houghton, 2000).25

Presently, however, there are few flux sites where continuous NEE measurements are
available for long time periods (Baldocchi, 2008).

1447

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/1445/2010/bgd-7-1445-2010-print.pdf
http://www.biogeosciences-discuss.net/7/1445/2010/bgd-7-1445-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 1445–1487, 2010

Factors affecting
gross primary

productivity in North
America

V. Yadav et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Previous studies at longer time scales (>5 years) for these flux sites have focused
primarily on examining GPP/RE associations to eco-climatic drivers at a single tempo-
ral scale, ranging from daily to inter-annual temporal resolution (Barr et al., 2007; Dunn
et al., 2007; Powell et al., 2006; Urbanski et al., 2007). For flux sites where less data is
available, these relationships have mostly been assessed at daily or sub-daily scales5

(Schmid et al., 2000). The results from these studies indicate that different combina-
tions of eco-climatic drivers explain variability of GPP/RE in different biomes and climate
regimes (Ma et al., 2007). However, as most of these studies have been performed at
a single scale, the relative influence of these drivers on GPP/RE at both shorter (diur-
nal) and longer (monthly, inter-annual) temporal resolutions is poorly understood for all10

sites. As a consequence, the temporal scales at which given eco-climatic drivers are
(or are not) important, and which drivers dominate at which scales, is not understood.

Recently, a few attempts have been made to examine these relationships at multiple
temporal scales. However, the focus of this work has been mostly on studying cor-
relations between time series of GPP/RE and different groups of eco-climatic drivers15

(e.g. climate versus vegetation) using wavelet analysis (Stoy et al., 2005, 2009). Al-
though these methods suggest that relationships between GPP/RE and these groups
of drivers change as a function of scale, it is difficult to distinguish between spurious
and causative implications of these correlations (see for example; Granger Causality;
Granger, 1969; Hacker and Hatemi, 2006) without applying more rigorous statistical20

testing (e.g. assessing the specific relationship between a covariate and GPP/RE and
its associated uncertainty). This creates a need for the application of more robust sta-
tistical inference methods for examining the relative importance of various drivers in
explaining variations in GPP and/or RE at different time scales. One such statistical
regression method, applied in Mueller et al. (2010), is extended in this study to under-25

stand the relationship between GPP and its eco-climatic drivers in different ecosystems
across North America.

The majority of past studies of factors affecting the temporal variability in GPP have
relied on either a pre-specified parametric model or linear and nonlinear regression
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against a single factor or covariate (Mahadevan et al., 2008; Yuan et al., 2007a). These
relationships, though useful, do not give insight into the uncertainty of the model itself
and the covariates included in it. Moreover, in some cases, application of linear re-
gression is not appropriate because GPP observations (and/or regression residuals)
are temporally autocorrelated, especially at shorter temporal resolutions (Mueller et5

al., 2010). To address these problems, it is desirable to include multiple covariates si-
multaneously in a regression framework, and to account for the correlation structure of
the GPP observations in the statistical model. Three issues have to be taken into ac-
count while building such a model: the model needs to (1) account for autocorrelation
in the portion of the observations (i.e., GPP in this study) not explained by the ancillary10

variables, (2) identify a valid set of regressors/covariates to include in the regression
model, and (3) account for multicollinearity among covariates. The first of these three
issues requires the selection of a regression modeling framework that takes autocor-
relation into account, whereas the last two can be accommodated by implementing
an appropriate model selection scheme. Rigorous application of the model selection15

scheme in these situations also has the capacity to provide a metric to compare a given
covariate across different regressions (or temporal scales, in this study) (Burnham and
Anderson, 1998), and also determine the relative importance of several covariates in
explaining GPP.

In addition to the above, the approach presented and applied in this work provides20

a method for quantifying the uncertainty associated with the choice of the best set
of covariates, when comparing competing regression models. As such, the analy-
sis accounts for the possibility of there being multiple sets of covariates that provide
comparable fits to the available GPP observations, which has not been considered in
past studies at the AmeriFlux sites (Hui et al., 2003; Law et al., 2002). Finally, the pre-25

sented analysis is performed across a continuum of temporal scales, ranging from daily
to monthly, in order to identify specific timescales at which the importance of specific
covariates changes.
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The main implications of this work are, first, that it makes both methodological and
theoretical advancements in the study of GPP and its explanatory covariates across
temporal scales in different ecosystems. Second, an enhanced understanding of the
environmental variables explaining GPP will help in better constraining the spatial and
temporal trends of CO2 flux in inverse models (Gourdji et al., 2008; Mueller et al.,5

2008). Lastly, improved knowledge of the dominant covariates, and changes in their
importance as a function of temporal scale, provides an empirical foundation for im-
proving mechanistic models of carbon flux.

2 Available data

2.1 Study sites10

The six sites selected for the presented analysis are described in Table 1 and shown
in Fig. 1. These six sites are Kennedy Space Center Scrub Oak, Vaira Ranch, Tonzi
Ranch, Blodgett Forest, Morgan Monroe State Forest and Harvard Forest. From here-
after, for discussion in the text and in tables, figures and supplementary material the
Kennedy Space Center Scrub Oak site is referred to as “Kennedy Space Center”15

and the Morgan Monroe State Forest site is referred to as “Morgan Monroe”. At the
Kennedy Space Center, Blodgett Forest, Morgan Monroe and Harvard Forest sites,
the relationship between GPP and ancillary environmental variables is examined for
the growing periods 2000 to 2006, whereas, for the Tonzi Ranch and Vaira Ranch site,
the growing periods span 2001 to 2007. The annual growing period for each of these20

sites is given in Table 1, and was determined based on GPP time series.
The selection of this time period and these sites was based on two major crite-

ria: (1) the sites should have more than five years of continuous GPP data, sup-
plemented by other auxiliary environmental variables, and (2) for the same time pe-
riod, the sites should have continuous gap filled remote sensing (RS) time series of25

MODIS-derived variables such as Leaf Area Index (LAI), Fraction of Photosynthetically
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Active Radiation (FPAR), Enhanced Vegetation Index (EVI), and Normalized Differ-
ence Vegetation Index (NDVI). These gap-filled data products were created as part of
MODIS for North American Carbon Program (NACP) project, and are available from
http://ladsweb.nascom.nasa.gov/. Details about the algorithms used for creating these
gap filled products are presented in Gao et al. (2008) and Jonsson and Eklundh (2004).5

These two criteria ensure that the number of GPP observations is sufficiently large
across the range of examined temporal scales to provide insights into the controls of
GPP at different scales. Inclusion of RS data is important because, if RS indices can be
used to explain the pattern of GPP observed at tower sites, then these indices can also
be used to reduce the uncertainty associated with carbon flux estimates at unsampled10

locations.

2.2 Gross primary productivity and auxiliary environmental data

AmeriFlux level four gap-filled GPP, available from the Carbon Dioxide Information
Analysis Center (see, ftp://cdiac.esd.ornl.gov/pub/AmeriFlux/data/) was analyzed in
this study. For all six study sites, GPP obtained from the marginal distribution sampling15

(Reichstein et al., 2005) method was used. To ascertain that no bias is introduced
due to the choice of a particular GPP product for analysis, the results of the statistical
modeling methodology described in Sect. 3 were repeated at the Morgan Monroe and
Kennedy Space Center sites using artificial neural network derived GPP, and no signif-
icant differences were found. Supported by this observation and findings of Desai et20

al. (2008), who found that most methods of GPP estimation only differ by up to approx-
imately 10%, GPP obtained from the marginal distribution sampling method was used
because it is available for all six study sites.

Level four gap filled data products also include data for six common covariates col-
lected across flux sites. These six covariates in conjunction with four MODIS mea-25

sures of vegetation properties (phenology, density and light absorption), were used to
model GPP. Additional data are available at some sites, including soil heat flux, wind
speed, and others. However, to maintain consistency for cross-comparison of sites,
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we avoided inclusion of data that are not available across all sites. The 10 examined
covariates are therefore: (1) Composed LAI, (2) Composed FPAR, (3) Composed EVI,
(4) Composed NDVI, (5) Vapor pressure deficit, (6) Global radiation, (7) Air tempera-
ture, (8) Precipitation, (9) Soil temperature, and (10) Soil water content. The first four
of these are from MODIS, and are described and documented in Huete et al. (1999),5

whereas details on the last six can be obtained from the Carbon Dioxide Information
Analysis Center ftp site (ftp://cdiac.esd.ornl.gov/pub/AmeriFlux/data/). Linear interpo-
lation of 8-day data products was used to obtain daily values for the MODIS-based
variables. All 10 covariates were employed in the statistical modeling of GPP at five of
the six sites; however, soil water content data are not available for Harvard, and only10

the remaining 9 covariates were used for this site.
The majority of the analysis was conducted at daily, 8-day, and monthly intervals, as

these are the most commonly utilized scales for examining trends in GPP. However,
for understanding changes in the importance of covariates in explaining GPP across a
continuum of temporal scales, some results are also presented for temporal resolutions15

ranging from one day to 30 days, in one-day increments.

3 Statistical methodology

Regression modeling has been adopted as the primary method for understanding the
relationship between GPP and its eco-climatic drivers at AmeriFlux sites (see for e.g.,
Hui et al., 2003; Powell et al., 2006; Urbanski et al., 2007). However, the traditional20

multiple linear regression (MLR) approach does not account for the temporal corre-
lation observed in regression residuals from flux tower analyses (Law et al., 2002),
which can lead to an underestimation of the uncertainty associated with regression
coefficients (Chatfield, 2003), which, in turn, can make certain ancillary variables erro-
neously appear to be significant. In addition, if there are gaps within the time series25

(e.g. examining seasonal GPP observations over multiple years), then regression co-
efficients may also be biased (Cressie, 1993; Hoeting et al., 2006). Alternatively, the
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geostatistical regression approach presented in Mueller et al. (2010), and extended
here, quantifies and accounts for the temporal correlation of regression residuals of
GPP time series.

3.1 Geostatistical regression

Geostatistical regression (GR; e.g. Erickson et al., 2005) is a parametric method used5

to model environmental phenomena, such as GPP, that are correlated in space and/or
time. In GR, a variable such as GPP is expressed as the sum of a deterministic
component that represents the portion of the signal that can be explained by a set
of covariates, and a stochastic component modeled as a spatially and/or temporally
autocorrelated random function. Mathematically, a GR model can be expressed as:10

z = Xβ + ε (1)

where z(n×1) are observations of the parameter of interest (GPP in this study) at spe-
cific locations and/or times, X (n×p) is a pre-specified design matrix of covariates,
β(p×1) are the coefficients relating individual covariates in X to the dependent variable
z, and ε are zero-mean intrinsically stationary residuals (Cressie, 1993). If in Eq. (1)15

the residuals are uncorrelated in space and time, then inference about the relationship
between X and z can be derived from a MLR model. The residuals ε in this case would
be independent, and their covariance would be a scaled identity matrix. In this work, z
are GPP observations at a given flux tower site as a function of time, and X contains a
subset of the environmental variables described in Sect. 2.2, defined at the same times20

as the GPP observations. The approach for selecting the subset(s) of environmental
variables is described in Sect. 3.2.

A covariance function is used in GR to model the correlation structure of the stochas-
tic component ε. In this study, an exponential covariance function combined with a
nugget effect is used, as it has been shown to represent the variability of NEE and25

GPP in the past studies (Gourdji et al., 2008; Michalak et al., 2004; Mueller et al.,
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2010). This function is defined as:

Q = σ2
N + σ2

S

(
−h
l

)
(2)

where Q is the (n×n) covariance matrix of the regression residuals, σ2
N is the variance

of the variability that is uncorrelated in time (this can include measurement error and/or
the variability at time scales below the averaging time used for GPP observations), h5

is the (n×n) matrix of time lags between GPP observations, σ2
S is the variance of the

variability that is temporally correlated, and l is the correlation range parameter, such
that 3l represents the time after which the correlation between GPP residuals becomes
negligible. Equation (2) assumes that the GPP residuals (ε) are homoscedastic. Al-
though a more complicated model could be implemented to include heteroscedasticity,10

we do not expect the variance to change significantly within the growing season for a
particular site.

Restricted maximum likelihood (e.g., Kitanidis, 1995; Michalak et al., 2004) is used
to optimize the parameters σ2

N ,σ
2
S and l . For GR, the restricted maximum likelihood

objective function can be written as:15

L(σ2
N ,σ

2
S ,l ; z)=

1
2

ln |Q|+1
2

ln
∣∣XTQ−1X

∣∣+1
2

zT
(

Q−1−Q−1X(XTQ−1X)−1XTQ−1
)

z (3)

where L(σ2
N , σ

2
S , l ; z) is minimized with respect to σ2

N , σ2
S and l in Q. The reader is re-

ferred to Michalak et al. (2004) and Mueller et al. (2010) for a more detailed description
of this approach in the context of NEE and GPP/RE modeling.

After obtaining Q, best estimates of the GR coefficients and their associated uncer-20

tainties are obtained as:

β̂ =
(

XTQ−1X
)−1

XTQ−1z (4)

Vβ̂ =
(

XTQ−1X
)−1

(5)
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where β̂ are the (p×1) best estimates of the GR regression coefficients β, and Vβ̂ is
the (p×p) covariance matrix representing their uncertainties and cross-covariances.
The Vβ̂ as given in Eq. (5) is further used to compute uncertainties of the contribution

of the covariates Xβ̂ for explaining the observed GPP, which is defined as:

VXβ̂ = XVβ̂XT (6)5

where diagonal of (n×n) VXβ̂ represents the uncertainty on Xβ̂. To assess the rela-
tive independence of the relationship of a particular covariate with GPP within the GR
model, the correlation coefficients of the estimated regression coefficients are quanti-
fied as:

ρβ̂ = W−1Vβ̂W−1 (7)10

where W(p×p) is a diagonal matrix of the square root of the diagonal entries in Vβ̂.

The performance of GR is evaluated by computing the coefficient of determination (R2)
between Xβ̂ and z, termed “variance reduction” in this study.

3.2 Model selection using the Bayesian information criterion

Model selection in GR is the process of selecting covariates with the goal of creating a15

regression model of optimal complexity. Although scientific understanding should form
the primary basis in selecting covariates, existing theory provides limited guidance with
regard to which eco-climatic covariates should be included in explaining GPP at differ-
ent sites and time scales of interest (for example see different formulations of light use
efficiency models; Yuan et al., 2007b). Hence, the need arises for a statistical method20

that can identify regression models of optimal complexity. The approach implemented
here, as in Mueller et al. (2010), is based on the Bayes Information Criterion (BIC;
Schwarz, 1978). In comparison to other measures of regression model selection, such
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as Akaike’s information criterion (Akaike, 1974), BIC is more informative in an inferen-
tial framework. In addition, BIC can be used to determine the relative likelihood of sev-
eral alternative regression models, and the relative importance of specific covariates,
in terms of their posterior probabilities. For GR models in this study, this is achieved
by comparing BIC values of all possible linear combinations of the 10 or 9 covariates5

at a particular flux site. This is in contrast to more traditional hypothesis-based model
selection techniques that are based on F-tests, and that can only be used to compare
nested statistical models, and that may therefore overlook covariates that are jointly,
but not individually, significant in explaining GPP.

Bayesian model selection is based on the idea that candidate models should be10

compared in terms of prior and posterior evidence for a model over an alternative
model. This idea is expressed in terms of Bayes factors that can be used to compare
several nested and non nested models simultaneously, where a set of nested models
is one where one model is a subset of the other. Mathematically the standard form of
Bayes factor B(z) can be written as:15

B(z) =
p(M1|z)/p(M1)

p(M2|z)/p(M2)
(8)

where p(M1|z) and p(M2|z) represent posterior probabilities of models M1 and M2 given
the available measurements z and, p(M1) and p(M2) represent the prior probabilities
of the two models, which are assumed even in this study (i.e., p(M1)=p(M2)=1/2), be-
cause no prior information is available in favor of any model. B(z) measures the relative20

support for various models, and does not lead to simple accept and reject decisions
as in hypothesis-based methods. Jeffreys (1961) proposed a scale for interpreting
Bayes factors, suggesting that if B(z)>1 then the measurements favor M1 over M2, and
when B(z)<1 they favor M2. He also suggested the following grades of evidence for
B(z) when 1≤B(z)≤3, there is “very weak evidence” for M1 over M2, when 3≤B(z)≤1025

the evidence is “positive”, when 10≤B(z)≤100 it is “strong”, and when B(z)>100 it is
“decisive”.
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Unfortunately, finding Bayes factors involves evaluating the integrals of the likeli-
hoods of different models, which is difficult to do analytically. An approximation to this
approach, based on a maximum log-likelihood estimator, is given by the BIC (Schwarz,
1978):

BIC = −2L∗
(
σ2
N , σ

2
S , l ; z

)
+ k ln (n) (9)5

where n is the number of observations, k is the number of covariates and
L∗

(
σ2
N , σ

2
S , l ; z

)
is the log-likelihood of the model under consideration. For GR, as-

suming that the residuals ε in Eq. (1) follow a Gaussian distribution, L∗
(
σ2
N , σ

2
S , l ; z

)
can be expressed as (Mueller et al., 2010):

L∗(σ2
N ,σ

2
S ,l ;z)=−n

2
ln |2 π|+1

2
ln |Q|+1

2
zT

(
Q−1−Q−1X(XTQ−1X)−1XTQ−1

)
z (10)10

In this study, all possible sets of covariates for GPP, at all sites and timescales of
interest, are compared by computing their BIC, with the set of covariates corresponding
to the lowest BIC being identified as the “best” GR model.

3.3 Quantifying and accounting for model uncertainty

Although the model with the lowest BIC can be thought of as the “best” GR model,15

multiple models could potentially explain the observed GPP to a similar degree, espe-
cially given the similarity among some of the candidate covariates (Sect. 2.2). Hence,
in these circumstances, it is more suitable to select a set of candidate models from all
possible GR models. A Bayesian solution for selecting these candidate models was
proposed by Leamer (1978), and implemented in a BIC framework by Raftery (1995).20

In this study, we implement a modification of this method as described below.
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When comparing a group of regression models, M={M1, M2, M3...MN}, the posterior
probability of a particular model “Mi ” from the group of N possible models in M can be
given as (Kass and Raftery, 1995):

p(Mi |z) =
p(z|Mi )/p(Mi )

N∑
j=1

p(z|Mj )/p(Mj )

(11)

where the a priori probability of all the models in the group is equal in this study, i.e.,5

p(M1)=p(MN )=1/N, and p(z|Mi )∝ exp
(
−1

2BICMi

)
. For further discussion see Hoeting

et al. (2000), Kass and Raftery (1995) and Wasserman (2000). Hence:

p(Mi |z) ≈
exp

(
−1

2BICMi

)
N∑
j=1

exp
(
−1

2BICMj

) (12)

However, when the total number of possible regression models N is large, the poste-
rior probability as given in Eq. (12) would be small even for the best regression model10

chosen from BIC. The number N is particularly large when the number of candidate
covariates explaining the response variable is large, and M has regression models
formulated from all possible subsets of these individual covariates. In this situation,
M includes many models that have no basis of support, and hence, it is desirable to
reduce the size of M before computing p(Mi |z) in Eq. (12). In this study, a two step ap-15

proach was adopted to reduce the number of candidate models. First, GR models that
are poorly supported by the available data are eliminated if they are at least 20 times
less likely (analogous to a 0.05 significance level) than the “best” model as determined
using the BIC (Sect. 3.1). This is equivalent to removing all GR models that have a BIC
value of at least 6 above than that of the “best” model (i.e., BICMi

−BICbestmodel>6), and20

corresponds to “strong” evidence in favor of “best” model on the Jeffreys (1961) scale
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described in Sect. 3.2 (i.e., 2 log (Bayes factor); 2 log (20)∼=6). Second, the number
of candidate models in M is further reduced by comparing the log likelihoods of any
remaining nested models as given in Eq. (10) (Burnham and Anderson, 1998), and
eliminating any models that are not significantly better than a model consisting of a
subset of their covariates, at a 0.05 significance level based on chi-square test. The5

subsets of models remaining after these two preliminary steps are considered to be
those that can adequately explain GPP for a given site and time scale. In the analy-
ses performed here, the number of remaining models N ranged from 1 to 6 (Table 2)
across the examined sites and time scales (see Sect. 4.2). The posterior probability
i.e., p(Mi |z) of these models is then computed from Eq. (12) to assess their relative10

probabilities. Although the “best” model as identified using the BIC criterion alone
(Sect. 3.2) will always have the highest probability of being the “correct” model, this
probability will not be 100% unless only one model remains (N=1), and may in some
cases will be below 50% (see Sect. 4.2)

3.4 Quantifying importance of individual covariates15

In addition to identifying the set of GR models that explain GPP and the posterior
probability associated with each of these models, we were also interested in finding
the relative importance of including a specific covariate in the set of GR model. In
simple terms, this importance represents the posterior probability of a covariate be-
ing included in a particular set of models M. Mathematically, given the superset of20

covariates X={X1, X2, X3...Xp}, where p=9 or 10 for the sites examined in this study
(Sect. 2.2), the importance of a covariate can be expressed as (Raftery et al., 1997):

p(Xj |z) =
K∑
i=1

p(Mi |z), ∀Mi s. t. Xj∈Mi (13)

where p(Xj |z) is the posterior probability of the j -th covariate, and p(Mi |z) is calculated
as in Eq. (12). This quantity indicates its “importance”, and is equal to the sum of25
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p(Mi |z) for all possible subsets of covariates that include Xj . The posterior probability
of the covariates in Eq. (13) is computed without reducing the set of possible models
using the procedure in Sect. 3.3. This metric provides an indication of the relative
importance of specific covariates for a particular time scale and site.

According to Raftery (1995), p(Xj |z)>0.50, 0.75, 0.95 and 0.99 indicates “weak”,5

“positive”, “strong” and “very strong” importance, respectively. Similar probability-
evidence strength relationships were also suggested with regard to model probabili-
ties, p(Mi |z) in Eq. (12). In Sect. 4, we use these probability breakpoints to discuss
both model probabilities, i.e., p(Mi |z) and the importance of individual covariates, i.e.,
p(Xj |z), in explaining GPP.10

With regard to GPP, we posit that covariates that explain GPP vary in their impor-
tance across temporal scales. Therefore, the importance of all covariates is calculated
for all time scales ranging from one-day to 30-day intervals. This is achieved by aver-
aging daily GPP and auxiliary eco-climatic data time series at these 30 different time
scales. The variability of p(Xj |z) from 1-day to 30-day time scales illustrates how the im-15

portance of specific covariates in explaining GPP evolves as the examined time scale
increases, and provides a key foundation for understanding how processes governing
GPP vary with temporal scale.

4 Results and discussion

Results are presented primarily at monthly, 8-day and daily temporal scales. Some of20

the detailed supporting findings not directly related to the main thesis of this work are
presented in Tables A1–A3.
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4.1 Relationship between covariates and observed GPP at daily, 8-day and
monthly scales

Examination of the covariates selected through BIC for the “best” model for each site
and time scale (Table 2) provides an indication of the factors that explain GPP at differ-
ent time scales across ecosystems. At the daily scale, Global radiation, Air tempera-5

ture, Vapor pressure deficit, and Precipitation are the most common variables selected
across sites. The selection of these covariates is not surprising, and reconfirms the
light use efficiency approach adopted in earlier studies. At the monthly scale, however,
the covariates used in light use efficiency models do not perform well, because several
competing covariates can explain the seasonality of GPP and the variables that best10

explain this seasonality vary by site. Within MODIS based regressors, EVI and NDVI
perform better in explaining GPP at shorter temporal scales, whereas at the monthly
scale this demarcation is not clear, and LAI, FPAR and EVI are selected for at least
one site in the “best” GR model.

To understand the relationship between selected covariates and GPP, the sign of15

the regression coefficients β̂ was examined for the “best” GR model identified using
BIC at the daily scale. A positive sign on β̂i indicates a positive correlation with GPP
(i.e., carbon uptake), whereas a negative sign indicates a negative correlation (i.e., a
reduction in carbon uptake). The average individual and total average contribution of
these regressors to GPP for the “best” GR model was also analyzed at the daily scale,20

and is shown in Fig. 2. Since the correlation ρβ̂ (Eq. 7) between the uncertainties of
the regression coefficients for Air temperature and Vapor pressure deficit were greater
than 0.70 at the Tonzi and Blodgett sites, and for Global radiation and Air temperature
at the Harvard Forest site, the combined (rather than individual) contributions of these
covariates are shown in Fig. 2. Standardized regression coefficients for the “best” GR25

model at daily, 8-day and monthly temporal scales are presented in Tables A1, A2, and
A3 in the Appendix.
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In general, the sign of the regression coefficients are consistent across sites and
ecosystems. At all sites, LAI, EVI, NDVI, Global radiation, and Air temperature are pos-
itively correlated with GPP, whereas Precipitation and FPAR are negatively correlated
with GPP (Table 2). This indicates that the overall impact of these variables on GPP
is consistent across ecosystems and examined sites. The influence of these variables5

on photosynthesis has been well recognized in earlier studies (Gourdji et al., 2008; Iio
et al., 2004; Powell et al., 2006; Schmid et al., 2000; Sims et al., 2008; Davidson et al.,
2000; Day, 2000). The sign of the coefficient for Vapor pressure deficit, on the other
hand, varied across sites. Vapor pressure deficit can be an indicator of water stress
and as Vapor pressure deficit rises, stomatal conductance declines, which reduces the10

photosynthetic rate and the efficiency of plants to use light to fix carbon. This yields
a negative regression coefficient for VPD at most sites. The Vapor pressure deficit at
which photosynthetic rate gets suppressed varies by plant species, and depends on
the availability of water. At the Kennedy Space Center site, moisture stress is insignif-
icant, and Vapor pressure deficit is mostly below 1.5 kilopascals. As Vapor pressure15

deficit is not an inhibitor of photosynthesis at Kennedy Space Center, it is positively
associated with GPP, and serves primarily to capture the seasonal cycle of GPP at the
monthly scale.

Among the 10 candidate covariates, the largest contribution to carbon uptake was
associated with EVI or NDVI at the Kennedy Space Center, Vaira, Tonzi, Morgan Mon-20

roe and Harvard sites, with Global radiation accounting for second largest contribution
at all sites (Fig. 2) except Morgan Monroe. Conversely, Vapor pressure deficit and
Precipitation were associated with minor reductions in uptake at most sites. For the
remaining covariates, the strength of contribution varied across sites. From a broader
perspective, the analysis of the size of the contribution brings to the forefront the fact25

that light and indicators of vegetation phenology/density are most strongly associated
with carbon uptake, whereas moisture stress indicated by Vapor pressure deficit plays
a minor role in reducing GPP.
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4.2 Model performance

Overall, the ability of the selected variables to explain observed variability in GPP im-
proves at coarser temporal scales. At all sites, the variance reduced is highest and the
root mean squared error of the “best” GR model and AmeriFlux level 4 gross primary
productivity data is lowest, at the monthly scale (Table 3). This is to be expected, as5

GPP time series at finer resolutions have more variability and noise. Due to this higher
variability, more covariates are required to explain GPP at the daily scale (Table 2) rel-
ative to the monthly and 8-day scales. The performance of models with the highest
probabilities is shown in Table 3. In addition, GPP observations and GPP predicted
(Xβ̂) by the “best” GR model are presented at the 8-day scale for each site in Fig. 3.10

The one standard deviation uncertainty bounds in Fig. 3 have been estimated as the
square root of the sum of the uncertainty variance of Xβ̂ (Eq. 6), and the estimated
variance of the residuals (σ2

N+σ
2
S ; Eqs. 1 and 2). Results for other time scales are

qualitatively similar.
Comparatively, across sites and scales, the selected “best” GR models of GPP are15

more effective in explaining GPP variability in ecosystems that have a definite seasonal
cycle, including the Harvard, Morgan Monroe, Tonzi and Vaira sites. Conversely, the
variance reduced is lower at the Blodgett and Kennedy Space Center sites, where
the growing season is longer in comparison to other AmeriFlux study sites (Table 1).
Ecosystems exhibiting little seasonal variability, such as the Kennedy Space Center20

site, are also found to have shorter temporal correlation lengths (3 l ) in their regression
residuals, which imply that GPP observation residuals at shorter temporal lags are
independent of one another. Absence of strong seasonality at these sites also means
that phenological factors do not exert dominant controls, and GPP is primarily governed
by processes operating at shorter time scales, some of which are identified through25

proxy covariates (see Sect. 4.1). In addition, some of the explanatory environmental
variables omitted due to the cross-site data consistency restrictions imposed in this
study could also play an important role in improving the GR model performance at
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both these sites. Some examples of these additional covariates include aerosols and
albedo, which impact radiation and friction velocity, and, in turn, GPP (Chambers et al.,
2004; Oliveira et al., 2007). Deficiencies in the candidate variables available to the GR
model are also possible for the other examined sites, but any such missing variables
had a lesser impact on the ability of the model to reproduce the observed variability.5

At the monthly and 8-day scales, several competing candidate models that can ex-
plain GPP are identified at most sites (Table 2), because more than one subset of
covariates explains GPP to a similar extent. Although the numbers of plausible models
is higher at longer time scales, several common covariates are observed across these
plausible models. These are generally variables that have “positive” to “very strong”,10

importance, as defined in Sect. 3.4. Hence, although the number of candidate mod-
els selected is larger at coarser temporal scales, the dominant covariates can still be
identified through their posterior probabilities, as shown in Table 2.

The variance reduced and the posterior probability (Eq. 12) of the GR models at the
daily, 8-day and monthly temporal scales highlight the problems that can be encoun-15

tered in the traditional statistical modeling of GPP that relies on studying relationships
based on a single “best” model. At shorter temporal scales, the “best” GR models
have higher posterior probability (Table 2) but explain less variance in the GPP signal
(Table 3). At coarser temporal scales, the variance reduced for the “best” GR models
is higher, but several competing GR models can explain the seasonality of GPP, which20

reduces the posterior probability of the “best” GR models (Table 2). This clearly shows
that using a single “best” statistical model of GPP without accounting for its uncertainty
relative to other competing models can yield misleading conclusions about the impor-
tance of specific covariates in explaining GPP. The application of the method proposed
here provides a more objective basis for evaluating the uniqueness of the selected GR25

model of GPP, by computing its uncertainty within a Bayesian model selection frame-
work.
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4.3 Importance of covariates across continuum of temporal scales

Examining the relative importance of specific covariates across multiple temporal
scales provides an indication of their role in explaining GPP as a function of temporal
resolution. This is illustrated in Table 3, which shows the posterior probability (Eq. 13)
of specific covariates at the examined sites at daily, 8-day and monthly time scales.5

For example, at Harvard Forest, the importance of Global radiation is “very strong” at
the daily scale, but this variable is not significant at the monthly scale. Similarly, at the
Tonzi site, Precipitation is very important at the daily scale, but is not significant at the
8-day scale. Analogous examples of varying importance were found at all sites. These
differences in the posterior probability of covariates indicate that the importance of en-10

vironmental variables in explaining GPP at one temporal scale does not imply similar
importance at another scale. As a result, it becomes necessary to examine these re-
lationships at a continuum of temporal scales, in order to highlight (1) covariates that
are important at all scales, and consequently are dominant explanatory variables gov-
erning GPP in a particular ecosystem, and (2) as suggested by Wu and Li (2006), time15

scale thresholds below or above which certain variables become important in explain-
ing observed variability in GPP, and thus would reflect fundamental shifts in controlling
factors or processes across scales.

To study the change in importance of covariates in explaining GPP at a continuum
of time scales, the posterior probability (Eq. 13) of covariates is computed at 1-day to20

30-day time scales. Results reveal that most covariates vary in their importance as a
function of temporal resolution, and that few cross-scale or scale invariant explanatory
covariates of GPP are present at all examined sites. Figure 4 depicts changes in
the posterior probability, or importance, of individual covariates from the daily to the
monthly scale, and includes all covariates that were selected in the daily, 8-day, and/or25

monthly analysis discussed previously for each site. Any covariate that has greater
than “positive” importance (posterior probability greater than 0.75) at most time scales
in Fig. 4 is considered to have a scale-invariant importance.
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Among the 10 variables examined in this work, the only covariates exhibiting scale-
invariant importance are LAI and Vapor pressure deficit for the Vaira site, Global ra-
diation for the Tonzi and Blodgett sites, and EVI for the Kennedy Space Center and
Morgan Monroe sites. Therefore, the fact that a given model or covariate is an impor-
tant predictor of GPP at a particular time scale does not, in general, imply that this5

is also true at other scales. In earlier studies, some of the covariates included in this
study have been found to significantly explain variability of GPP at a particular tem-
poral scale. But in the absence of a multi-temporal scale analysis such as the one
presented here, it is difficult to judge whether the strength of modeled relationships
holds for other temporal scales, or is specific to a particular examined scale (Baldocchi10

et al., 2004, 2005; Goldstein et al., 2000; Lee et al., 2002; Ma et al., 2007; Urbanski
et al., 2007; Wang et al., 2008; Xu and Baldocchi, 2004; Xu et al., 2001; Powell et al.,
2006; McMillan et al., 2008; Saito et al., 2009).

Most sites exhibited at least one temporal scale threshold, above or below which
several covariates became significant in explaining GPP. All six study sites exhibited15

at least one prominent scaling threshold below the 20-day scale, indicating that en-
vironmental variables and processes that are important in explaining GPP variability
at synoptic scales are different from those operating at larger temporal resolutions
(Fig. 4). For instance, at the Vaira site, Air temperature, Global radiation and Precipita-
tion are important at the synoptic scale, but their influence declines gradually beyond20

the 15-day scale. As expected, these thresholds vary both with sites and covariates.
For example, at the Harvard Forest site, the scaling thresholds for different covariates
lie between the 1-day and 15-day temporal resolution. Multiple temporal scale thresh-
olds are also observed in some cases, such as for Blodgett site, where shifts in the
importance of Soil temperature and Precipitation are observed between the 1-day and25

5-day scales, whereas the importance of Global radiation and Vapor pressure deficit
changes between the 20-day and 25-day scales. For some sites, such as Kennedy
Space Center, no clear overall temporal scale thresholds are observed, although the
importance of individual variables still changed more gradually across temporal scales.
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Beyond well defined time scale thresholds, the importance of individual covariates
can also be assessed, which helps in identifying different types of scaling behaviors,
and therefore might reveal relationships between different time scales in an ecosys-
tem (for further discussion see, Ehleringer and Field, 1993; Jarvis, 1995). The impor-
tance of individual variables across temporal scales can generally be classified into5

four groups, which are defined here as: (1) Scale invariant dominance, (2) Declining
dominance from daily to coarser scales, (3) Emergent dominance from daily to coarser
scales, and (4) Varying dominance across scales.

Scale invariant dominance was discussed in the previous paragraphs. Declining
dominance is common across sites, indicating that some covariates are only important10

in explaining GPP at finer temporal resolutions. For example, the importance of Pre-
cipitation and Global radiation decrease gradually from the daily to the monthly scale
at the Kennedy Space Center site. This kind of scaling behavior is commonly observed
in ecology, and represents processes that are only important at finer scales, and do
not lead to any significant understanding of the pattern (GPP in this case) observed15

at coarser scales (cf. Levin, 1992). Emergent dominance is less common, but is ob-
served, for example, in the case of LAI at the Tonzi site, and LAI and NDVI at the
Harvard Forest site. Minor increases in importance are also observed for some co-
variates at other sites. This behavior can be caused by physiological processes that
decouple systems from their primary controls at finer scales by creating a web of in-20

direct interactions (Greig-Smith, 1979; Woodward, 1987). However, at coarser scales,
these interactions no longer remain important, and other processes that govern a sys-
tem at these scales become dominant (Levin, 1989; Wiens, 1989). The last scaling
behavior, that of varying dominance across scales, also occurs at many sites. For ex-
ample, at the Morgan Monroe site, the importance of Global radiation is high up to the25

5-day scale, after which it declines, only to rise again at scales greater than a 15-day
resolution. Similarly, at the Tonzi site, the importance of Air temperature is high at the
daily scale, declines until the weekly scale, and rises again slowly at coarser scales.
As comparative scaling behaviors at a continuum of scales have not been studied pre-
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viously, they are not documented, and these last results cannot be related to findings
of earlier studies. However, given the results obtained, we conclude that the primary
controls of GPP or any ecological phenomenon are strongly dependent on temporal
resolution. For some covariates, the importance follows previously established gen-
eral scaling behavior, whereas completely different scale-dependent patterns emerge5

in other cases.
Environmental forcing and biotic responses vary across temporal (and spatial)

scales. The results shown here demonstrate that factors that explain GPP differ ac-
cording to the scale of assessment. Hence, evaluating the importance of covariates
across a continuum of temporal scales can assist in understanding the varying impor-10

tance of specific environmental variables, and thereby lead to insights into processes
that best explain GPP at a particular temporal scale. Furthermore, scrutiny of cross-
scale controls of GPP can also help in identifying factors that are important irrespective
of scale.

5 Conclusions15

Mechanistic modeling of complex ecosystems for assessing the terrestrial carbon cycle
requires understanding of numerous interlinked cause and effect relationships, which,
in most open systems, can only be achieved on the foundations laid by empirical mod-
els. These empirical models, though not a substitute for detailed process-based under-
standing of ecosystems, go a long way in bringing to the forefront the primary factors20

that explain GPP and/or RE, and provide a framework for improving mechanistic mod-
els. Within this context, we propose and implement improved methods for empirical
modeling of GPP observations. The proposed statistical technique in this study builds
on the work presented in Mueller et al. (2010), and utilizes Bayesian model selection in
a geostatistical framework for assessing associations between GPP and environmental25

variables representing plant function and external forcing. The presented approach is
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shown to be particularly useful for discerning the scale-dependent importance of spe-
cific covariates, and the uncertainty associated with the selection of covariates to be
included in empirical models. As a result, the presented methods can play a valuable
role in identifying candidate process-based mechanisms for explaining variability in
GPP for diagnostic analysis of ecosystems. Furthermore, though not presented here,5

the presented approach also has the capacity to comparatively evaluate alternative
representations of process-based mechanisms (e.g. different nonlinear temperature
functions) in terms of their ability to explain GPP. We believe this type of future appli-
cation can provide a testbed for building nonlinear or mixed linear-nonlinear empirical
models of GPP and/or RE.10

The results from this research confirm that Global radiation, Air temperature, and
Vapor pressure deficit are the key variables that explain GPP across ecosystems, but
the contribution of this work does not lie in this expected result. Instead, this work
demonstrates and quantifies how the importance of environmental variables included
in the empirical model of GPP varies across temporal scales. With regard to carbon15

cycling, the results presented in this work clearly show scale-dependence in the impor-
tance of specific covariates in explaining GPP at the examined AmeriFlux sites. Hence,
having established that scale is of such primary significance, predictive or explanatory
relationships of GPP based on any single scale can lead to erroneous conclusions
regarding the importance of specific covariates. To avoid these pitfalls, scale-specific20

explanatory environmental variables should be identified and used in models formu-
lated for a particular scale. In situations where appropriate scaling laws are unknown
(which is mostly the case!), covariates with cross-scale importance identified in this
research provide the best foundation for building mechanistic biospheric models. The
varying importance of covariates explaining variability in GPP at different spatial and25

temporal scales does not imply the existence of different physiological processes at
different scales, but only indicates the presence of different dominant environmental
stimuli that can explain the observed pattern. However, once the scale-dependence of
the importance of environmental variables is understood, the effect of these variables
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on plant physiology under changing environmental conditions can also be understood.
Such an examination would enhance our ability to understand the response of ecosys-
tems to climate change, and can lead to a reduction in the uncertainty surrounding
future changes in the global carbon cycle.
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Table 1. Description of AmeriFlux sites used in the analysis. Note that the Kennedy Space
Center Scrub Oak site is referred to as “Kennedy Space Center” in subsequent tables and
figures, and the Morgan Monroe State Forest site is referred to as “Morgan Monroe”.

Flux Sites Latitude Longitude Vegetation Type Köppen Canopy Annual Examined
climate classification Height (m) growing Time-Period

period (Years)

Kennedy Space 28.609 −80.672 Closed Humid subtropical, 1 Full Year 2000–2006
Center Scrub Oak Shrublands hot summer
Vaira Ranch 38.413 −120.951 Grassland Mediterranean dry- ∼0.62 15 Dec–20 May 2001–2007

summer
Tonzi Ranch 38.432 −120.966 Woody Mediterranean dry- 9 Jan—Jul 2001–2007

Savannas summer
Blodgett Forest 38.895 −120.633 Evergreen Mediterranean dry- 8 Full Year 2000–2006

Needleleaf Forest summer
Morgan Monroe 39.323 −86.413 Deciduous Humid subtropical, 27 May–Sep 2000–2006
State Forest Broadleaf Forest hot summer
Harvard Forest 42.538 −72.172 Deciduous Humid continental, 23 May–Sep 2000–2006

Broadleaf Forest mild summer
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Table 2. Final number N of geostatistical regression (GR) models considered and the posterior
probability of the “‘best”’ model (see Eq. 11 and subsequent text) at the daily, 8-day and monthly
scales. The posterior probability of the covariates (see Eq. 12 and Sect. 3.4) is shown for all
covariates. The covariates that are included in the “‘best”’ GR model are shaded, with green
indicating a positive correlation with gross primary productivity (i.e. β̂>0) and red indicating a
negative correlation (i.e. β̂<0). See Tables A1–A3 for further details.

Flux Sites Number of Probabi- Posterior Probability of Covariates
GR models lity of the LAI FPAR EVI NDVI Global Air Vapor Soil Precipi- Soil

best GR radiation temp pressure temp tation water
model deficit content

Daily

Kennedy Space Center 2 0.68 0.05 0.03 0.98 0.03 1.00 0.78 0.33 0.28 1.00 0.03
Vaira Ranch 1 1.00 0.68 0.85 0.06 1.00 1.00 1.00 1.00 0.45 1.00 0.07
Tonzi Ranch 1 1.00 0.21 0.03 1.00 0.03 1.00 1.00 1.00 0.03 1.00 0.03
Blodgett Forest 1 1.00 0.08 0.02 0.03 0.08 1.00 1.00 1.00 1.00 1.00 0.92
Morgan Monroe 1 1.00 0.03 0.04 1.00 0.90 1.00 1.00 1.00 0.03 1.00 0.17
Harvard Forest 1 1.00 0.07 0.04 0.13 0.97 1.00 1.00 1.00 0.56 1.00 –

8-day

Kennedy Space Center 2 0.54 0.05 0.06 0.97 0.07 1.00 0.53 0.14 0.50 0.11 0.06
Vaira Ranch 1 1.00 1.00 0.98 0.11 0.99 1.00 0.99 1.00 0.83 0.19 0.10
Tonzi Ranch 2 0.74 0.83 0.08 1.00 0.09 0.99 0.11 0.83 0.09 0.83 0.10
Blodgett Forest 1 1.00 0.11 0.13 0.08 0.06 1.00 1.00 1.00 0.22 0.34 0.70
Morgan Monroe 4 0.34 0.09 0.13 1.00 0.82 0.40 0.84 0.11 0.23 0.70 0.23
Harvard Forest 2 0.81 0.50 0.51 0.90 0.49 1.00 0.81 0.12 0.12 0.10 –

Monthly

Kennedy Space Center 5 0.57 0.39 0.15 0.85 0.24 0.47 0.23 0.54 0.86 0.17 0.15
Vaira Ranch 3 0.69 1.00 0.42 0.18 0.36 0.43 0.18 0.79 0.24 0.36 0.52
Tonzi Ranch 3 0.83 0.99 0.14 0.23 0.17 0.90 0.78 0.22 0.34 0.16 0.31
Blodgett Forest 1 1.00 0.14 0.22 0.10 0.11 1.00 0.46 0.51 0.18 0.13 0.16
Morgan Monroe 6 0.61 0.16 0.14 0.77 0.34 1.00 0.37 0.57 0.75 0.16 0.29
Harvard Forest 3 0.62 1.00 1.00 0.26 0.72 0.20 0.86 0.19 0.44 0.25 –
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Table 3. Variance reduced (R2) and Root mean squared error (RMSE; MgC/day/km2) of the
best GR model and AmeriFlux level 4 gross primary productivity data at the daily, 8-day and
monthly scales.

Flux Sites Daily 8-day Monthly

R2 RMSE R2 RMSE R2 RMSE

Kennedy Space Center 0.50 1.25 0.56 0.98 0.70 0.77
Vaira Ranch 0.71 1.68 0.82 1.25 0.87 0.97
Tonzi Ranch 0.66 1.22 0.71 1.03 0.83 0.73
Blodgett Forest 0.56 1.30 0.59 1.10 0.65 0.99
Morgan Monroe 0.61 1.95 0.72 1.44 0.89 0.89
Harvard Forest 0.62 2.69 0.64 2.31 0.79 1.57
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Table A1. Regression coefficients for standardized covariates in the best GR model (β̂;
MgC/day/km2) and their standard deviations (σβ̂) at the daily scale. Each covariate was stan-
dardized to a mean of zero and a standard deviation of one, in order to make the magnitude of
the regression coefficients comparable across covariates.

Flux Sites Constant LAI FPAR EVI NDVI Global Air Vapor Soil Precipi- Soil
radiation temp pressure temp tation water

deficit content

Kennedy Space Center β̂ 5.30 0.45 0.85 0.24 −0.11
σβ̂ 0.12 0.11 0.03 0.04 0.02

Vaira Ranch β̂ 4.40 1.90 1.60 0.54 −0.47 −0.16
σβ̂ 0.40 0.23 0.04 0.06 0.06 0.02

Tonzi Ranch β̂ 3.49 1.26 1.11 0.60 −0.87 −0.10
σβ̂ 0.13 0.12 0.05 0.10 0.09 0.02

Blodgett Forest β̂ 3.45 1.36 1.31 −1.09 −0.66 −0.20
σβ̂ 0.13 0.04 0.08 0.06 0.10 0.02

Morgan Monroe β̂ 10.32 1.40 1.20 0.83 −0.35 −0.42
σβ̂ 0.20 0.16 0.07 0.09 0.08 0.05

Harvard Forest β̂ 8.70 1.89 1.95 0.59 −0.65 −0.34
σβ̂ 0.48 0.27 0.09 0.09 0.10 0.05
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Table A2. Regression coefficients for standardized covariates in the best GR model (β̂;
MgC/day/km2) and their standard deviations (σβ̂) at the 8-day scale. Each covariate was stan-
dardized to a mean of zero and a standard deviation of one, in order to make the magnitude of
the regression coefficients comparable across covariates.

Flux Sites Constant LAI FPAR EVI NDVI Global Air Vapor Soil Precipi- Soil
radiation temp pressure temp tation water

deficit content

Kennedy Space Center β̂ 5.22 0.56 0.53 0.24
σβ̂ 0.18 0.14 0.06 0.08

Vaira Ranch β̂ 4.45 1.16 −0.56 1.73 1.11 0.48 −0.79
σβ̂ 0.33 0.28 0.15 0.24 0.19 0.14 0.16

Tonzi Ranch β̂ 3.41 0.46 1.03 0.53 −0.19
σβ̂ 0.20 0.18 0.20 0.15 0.06

Blodgett Forest β̂ 3.37 1.20 1.02 −0.96
σβ̂ 0.21 0.13 0.16 0.13

Morgan Monroe β̂ 10.08 1.77 0.79 −0.28
σβ̂ 0.25 0.20 0.15 0.09

Harvard Forest β̂ 8.40 1.84 0.47 0.50
σβ̂ 0.56 0.26 0.09 0.16
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Table A3. Regression coefficients for standardized covariates in the best GR model (β̂;
MgC/day/km2) and their standard deviations (σβ̂) at the monthly scale. Each covariate was
standardized to a mean of zero and a standard deviation of one, in order to make the magni-
tude of the regression coefficients comparable across covariates.

Flux Sites Constant LAI FPAR EVI NDVI Global Air Vapor Soil Precipi- Soil
radiation temp pressure temp tation water

deficit content

Kennedy Space Center β̂ 5.14 0.69 0.35 0.36
σβ̂ 0.16 0.15 0.10 0.14

Vaira Ranch β̂ 4.38 2.82 −1.10
σβ̂ 0.22 0.19 0.17

Tonzi Ranch β̂ 3.30 1.29 1.17 −0.98
σβ̂ 0.14 0.12 0.27 0.26

Blodgett Forest β̂ 3.18 1.30
σβ̂ 0.24 0.13

Morgan Monroe β̂ 9.69 1.05 1.08 0.91
σβ̂ 0.18 0.23 0.22 0.17

Harvard Forest β̂ 8.48 3.53 −2.35 1.59
σβ̂ 0.34 0.70 0.61 0.34
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Figures 963 

Figure 1 Locations of the examined AmeriFlux study sites and biomes as listed in (Olson et al., 2001) (see 964 

http://www.worldwildlife.org/science/ecoregions/item1267.html) 965 

 966 

 967 
 968 Fig. 1. Locations of the examined AmeriFlux study sites and biomes as listed in Olson et

al. (2001) (see http://www.worldwildlife.org/science/ecoregions/item1267.html).
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Figure 2 Total average contribution of each covariate included in the best GR model to GPP 

estimated at the daily scale for the examined sites. The total contribution is calculated by 

averaging the portion of GPP predicted from each covariate (𝐗𝑖𝛽 𝑖) over the entire examined 

period.  Numbers in bold for each site represent the average daily predicted GPP over the 

examined period (See Table 1 for the length of the annual growing season and the examined time 

period for each site).   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Total average contribution of each covariate included in the best GR model to GPP
estimated at the daily scale for the examined sites. The total contribution is calculated by
averaging the portion of GPP predicted from each covariate (Xβ̂i ) over the entire examined
period. Numbers in bold for each site represent the average daily predicted GPP over the
examined period (see Table 1 for the length of the annual growing season and the examined
time period for each site).
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Figure 3 AmeriFlux level 4 GPP and GPP estimated from the best geostatistical regression 

model (𝐗𝛃 ) at the 8-day scale, with one standard deviation uncertainty bounds estimated as the 

square root of the sum of the uncertainty variance of 𝐗𝛃  (Equation 6), and the estimated variance 

of the residuals (𝜎𝑁
2 + 𝜎𝑆

2, Equations 1 and 2).  

 

 

 
 

 

 

 

 

Fig. 3. AmeriFlux level 4 GPP and GPP estimated from the best geostatistical regression
model (Xβ̂) at the 8-day scale, with one standard deviation uncertainty bounds estimated as
the square root of the sum of the uncertainty variance of Xβ̂ (Eq. 6), and the estimated variance
of the residuals (σ2

N+σ
2
S , Eqs. 1 and 2).
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Figure 4 Posterior probability of covariates at 1-day to 30-day temporal scales for examined 

AmeriFlux study sites (see Section 3.4 and Equation 12).  The time series has been smoothed 

using a three day running average, and only covariates selected in the best GR model at the daily, 

8-day or monthly scale are presented for each site.  

 

 

Fig. 4. Posterior probability of covariates at 1-day to 30-day temporal scales for examined
AmeriFlux study sites (see Sect. 3.4 and Eq. 12). The time series has been smoothed using
a three day running average, and only covariates selected in the best GR model at the daily,
8-day or monthly scale are presented for each site.
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