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Abstract

We designed generalized simplified models using machine learning algorithms (ML)
to assess denitrification at the catchment scale. In particular, we designed an artifi-
cial neural network (ANN) to simulate total nitrogen emissions from the denitrification
process. Boosted regression trees (BRT, another ML) was also used to analyse the5

relationships and the relative influences of different input variables towards total deni-
trification. To calibrate the ANN and BRT models, we used a large database obtained
by collating datasets from the literature. We developed a simple methodology to give
confidence intervals for the calibration and validation process. Both ML algorithms
clearly outperformed a commonly used simplified model of nitrogen emissions, NE-10

MIS. NEMIS is based on denitrification potential, temperature, soil water content and
nitrate concentration. The ML models used soil organic matter % in place of a den-
itrification potential and pH as a fifth input variable. The BRT analysis reaffirms the
importance of temperature, soil water content and nitrate concentration. Generality of
the ANN model may also be improved if pH is used to differentiate between soil types.15

Further improvements in model performance can be achieved by lessening dataset
effects.

1 Introduction

The increase of agricultural nitrogen (N) inputs favors the emission of nitrous oxide
(N2O) through nitrification and denitrification. N2O is a well-known greenhouse gas20

(IPCC, 2006) involved in the ozone layer destruction (Cicerone, 1987) and soils are the
main source of atmospheric N2O (Mosier and Kroeze, 2000). Indirect emissions of N
gasses (i.e., occurring after the applied nitrogen has been transformed or transferred
out of the field) are still a major source of uncertainty despite their role on climate
change (Crutzen et al., 2007; Mosier and Kroeze, 2000; Nevison, 2000).25

Heterotrophic denitrification is the biological reduction of nitrate (NO−
3 ) or nitrite
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(NO−
2 ) into N2O and di-nitrogen (N2) in absence of oxygen (O2). The process is in-

fluenced by many factors, is highly variable over space and time, and is thus difficult to
assess at the catchment level. The difference between annual nitrogen flow measured
at the catchment outlet and the nitrogen surplus do not provide a reliable estimate of
the denitrification at the catchment scale, because of temporary storage processes of5

nitrogen in the soil, vadose zone or groundwater (Basset-Mens et al., 2006; Molenat
and Gascuel-Odoux, 2002; Ruiz et al., 2002). Furthermore, losses by gaseous emis-
sion through denitrification are not evenly distributed over the catchment area since
they are particularly higher in the riparian zone (Fisher and Acreman, 2004; Haag and
Kaupenjohann, 2001; Martin et al., 1999; Oehler et al., 2007; Sebilo et al., 2003). As10

a result, it is still problematic to up-scale measured emissions to a larger, landscape
scale which is the most relevant to assess the impact of agriculture practices and their
management.

Models can be used to take into account these processes and the spatial and tem-
poral variability of the driving factors. Many models integrate a more or less complex15

denitrification module (e.g. GLEAMS (Knisel, 1993), DNDC (Li et al., 1992), SWAT
(Arnold and Fohrer, 2005), TNT2 (Beaujouan et al., 2001)) to simulate NO−

3 fluxes
at the agricultural field or catchment scale. These models are often coupled to socio-
economic models to provide an integrated N management tool (Leip et al., 2008; Turpin
et al., 2005). Different approaches have been developed for denitrification modelling.20

These approaches range from (1) simplified process models (e.g. NEMIS, (Henault
and Germon, 2000), (2) to soil structural models (e.g. Vinten et al., 1996), and (3) to
microbial growth models (e.g. DNDC).

The accuracy of measurement techniques still needs to be improved especially to
assess long term emissions, and this is particularly the case for upland terrestrial ar-25

eas (Groffman et al., 2006). Our long term goal is developing a model of denitrification
at the catchment scale that also addresses the significant emissions from upland ar-
eas (Oehler et al., 2007). To achieve this aim, we turned towards simplified modelling
approaches also because (1) mechanistic models are developed and validated for ho-
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mogeneous and simple medium, which is not necessarily appropriate at the catchment
scale (Beven, 1993), (2) either the accuracy of measured emissions is poor and/or
sampling is too scarce (Groffman et al., 2006), (3) simplified models need inputs that
can be obtained either from relatively simple field measurements or directly from sim-
ulation models.5

Simplified models have already been used in many studies and, for example, Heinen
(2006b) found as many as 59 simplified models in the literature. He also analyzed
the performance of the simplified model NEMIS on an extended data set (Heinen,
2006a). Following the same procedure as Heinen (2006a), NEMIS was also calibrated
on another large data set (Oehler et al., 2009). Because of either measurements or10

modelling shortcomings, results were not fully satisfactory for a generalized use at
the catchment scale. Moreover, there is a need to simulate also N2O emissions from
denitrification at the catchment scale, especially as stakeholders are looking toward
the use of wetlands as nitrogen attenuation tools. Finally, it is worth reminding that
in simplified approaches the global N emissions are a key parameter to estimate N2O15

(using the N2O/N2 ratio, Henault et al., 2005; Lehuger et al., 2009) and so their estimate
needs to be more robust and accurate.

Simplified models can be developed using a data-driven approach and so using a
broad family of algorithms loosely defined in the literature as “machine learning” (ML).
Since the “universal approximator demonstration” at the end of the 1980’s (Cybenko,20

1989; Hornik et al., 1989; Irie and Miyake, 1988), artificial neural networks (ANN) have
probably become the most typical machine learning algorithm and have been used in
many different fields like physics, chemistry, medicine, ecology and hydrology (Cote
et al., 1995; Faraggi and Simon, 1995; Kralisch et al., 2003; Lek et al., 1999; Lischeid,
2001; Smits et al., 1992; Suen and Eheart, 2003; Telszewski et al., 2009). Artificial25

Neural Networks have been widely used to model complex non-linear relationships,
particularly when the functional form of the relations between the variables involved is
unknown.
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Boosted Regression Trees (BRT) is a relatively new ML algorithm (partly originating
from Schapire, 2003) characterized by strong predictive performance and that can give
powerful insights of the variable relationships (Elith et al., 2008). However BRT are
complex models in their representation (from a few hundred to few thousands of trees),
and can be difficult to export from the ML environment to a separate and independent5

model. BRT do not entirely fit into the “simplified models”, but they can efficiently
describe the relationship between input variables and a system response.

In this study we designed a generalized simplified model based on ANN to simulate
N emissions from the denitrification process at the field scale. To achieve this objective,
we:10

– assembled a large database from literature datasets;

– analysed the variable relationships and the relative influences of input variables
toward total denitrification using BRT. This guided the choice of the input variables
for the final ANN model;

– tested different input variables and ANN models;15

– compared the predictive performance with NEMIS;

– explored the sensitivity of simulated denitrification rates to input factor variations.

2 Methods

2.1 Database and input factors

To calibrate (train) the ANN and BRT models, a large database is needed. The20

dasabase was built with datasets easily extractable from the literature (Cosandey et al.,
2003; Henault and Germon, 2000; Luo et al., 1999 and Oehler et al., 2007). Deni-
trification rate (Da) rates were measured using the acetylene (C2H2) blockage tech-
nique (Ryden et al., 1987; Yoshinari et al., 1977). The soil denitrifying potential was
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either a long term (days, termed Denitrification Potential (LDP) as in Henault and Ger-
mon (2000)) or a short term (hours, termed Denitrifying Enzyme Activity (DEA) as in
Cosandey et al., 2003; Luo et al., 1999; Oehler et al., 2007) measure. The main differ-
ences in measurement techniques are summarized in Table 1. For the dataset of Luo
et al. (1999), soil temperature (T ) was estimated from national statistics. All the stud-5

ies were carried out in temperate regions (France, Switzerland and New Zealand) and
40% of the measurements were in riparian or wetland areas. Our final database has
449 records: 58 from Cosandey et al. (2003); 39 from Henault and Germon (2000); 99
from Luo et al. (1999) and 253 from Oehler et al. (2007). Soil types included: cultivated
and uncultivated silt loam and silty clay loam soils with OM 4–7% and pH 5–6.5; cul-10

tivated silt loam with OM 1% and pH 7.1; grazed riparian grasslands on silty clay and
silty sand soils with OM 2.4–12.2% and pH 6.8–8; and pasture on silt loam with OM
6% and pH 6. All the Da measurements were done using a static chamber technique.
The main denitrification measurements issues with the C2H2 blockage technique are:

– the diffusion of C2H2 into the soil;15

– C2H2 can be used as a carbon source by micro-organism after a long time;

– C2H2 inhibits also the mineralisation, hence limiting its applicability to moderate
to high [NO−

3 ];

– the diffusion of O2 into the soil samples if they are disturbed;

– low gas emission dynamic compared to the sensor sensitivity, compensated by20

the length of incubation time;

– soils are heterogeneous substrates.

All of this can lead to a very large measurement variability, especially for low-drainage
soils (Groffman et al., 2006). Henault and Germon (2000) and Cosandey et al. (2003)
measurements may be the less variable (i.e. all the measurements at 20 ◦C). The25
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DEA measurement methods are similar in their adding of substrate quantities, mixing
procedures and incubation time.

Figure 1 shows the distribution of the response (Da rates) and independent variables
(NO−

3 , T , WFPS, OM, Db, SD and pH). Da and NO−
3 show distributions with very long

upper tails. This could impact the variance of the predictive performance computed on5

independent validation subset. Apart from the NEMIS model, the ANN and BRT are
robust to outliers and the calibration process should not be influenced. Table 2 shows
the univariate linear correlations (Pearson r) between variables. The r values (notice
r2 will be even smaller) show that we are not in a simple case with one or two dominant
factors and linear relationships. Da is weakly correlated with WFPS, T , pH and OM,10

but Da is not correlated with NO−
3 . This does not mean that NO−

3 is not involved in
the denitrification process. First, NO−

3 may have been present (mostly) in excess so
that it did not limit Da. Also, NO−

3 soil concentration may have been a poor indicator of
the rate of supply of NO−

3 (e.g., by advection, diffusion or nitrification, if its inhibition by
C2H2 was not total) to denitrification micro sites, which is what determines Da. Sec-15

ond, the measurements from this collated dataset are far from genuinely and equally
representing the different studied systems: there is a mixture of field (uncontrolled)
and laboratory (some of the parameters are controlled or manipulated, like T or [NO−

3 ])
measurements, with different sampling strategies and measurement technique variants
(disturbed or undisturbed soil cores). There are also correlations between the input20

variables. Notably OM and NO−
3 are weakly correlated (r = 0.27) as a result of a small

number of high NO−
3 /low OM points in Henault and Germon (2000) and low NO−

3 /high
OM points in Cosandey et al. (2003). Db is weakly correlated with OM (r = 0.42), pH
(r = 0.63) and SD (r = 0.57), and pH is weakly correlated with T (r = 0.42). This might
be again the result of a sampling bias (e.g., the highest Db and pH soils were mea-25

sured at 20 ◦C in Henault and Germon (2000) and Cosandey et al. (2003), and the
soils with highest Db were also those with the highest pH). Besides conjectures, at this
stage we can only suggest that the variation of Da is due to more than one factor and
probably in a non-linear way. As we are in the presence of a multi-variable non-linear
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problem, and r values are a measure of the strength of linear dependence between two
variables, they are not really meaningful. However these show that the dataset might
be unbalanced (r values between known factors not close to zero), and therefore that
some variable-space regions might not be equally represented.

Previous modelling has identified the most important factors influencing denitrifica-5

tion rate (Da) to be: T , water filled pore space (WFPS), nitrate concentration ([NO−
3 ]),

and the soil denitrifying potential. The last factor can be either a long term (days, like
LDP) or a short term (hours, like DEA) measurement. The short term denitrification
potential metrics (DEA) are most commonly used. Although successfully used as a
denitrification indicator (Heinen, 2006a), DEA techniques are varied and have an im-10

precise relationship to Da (Oehler et al., 2007; Simek et al., 2000).
In addition to the controlling factors outlined above (i.e. Temperature, WFPS, NO−

3
and DEA), we tested the following factors:

– Organic matter % (OM). OM could be a useful surrogate for soil LDP which is
correlated to soil physical characteristics more than DEA is (Simek et al., 2000).15

Some models use OM to compute a LDP (Hansen et al., 1991; Johnsson et al.,
1987) which has been suggested to be more appropriate than DEA for modelling
purposes (Henault and Germon, 2000).

– Bulk density (Db). Petersen et al. (2008) argued that gas diffusivity is affected by
Db and influences O2 concentration. This in turn strongly influences denitrifica-20

tion rates. Hence, it may be a better estimator of O2 concentration than WFPS.
Moldrup et al. (2005) modelled gas diffusivity using soil porosity and pore size
distribution which are correlated with Db, WFPS and OM.

– pH. Soil pH is non-neutral toward denitrification with multiple direct and indirect
effects (Simek and Cooper, 2002). Because of the use of the acetylene blockage25

technique for measuring denitrification, the influence of pH on nitrification rate and
hence the supply of NO−

3 (Cheng et al., 2004; Hwang and Hanaki, 2000) is not
taken into account.
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– Soil depth (SD). Soil depth affects connectivity to the surface and hence influ-
ences aeration, O2 concentration and ultimately denitrification rate.

Three records from Cosandey et al. (2003) were discarded because they unbal-
anced the validation process, and strongly influenced the NEMIS model calibra-
tion.5

2.2 Artificial neural networks

The first mathematical representation of a neuron was introduced by McCulloch and
Pitts (1943) with the perceptron. Each neuron receives input vectors (X ), performs a
weighted sum (α), and through an activation (also called transfer) function (G) (which
may be linear or non-linear) produces a result (Y ) in the form:10

Y =G(WX +b) (1)

where W = (wi ,1,wi ,2,...,wi ,n) are the neurons weights, X = (x1,x2,...,xN ) are the vector
inputs of neuron i , b is the neuron bias. α = (WX +b) is the input weighted sum (also
called potential of neuron i ) and G is the activation function. The classic non-linear
activation function used is the sigmoid function:15

G(α)= (1+e−α)−1 (2)

One or more neurons form a layer. In our study we used the common feed-forward
ANN structure deriving from the perceptron, also called “multi-layer perceptron”. The
first neurons are forming the input layer, the lasts are forming the output layer, the oth-
ers are forming one or more hidden layers (Hagan et al., 1996). The standard notation20

used throughout this work is [3:4:1], meaning 3 input nodes, 4 hidden and 1 output
nodes (5 neurons). The number of input variables necessary for predicting the desired
output variable determines the number of input nodes. The optimum number of hid-
den nodes and hidden layers is dependent on the complexity of the modelling problem.
During training, patterns of input and corresponding output pairs are presented to the25
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ANN, and the learning algorithm iteratively adjusts the values of connection weights
within the ANN structure. It is desirable to attain the required level of accuracy with
the simplest possible ANN structure (i.e., the fewest nodes) because this minimises
training time, improves network generalization and lessens over-fitting effects (Hagan
et al., 1996).5

2.3 Boosted regression trees

BRT are (after Elith et al., 2008) “an ensemble method for fitting statistical models
that differs fundamentally from conventional techniques that aim to fit a single parsi-
monious model. Boosted regression trees combine the strengths of two algorithms:
regression trees (models that relate a response to their predictors by recursive binary10

splits) and boosting (an adaptive method for combining many simple models to give
improved predictive performance). The final BRT model can be understood as an ad-
ditive regression model in which individual terms are simple trees, fitted in a forward,
stage-wise fashion”. A k-fold cross-validation (CV) is used to avoid the effect of over
fitting (over training) and assess the prediction performance. The training process is15

stochastic: it includes a random or probabilistic component (for example, sub-samples
for CV are chosen randomly). This means that, unless a random seed is set initially,
final models will be subtly different each time they are calibrated. BRT models can be
fitted to a variety of response types (Gaussian, Poisson, binomial, etc.). The method
is insensitive to outliers, and can accommodate missing data in predictor variables by20

using surrogates (Breiman et al., 1984). The final number of trees is controlled by two
important factors: the learning rate (or shrinkage parameter) and the tree complexity.

One of the interesting features of BRT is the assessment of variable relative influ-
ences, based on the number of times a variable is selected for splitting, weighted by
the squared improvement to the model as a result of each split, and averaged over all25

trees (Friedman and Meulman, 2003). The relative influence (or contribution) of each
variable is scaled so that the sum adds to 100, with higher numbers indicating stronger
influence on the response. For a detailed example, see the working guide from Elith
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et al. (2008). Because interpreting variable interactions is much easier with BRT, it was
used to analyse the relationships and the relative influences of input variables toward
total denitrification.

2.4 NEMIS model

The NEMIS model uses a common formalism (Heinen, 2006b; Johnsson et al., 1987,5

1991; Sogbedi et al., 2001):

Da=Dp · fN · fS · fT (3)

with

fS =
N

K +N
(4)

fN =
(

S−St

Sm−St

)w
(5)10

fT =Q
T−T r

10

10 (6)

Da is the denitrification rate (mg N kg−1 soil d−1) and Dp is the potential denitrification
(mg N kg−1 soil d−1). The denitrification potential can be either a LDP or a DEA. fN is a
nitrate dimensionless function, where N is the actual nitrate soil content (mg N kg−1 soil)
and K is the nitrate soil content (mg N kg−1 soil) when fN =0.5 · fS is a dimensionless15

function of water saturation, where S is the WFPS, St the WFPS threshold below which
denitrification does not occur and Sm the maximal WFPS (in our case Sm = 1). fT is a
dimensionless function of the soil temperature T (◦C), T r is the reference temperature
when the potential denitrification Dp was determined, and Q10 is the increase factor
for a temperature increase of 10 ◦C. This function has a specific form in NEMIS, where20

two different Q10 are used for two ranges of temperature:

fT = f T ref×Q
T−T r

10

10 (7)
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if T ≥ 10, Q10 = 2, T r = 20, f T ref=1 otherwise Q10 = 50, T r = 10, f T ref=0.5. Tempera-
tures are in ◦C.

2.5 Model development

The ANN, BRT and NEMIS models were calibrated on the same subsets. The per-
formance assessment and the validation of the model was done using the same ap-5

proach:

– The modelling performance was evaluated using the conservative independent
validation: the dataset was randomly subsampled into a calibration and a test
subset.

– We used a resampling technique (the random subsampling and calibration is re-10

peated many times) to estimate the distribution of the performance criterion and
its median. These estimated distributions have been used to compare different
models/approaches.

– We selected the models displaying a median performance (independent valida-
tion) as representatives. These median models were used for graphical compari-15

son and the response shape analysis.

The feed-forward ANN calibration was done using a classic method (using a training
and a validation subset to control overfitting). To select the simplest ANN structure
(with the fewest hidden nodes), we started with the number of nodes in the hidden layer
equal to twice the number of input variables. We then decreased the number of nodes20

until there was a significant decrease in model performance (independent validation).
A number of different ANN models have been developed. We always retained three
base variables: temperature, WFPS and NO−

3 which previous studies have shown to
be important. The nomenclature used is ANNn(X ,Y ) where n is the number of input
variables (n≥ 3) and X , Y are the independent variables included in addition to the 325

base variables. The suffix G denotes that the model was trained on the whole (global)
2324
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dataset. Thus ANN5(OM,pH)G denotes a model using the 3 base input variables plus
2 others (OM and pH) which was trained on the whole dataset.

The BRT training was done using the methodology and the R code from Elith et al.
(2008). The nomenclature used is the same as for ANN. The BRT was specifically
used to analyse the variable relationships. Different combination of input variables were5

tested, starting from a model using all the available variables, and then discarding the
variables of lower importance until model performance significantly decreased.

The NEMIS model (using DEA as the denitrification potential Dp) was calibrated
following a methodology adapted from Oehler et al. (2009) and Heinen (2006a). NE-
MIS was calibrated on the whole dataset (denoted NEMIS4G) without the Henault and10

Germon (2000) dataset, because it contains no DEA measurements. NEMIS was also
calibrated separately on each of the Oehler et al. (2007), Cosandey et al. (2003) and
Luo et al. (1999) datasets (denoted NEMIS4O, NEMIS4C and NEMIS4L).

More details about the calibration steps are available in Appendix A.

2.6 Statistics15

The model performance criterion used in this study was the Normalized Root Mean
Square Error (NRMSE) defined as:

RMSE=

√∑ (s−o)2

n
(8)

NRMSE=
RMSE

ō
(9)

where s are simulated values, o the observed values, ō the average of observed val-20

ues and n the size of the sample. We used the normalized criterion to enable com-
parisons between different sites and studies. For median comparisons we used the
non-parametric Wilcoxon Rank test (w test). All the data processing, model develop-
ments and statistics were performed using the software “R” version 2.8 (2008).
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3 Results

3.1 ANN results

The best results were always obtained with a [N:6:1] ANN topology, N being the num-
ber of input factors (N varied from 4 to 7). Using a large number of internal nodes
tended to give a better fit to the training dataset, but without gains for the test dataset5

(i.e. independent validation).
The ANN4(OM)G model and the ANN4(DEA)G model (Fig. 2) performed equally on

the Test dataset (independent validation) (w test, p > 0.05). This demonstrates that
OM is as good a predictor for denitrification rate modelling as DEA. Figure 3 shows the
effects of adding other variables to ANN4(OM)G base. Adding a 5th variable signifi-10

cantly improved model performance (w test, p< 0.05). It did not matter whether this
5th variable was Db, pH or SD as each of them resulted in a similar improvement.
Adding a 6th or 7th variable did not improve model performance (w test, p> 0.05), but
displayed more over-training effects. Potentially, different techniques could be used to
“open” the ANN and try to understand the variable relationships. Given the limitations15

of such techniques (Olden et al., 2004) we preferred to use the BRT approach.

3.2 BRT results

The BRT was constructed using a number of trees varying from 1000 to 1500, a learn-
ing rate of 0.01 and a tree complexity of 5. More complex structures were not found to
increase prediction performance.20

The BRT8(OM,pH,Db,DEA,SD)G model performance (NRMSE, independent valida-
tion) was 1.08. Figure 4 shows the relative influence of the different variables on the
response. The variables are sorted from the most influencing: OM, WFPS, T , NO−

3 , pH,
Db, DEA, SD. Scores for T and WFPS were not significantly different (w test, p>0.05).
Simplification of the model down to 5 variables was done without significant loss of25

performance. Figure 5 shows the hierarchy of the variables for the BRT5(OM,pH)G
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model, which did not differ from BRT8(OM,pH,Db,DEA,SD)G. The relative influence of
DEA did not change with or without Henault and Germon (2000) records. Db, DEA
and SD accounted for less than 10% of the influence, less than the influence of pH
(12.4%). Reducing the BRT topology to 5 inputs did not shift the influence carried by
the 3 discarded variables to a particular one. Discarding pH from the model did not5

increase the influence of Db, DEA and SD. Apparently, the effects of Db and pH are
independent, or at least treated as such in the BRT approach. Also, the importance
of NO−

3 is evident. As envisaged, the BRT approach successfully lessened dataset
autocorrelation effects.

3.3 Choosing an ANN model using combined ANN and BRT results10

One of the main results from the ANN approach is the possible replacement of DEA
in favour of OM. Looking at the BRT analysis, OM appears to be a better candidate.
As already stated, the 3 supplement variables Db, pH and SD are correlated (Table 2),
and adding one of these to the model improves significantly its predictive performance,
in both ANN and BRT approaches. Adding another one seems to add unnecessary15

complexity to the model, without performance gains. In our final model we decided
to add pH to the base factors and OM. We rejected SD because the mechanism by
which soil depth influences denitrification is unclear, and this variable has clearly a low
influence in BRT approaches. Looking at the ANN results only, there was no clear trend
toward the choice of Db or pH. But looking at the BRT results, pH helped explaining20

variability more than Db. The cause-effect relationship between pH and denitrification
remains unclear, even though a through review (Simek and Cooper, 2002) has clearly
shown that such an effect is indeed present and should be accounted for. pH might
also be important when estimating N2O emissions because pH affects the N2/N2O ratio
(Firestone et al., 1980).25
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3.4 The ANN5(OM,pH)G model

The final ANN model denoted ANN5(OM, pH)G has a [5:6:1] topology. Figure 6 shows
the performances (independent validation with the test subset) of the ANN5(OM, pH)G
model, the BRT5(OM, pH)G model and the NEMIS4G model. Removing Henault and
Germon (2000) records does not change the median performance of the ANN and5

BRT models. The median tests NRMSE are respectively 1.10, 1.11 and 1.91 clearly
indicating that ANN5(OM, pH)G and the BRT5(OM, pH)G model result in better pre-
dictions (w test, p<0.05, computed using Oehler et al. (2007), Cosandey et al. (2003)
and Luo et al. (1999) but without Henault and Germon (2000) records because this
record does not include DEA which is a required input in NEMIS). Heinen (2006a) al-10

ready pointed out that NEMIS-like models can perform quite well when calibrated for
a specific site, but that they do not perform well when applied over a range of differ-
ent soil types with the same parameter set. The site-specific calibrated NEMIS on the
Oehler et al. (2007), Cosandey et al. (2003) and Luo et al. (1999) datasets (NEMIS4O,
NEMIS4C and NEMIS4L) showed that model coefficients (notably those relating den-15

itrification rate to WFPS) varied significantly among datasets. Consequently, when
NEMIS was calibrated using all 3 datasets (NEMIS4G) it did not perform particularly
well. There is no clear difference in prediction performance (w test, p> 0.05) between
the ANN5(OM, pH)G and the BRT5(OM, pH)G models. Looking at the range of the
Test NRMSE (roughly between 0.5 and 1.9 for ANN, 0.7 and 2.2 for BRT, and 1.2 and20

2.8 for NEMIS), there seems to be a rather high influence of the sub-sampling process
on the independent validation process. This can be due to the lack of data (55 records
for the Test dataset) coupled to the presence of few extreme Da values that can have a
relatively large impact on the independent validation process. In contrast, the Training
NRMSE min and max values are relatively low for both BRT and ANN (between 0.7025

and 1.00 for a median of around 0.80).
Figure 7 presents the performance of the chosen ANN5(OM, pH)G, BRT5(OM, pH)G

and NEMIS4G. ANN NRMSE for each dataset from Oehler et al. (2007), Henault and
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Germon (2000), Luo et al. (1999) and Cosandey et al. (2003) are respectively 1.20,
0.64, 0.67 and 0.48. ANN5(OM, pH)G and BRT5(OM, pH)G display a comparable
behaviour. As expected, when looking at the NRMSE numbers, Fig. 7 highlights the
meaning of the differences in performance (from NRMSE of 1.90 to 1.10) between the
median NEMIS4G model and the median ANN5(OM, pH)G model. The ANN model5

clearly outperforms the NEMIS model. Site specific calibration of NEMIS gives me-
dian NRMSE (computed on the whole dataset, not independent ones) for Oehler et al.
(2007), Luo et al. (1999) and Cosandey et al. (2003) of 1.55, 0.66 and 1.03, to be
compared with 1.20, 0.67 and 0.48 for ANN5(OM, Db)G. Overall, the ANN5(OM, pH)G
model seems to be at least as good as (w test, p> 0.05 for Luo et al., 1999), if not10

better (w test, p<0.05 for Oehler et al., 2007 and Cosandey et al., 2003), than the site
specific NEMIS models.

3.5 ANN model response shapes

The power of ANN is in their capability to capture more than the sum of separated
effects, i.e. the variable interactions. In Figs. 8 and 9 we show univariate and covariate15

response shapes. For Fig. 8 the fixed values were chosen to represent the conditions
of a classic cultivated silty loam soil with medium OM%. Temperature and WFPS are
set to be non-limiting. For Fig. 9 the fixed values were chosen to represent a silty clay
riparian soil with plausible occurrence of a Temperature of 16 ◦C and full water satura-
tion (WFPS=100%). Beside Temperature and WFPS, the fixed values were around the20

median of the dataset. In particular, the Fig. 9 presents the Da rate response to vari-
ations of different factors, at a fixed temperature of 16 ◦C. At 10 ◦C and down to 5 ◦C,
response shapes, and trends are globally similar. The ANN used for these graphs and
the algorithm to allow for its reconstruction are detailed in Appendix B. Intuitively the
level of trust of the model is related to the data density in each part of the data space.25

Denser data points are needed to represent fast gradient change area. Without exter-
nal knowledge, we cannot know if the gradients are well represented: indeed, they are
built with the data (training). The assessment of the performance (or trust) is made at a
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global level (the NRMSE). The prediction performance of the ANN outside the training
(calibration) dataset space is not assessed and it can display physically unrealistic be-
haviour. Dataset boundaries are shown in Fig. 8 and Fig. 9. As guidelines to evaluate
data point distribution, scatter plots of the combinations of Da, NO−

3 , WFPS, OM, pH
and T are available in the Appendix.5

3.5.1 Influences of T and WFPS

The response shapes of T and WFPS (Fig. 8a and Fig. 8c) are similar to the description
proposed by NEMIS types of models. Whatever the values of other variables, there are
clear threshold values: below 11 ◦C and a WFPS of 40%, predicted Da rate is very low,
and nearly null for WFPS<20%. At around a WFPS of 75%, 50% of the maximal Da10

rate is achieved. The response to T below 5 ◦C seems odd, slightly increasing toward
0 and with a non 0 response when T = 0 ◦C. This may show some of the limits of the
datasets which included no records with very low or null T . WFPS needs to be greater
than 60% to be less limiting than [NO−

3 ] or OM % (Fig. 9a and d). This figure is shown
also for lower T . Overall, WFPS is predicted to be a far more important driver than15

T when T is below 11 ◦C (conditions which can be found during winter in temperate
areas).

3.5.2 Effects of the substrates NO−
3 and OM

Da response to [NO−
3 ] variation (Fig. 8b) is (also) similar to NEMIS. Very low NO−

3
concentrations still induce a relatively high Da. Also, above a [NO−

3 ] of 200, and up to20

800 mg N kg−1 soil, the response is not a straight plateau line, but quickly decreases.
Again, this shows some of the limits of the dataset which included no records with very
low or null [NO−

3 ], and data are very scarce for [NO−
3 ]>200 mg N kg−1 soil (Fig. 1, top

middle panel) especially around 20 ◦C.
The response to OM is nearly linear with Da rate increasing with OM % (Fig. 8d).25

Looking at Fig. 9b, NO−
3 and OM effects seem rather independent and additive. The
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behaviour of the model near values of 0 may seem odd. As we are modelling a non-
dynamic Da rate, beside an artefact effect due to a lack of data (particularly true for
low OM), the model simply predicts that denitrification starts at very low levels of [NO−

3 ]
and OM. Also some low NO−

3 supply from nitrification process might have also occured,
even if measurements were performed using the C2H2 blockage technique which in5

principle should inhibit nitrification. In practice, when included in a dynamic model
the overall denitrified N will be very low in such conditions, with NO−

3 being quickly
depleted.

3.5.3 Influence of pH

The shape of the response to pH is a skewed bell, with a maximum for a pH of around10

7.1 (Fig. 8e). The decrease after this maximum value toward alkaline condition is
supported by few records. Figure 9c and f shows an independent pH response with
NO−

3 and OM, with again a maximum around a pH of 7. This value is coherent with
what has been found in the literature (see Simek and Cooper, 2002). However, looking
at Fig. 9e, pH impact seems to be a function of WFPS (or rather the other way round, as15

it is unlikely to see fast variations of pH in soils), with maximum values going down from
WFPS/pH of 100%/7 to 40%/5. This result is the same at 10 ◦C, and is also present
in the BRT5(OM,pH)G model. As pH represents different types of soils, this might be
the expression of different micro-organism populations, with different sensitivity to low
[O2], hence to low WFPS. This effect might be also related to the soil structure: we20

know that pH is positively correlated to Db in our dataset and the ML methodologies
might have captured some indirect Db effects. Finally, the degree of water saturation
of the soil micro-porosity for a given WFPS changes for different soil Db and might be
more important than saturation of the macro-porosity in controlling O2 diffusion. Here
the effect of WFPS on limiting O2 diffusion may simply be higher in low Db soils (which25

exhibit low pH), because of a higher macro/micro porosity ratio.
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4 Discussion

Our work was first motivated by concerns on the predictive performances of widely
used simplified model such as NEMIS. The use of ML methods not only provided far
more generalized denitrification models with better performances, but may have also
shed new light on denitrification processes, especially with respect to the relative influ-5

ence of factors and how they interact.
The ANN calibration method aimed at reducing the effect of initial conditions by re-

peating training and sub-sampling, and by carefully assessing the prediction perfor-
mance. This is relatively time-consuming but is essential. The BRT method is based
on more rational design decisions, has very good predictive performance, results are10

easier to interpret and the training is faster. But we can see some issues for efficient
uses as a predictive model: the model response is not smooth, and because of porta-
bility and mainly computing time issues, it cannot be easily and efficiently implemented
in field or larger scale models.

The two ML models perform better than NEMIS on our extended database (which15

includes data from uplands and wetlands in intensive and less intensive agrosystems
but with relatively uniform (loamy) soil types). This is also true for the ANN4(DEA)G
(NRMSE=1.35) which uses the same inputs as NEMIS. To be fair with the NEMIS
model, it is to be noted that NEMIS was originally designed to use a LDP, which is obvi-
ously quite a different method to evaluate denitrification potential than DEA. However,20

the model has been successfully used with DEA measurements (see Heinen refer-
ences for more details).To check that the conjugate gradient method used for NEMIS
optimisation was not underperforming, we also tried other techniques such as differen-
tial evolution, but results did not improve significantly.

Overall, performances are still around an error of 100%. The performance seems25

to be mainly impaired by the Oehler et al. (2007) dataset. The main characteristics
differentiating this dataset from the others are the presence of different soils and that
measurements have been obtained in natural conditions (low temperatures), exhibiting
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the lowest Da. There might be a real effect not captured by the ML algorithms or
not contained in the tested input variables. It is also possible that the relatively high
measurement errors associated with low gas concentrations could be the cause of
discrepancies in the prediction performance or reflect a limitation of the C2H2 blockage
technique, especially on these low drainage soils.5

At first glance, the ANN results agree with the mathematical representation of NE-
MIS like models, which were already capturing the main effects (beside pH). In de-
tails, contrary to ANN, NEMIS does not take into account variable interactions, such
as temperature impact on each factor, which are more subtle than a linear effect.
This is apparently needed to efficiently simulate denitrification in real world conditions,10

where input variables are not at the higher end of their range (e.g. 20 ◦C, 100% WFPS,
200 mg N kg−1 soil, 10% OM, pH 7) as often explored in laboratory-controlled experi-
ments (e.g. the ones used to build NEMIS). ML are less sensitive to data noise, and this
might also explain why they perform better on the low Da range. Especially because
measurements tend to be less precise as we measure low Da rates, and measurement15

biases and errors tend to be more impacting (e.g. limit of the sensor sensitivity, leaks or
contaminations becoming more important, impact of nitrification inhibition if low [NO−

3 ]).
Overall, we think the main significance of this contribution is methodological: with ML
approaches (or other modelling approaches like the generalized linear models or the
additive linear models) different experimental design (other than controlled laboratory20

experiments) could be used to understand processes, especially at larger scales (e.g.
catchment). The better representation of small Da rates may also have an impact on
our understanding of the N cycle dynamic at the catchment scale, mainly because the
unsaturated areas can represent the vast majority of the total surface. As the prob-
lem is non-linear and spatial interactions are crucial, this would have to be thoroughly25

tested combining ML with spatially distributed models.
ML approaches are interesting tools to study single variable effects, and, if enough

data is available, they may not need measurements from experiment specifically de-
signed to study the impact of separate factors. They are particularly useful to analyze
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and design models with data from surveys based on stratified experiment approaches
(i.e. gradients sampling). As such, when using ML as an analysis tool the main ob-
jective when collecting data is to capture gradients, the most variability possible in all
the variable spaces. To develop a NEMIS like model, a classic laboratory controlled
experiment where all the variables are fixed but one was used. Generally, more mea-5

surements are needed for a ML analysis. However data can be obtained from surveys
and not only from manipulative experiments, and may be more representative of the
studied process in his “non-disturbed” environment. Moreover, interactions are more
likely to be captured. After a ML based analysis, if the process and variable relation-
ships are better understood, a simpler mathematical representation can be formuled.10

The BRT analysis reaffirms the importance of temperature, WFPS and NO−
3 , and

highlights the importance of OM and pH. Our results and other works (Cosandey et al.,
2003; Simek et al., 2000, 2002) indicate that the relationship between DEA and Da is
unclear. We successfully used OM instead of DEA without performance loss. This is
consistent with the findings of Cosandey et al. (2003), who suggested that the proximal15

factors, available OM, O2 and NO−
3 , exert a stronger control on denitrification rates

than the size of the denitrifying enzyme pool. As we used the Cosandey et al. (2003)
dataset, we checked separately its impact on BRT results. It appears that without the
Cosandey et al. (2003) data, OM and DEA have the same relative influences. The
Cosandey et al. (2003) dataset shows the widest OM range and the highest OM values20

in our database. As the sampling of the gradients is not uniform across the datasets,
this particular dataset might have biased the results while representing only 13% of
the records. Also DEA measurements may be less precise than OM measurements.
This might have led the BRT analysis to favour OM, even if it is relatively resistant to
data noise. However Cosandey et al. (2003) dataset presents a larger range of values25

and there is no clear trend in favour of DEA without this dataset. More recently, apart
from the Cosandey et al. (2003) conclusions, Miller et al. (2008) suggested that Da is
decoupled from the denitrifier community abundance. Overall, DEA does not seem to
be a better indicator of Da rate than OM, especially in agrosystems where supply of
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NO−
3 is frequent and denitrifier communities are already adapted to their environment.

An interesting implication is the integration of a feedback loop from soil organic carbon
long term dynamic.

Another relevant result is related to the effect of pH. This factor may be the one which
has to be taken into account to differentiate soils, and give the “generic” quality of the5

ANN model. Despite genuine reported effects of pH on denitrification (see Simek and
Cooper, 2002), this would have to be confirmed with a larger dataset, as the separation
of pH and Db may not be sufficient. We will need to widen the database to other
more contrasted type of soils (with more clay notably) and more records to fill gaps
in the gradients and lessen dataset effects. This will improve prediction accuracy and10

increase model generality.
ANN might be a promising approach for N2O/(N2+N2O) modelling as well (soil N2O

emission modelling with ANN has already been successfully performed, but not specif-
ically from denitrification (Ryan et al., 2004). The next obvious step will be coupling the
ANN model to a catchment scale model.15

Appendix A

Detailed calibration routines

A1 ANN calibration

The ANN training was done using the package AMORE (Pernı́a-Espinoza et al., 2005).20

The methodology used is outlined in the following steps:

1. scaling the input variable:

xi ,scaled =
xi −minx

maxx−minx
(A1)
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Scaling is not mandatory for the input variables, but can ease further analysis of
the trained ANN weights and biases.

2. Scaling the output variable: a simple linear scaling (between 0 and 1), a log trans-
formation and an arcsine transformation of the response variable were tested and
all resulted in similar prediction performance. The arcsine transformation was fi-5

nally chosen because it exhibited a more normal distribution of the residuals and
was not over fitted on the highest values. Specifically, the arcsine transformation
implies:

xi ,transformed =arcsine

√ xi −minx

maxx−minx

× 360
2π×100

(A2)

The principal characteristic of the arcsine transformation is to stretch the low and10

high values, and condense the medium range values. The scaling between 0 and
1 for the response variable is mandatory for ANN, as the output of the ANN is
between these values (sigmoid function).

3. Randomly sub-sampling the dataset to give 3 subsets: Training, Validation, Test-
ing (in the proportion 6/8, 1/8, 1/8 of samples). The Training and Validation sub-15

sets are used for the training (calibration) phase, and the Testing subset is used
for independent validation

4. Training/Validation of a feed-forward ANN. The learning algorithm used was the
adaptive gradient descend with momentum, using the robust Least Mean Log
Square criterion (Liano, 1996). The ANN was initialized with random weights and20

bias. Over-training was controlled by the validation subset.

5. Step 4 was repeated 22 times with different initial conditions of weights and bi-
ases. This is necessary because the initial conditions of the ANN weights and
biases are not neutral and can affect the prediction accuracy of the algorithm.
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Specifically, assuming an a priori normal distribution, we have used the following
approach: (a) we want to be in the 10% best cases (P ) (b) we want to be in that
case with a confidence of 90% (P conf) That gives n such as:

(1−P )n ≤ P conf=⇒n≥22 (A3)

Only the best combination of validation and training NRMSE was retained.5

6. Steps 3 to 5 were repeated 33 times. The number of times a step was repeated
results from a trade off between statistical significance and computing time. This
resampling method enabled us to estimate the distribution of the performance
criterion, provided confidence intervals for the calibration and prediction process
and allowed for statistical model comparisons.10

7. As a representative ANN, we selected the one displaying median Test perfor-
mance.

The outputs are used after being transformed back and scaled back to the original data
space (the performance is evaluated in the original data space).

A2 BRT calibration15

The BRT training was done using the R code from Elith et al. (2008), which uses the
package gbm (Ridgeway, 2007). The methodology used is outlined in the following
steps:

1. Scaling of input and output variables using the same procedure as for the ANN
calibration.20

2. Randomly sub-sampling the dataset to give 2 subsets: Training and Testing (in the
proportion 7/8 and 1/8 of samples). The Training subset is used for the training
(calibration) phase, and the Testing subset is used for independent validation.
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3. Training/validation of a BRT using a Gaussian response.

4. Steps 2 to 3 were repeated 33 times. This resampling method enabled us to
estimate the distribution of the performance criterion, provided confidence inter-
vals for the calibration and prediction process and allowed for statistical model
comparisons.5

5. As a representative BRT, we selected the one displaying median Test perfor-
mance.

The outputs are used after being transformed back and scaled back to the original data
space (the performance is evaluated in the original data space).

A3 NEMIS calibration10

The NEMIS model (using DEA as the denitrification potential Dp) was calibrated fol-
lowing a methodology adapted from Oehler et al. (2009) and Heinen (2006a):

1. Randomly sub-sampling the dataset to give 2 subsets: Calibration and Testing (in
the proportion 7/8 and 1/8 of samples). The Calibration subset is used for the
calibration phase, and the Testing subset is used for independent validation.15

2. Calibration of a NEMIS model (minimising the RMSE with a gradient descent
algorithm).

3. Steps 1 to 2 were repeated 33 times. This resampling method enabled us to
estimate the distribution of the performance criterion, provided confidence inter-
vals for the calibration and prediction process and allowed for statistical model20

comparisons.

4. As a representative NEMIS model, we selected the one displaying median Test
performance.
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Appendix B

ANN model equation

The sygmoid transfer function:

G(α)= (1+e−α)−1 (B1)5

The full ANN equation:

Da= sin

(
G(Wo×G(Wh×X +bh)+bo)

360
2π×100

)2

×1.20057 (B2)

with the input vector

X =



NO−
3−0.34

759.66

WFPS-17.985
82.015

Temperature-2.5
18.545

OM−1
11.2

pH-5.1
2.9


(B3)

the weight matrix of the hidden layer10

Wh =



−0.0692 −0.4172 1.4045 −2.8685 1.92593
0.71683 −2.8787 2.86418 −0.4788 −2.4463
4.66622 5.10768 −7.2039 5.70122 −1.5005
−5.9564 −0.6698 −3.8146 −2.0052 −4.8317
9.29211 6.0770 1.27236 1.02784 7.24817
−17.676 0.24308 0.37321 −3.0420 1.04624

 (B4)
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and its bias

bh =



−0.0203
0.62884
−0.6357
7.28462
−2.5042
−1.97921

 (B5)

the weight matrix of the output layer

Wo = [ −2.0436 −2.4251 −2.9519 −3.2196 −3.3679 −10.289 ] (B6)

and its bias5

bo =
[
5.35984

]
(B7)

In the above, Da is denitrification rate (mg N kg−1 soil d−1), NO−
3 is nitrate soil

concentration (mg N kg−1 soil), temperature is in (◦C), OM is in organic matter %
(g OM g−1 soil). Figure D represent the topology of this ANN.

Appendix C10

List of the abbreviations

ANN Artificial Neural Network
BRT Boosted Regression Trees
C2H2 acetylene
CV Cross-Validation
Da actual Denitrification
Db Bulk density
DEA Denitrifying Enzyme Activity
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LDP long term Denitrification Potential
ML Machine Learning
N Nitrogen
N2 Di-Nitrogen
N2O Nitrous Oxyde
NO−

2 Nitrite
NO−

3 Nitrate
NRMSE Normalized Root Mean Squared Error
O2 Di-oxygen
OM Organic Matter
SD Soil Depth
T Temperature
WFPS Water Filled Pore Space
w test Wilcoxon rank test

Appendix D

Data point distribution in the 5 chosen factors and response data space

Figure D1 represents the scatterplots of the combination of Da, NO−
3 , WFPS, OM,

pH and T . These can be used as guidelines to evaluate the domain of validity of the5

ANN5(OM,pH)G model.
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Table 1. The different measurement methods of Da and DEA in the database.

Source Measure Method variant
Incubation
time

Incubation
temperature

Cosandey et al.
(2003)

DEA
Smith and Tiedje (1979),
flasks, mixed

4 h 20 ◦C

Da
Yoshinari and Knowles (1976),
flasks, disturbed soil samples

4 h 20 ◦C

Luo et al. (1999) DEA Luo et al. (1996), flasks, mixed 5 h 20 ◦C

Da
Ryden et al. (1987), soil cores,
slightly disturbed

24 h
daily soil
temperature
variation

Oehler et al.
(2007)

DEA Luo et al. (1996), flasks, mixed 5 h 30 min 20 ◦C

Da
Adaptation of Jarvis et al.
(2001), Soil cores, undisturbed

24 h
daily soil
temperature
variation

Henault and
Germon (2000)

Da
Adaptation of Tiedje et al.
(1989), Soil cores, undisturbed

3 h to days 20 ◦C

2348

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/2313/2010/bgd-7-2313-2010-print.pdf
http://www.biogeosciences-discuss.net/7/2313/2010/bgd-7-2313-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 2313–2360, 2010

Generalized
simplified

denitrification model

F. Oehler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 2. Pearson r correlation coefficient. Statistical significance indicated by ∗ (p<0.05)

Pearson r Da DEA NO−
3 WFPS T pH OM Db SD

Da – 0.27∗ −0.03 0.43∗ 0.42∗ 0.41∗ 0.39∗ 0.12∗ 0.13∗

DEA – −0.27∗ 0.10∗ 0.07 0.13∗ 0.66∗ −0.37∗ −0.34∗

NO−
3 – −0.15∗ 0.16∗ 0.13∗ −0.27∗ 0.24∗ 0.04

WFPS – 0.07 0.20∗ 0.09 0.26∗ 0.16∗

T – 0.42∗ 0.03 0.30∗ 0.24∗

pH – 0.01 0.63∗ 0.24∗

OM – −0.42∗ −0.12∗

Db – 0.57∗

SD –
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Fig. 1. Distribution of the variables in the database (449 records).
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28

Fig. 2. Boxplots (description of quartiles with maximum at 1.5 interquartile range) of
performance (independent validation) of ANN4(DEA)G and ANN4(OM)G, both without Henault
and Germon (2000) records.
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Fig. 3. Boxplots (description of quartiles with maximum at 1.5 interquartile range) of the
ANN performance (independent validation) with different input combinations. Circles are
outlier candidates. Base=ANN4(OM)G, +Db=ANN5(OM, Db)G, +pH=ANN5(OM, pH)G,
+SD=ANN5(OM, SD)G, +Db+pH=ANN6(OM, Db, pH)G, +Db+SD=ANN6(OM, Db, SD)G,
+pH+SD=ANN6(OM, pH, SD)G, +Db+pH+SD=ANN7(OM, Db, pH, SD)G.

2352

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/2313/2010/bgd-7-2313-2010-print.pdf
http://www.biogeosciences-discuss.net/7/2313/2010/bgd-7-2313-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 2313–2360, 2010

Generalized
simplified

denitrification model

F. Oehler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

●

● ●●

●●

●

●●

0 10 20 30

Relative influence, %

SD

DEA

Db

pH

NO3
−

T

WFPS

OM

Fig. 4. Boxplots (description of quartiles with maximum at 1.5 interquartile range) of relative influences of the
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31

Fig. 4. Boxplots (description of quartiles with maximum at 1.5 interquartile range) of relative
influences of the 8 tested input variables, as revealed by the BRT8(OM,pH,Db,DEA,SD)G
model. Circles are outlier candidates.
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Fig. 5. Boxplot (description of quartiles with maximum at 1.5 interquartile range) of relative
influences of the 5 input variables, as revealed by the BRT5(OM,pH)G model. Circles are
outlier candidates.
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Fig. 6. Boxplot (description of quartiles with maximum at 1.5 interquartile range) of prediction
performance (independent validation) of ANN5(OM, pH)G, BRT5(OM, pH)G and NEMIS4G
(without Henault and Germon (2000) records). Circles are outlier candidates.
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Fig. 7. Comparison of ANN5(OM, pH)G, BRT5(OM, pH)G and NEMIS4G (whole dataset without Henault

and Germon (2000) records) Da prediction performance (independent validation)
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Fig. 7. Comparison of ANN5(OM, pH)G, BRT5(OM, pH)G and NEMIS4G (whole dataset
without Henault and Germon (2000) records) Da prediction performance (independent
validation).
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Fig. 8. Univariate responses (Da rates) of ANN5(OM,pH)G model. Fixed values: pH=6.2,
OM=3%, [NO−

3 ]=10 mg N kg−1 soil, Temperature=20 ◦C, WFPS=100%.
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Fig. 9. Da rate (mg N kg−1 soil d−1) in function of different couples of variables. The broken
lines delimit the training dataset. Fixed values: pH=6.5, OM=6%, [NO−

3 ]=20 mg N kg−1 soil,
Temperature=16 ◦C, WFPS=100%.
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Fig. A1. ANN5(OM,pH)G model [5:6:1] topology. Solid circles represent neurons and dashed
circles represent the inputs.

2359

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/2313/2010/bgd-7-2313-2010-print.pdf
http://www.biogeosciences-discuss.net/7/2313/2010/bgd-7-2313-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 2313–2360, 2010

Generalized
simplified

denitrification model

F. Oehler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

0 50 100 150 200
0.

0
0.

4
0.

8
1.

2

NO3
−  , mg N .kg−1  soil

D
a 

ra
te

, m
g 

N
 .k

g−1
  s

oi
l .

d−1

20 40 60 80 100

0.
0

0.
4

0.
8

1.
2

WFPS, %

D
a 

ra
te

, m
g 

N
 .k

g−1
  s

oi
l .

d−1

2 4 6 8 10 12

0.
0

0.
4

0.
8

1.
2

OM %

D
a 

ra
te

, m
g 

N
 .k

g−1
  s

oi
l .

d−1

5.0 6.0 7.0 8.0

0.
0

0.
4

0.
8

1.
2

pH

D
a 

ra
te

, m
g 

N
 .k

g−1
  s

oi
l .

d−1

5 10 15 20

0.
0

0.
4

0.
8

1.
2

T, o  C

D
a 

ra
te

, m
g 

N
 .k

g−1
  s

oi
l .

d−1

20 40 60 80 100
0

50
10

0
15

0
20

0

WFPS, %

N
O

3−
  ,

 m
g 

N
 .k

g−1
  s

oi
l

2 4 6 8 10 12

0
50

10
0

15
0

20
0

OM %

N
O

3−
  ,

 m
g 

N
 .k

g−1
  s

oi
l

5.0 6.0 7.0 8.0

0
50

10
0

15
0

20
0

pH

N
O

3−
  ,

 m
g 

N
 .k

g−1
  s

oi
l

5 10 15 20

0
50

10
0

15
0

20
0

T, o  C

N
O

3−
  ,

 m
g 

N
 .k

g−1
  s

oi
l

2 4 6 8 10 12

20
40

60
80

10
0

OM %

W
F

P
S

, %

5.0 6.0 7.0 8.0
20

40
60

80
10

0

pH

W
F

P
S

, %

5 10 15 20

20
40

60
80

10
0

T, o  C

W
F

P
S

, %

5.0 6.0 7.0 8.0

2
4

6
8

10
12

pH

O
M

 %

5 10 15 20

2
4

6
8

10
12

T, o  C

O
M

 %

5 10 15 20

5.
0

6.
0

7.
0

8.
0

T, o  C

pH

Fig. D1. Scatterplots of the combination of Da, NO−3 , WFPS, OM, pH and T. A light grey dot represents one

data point. Dots get darker as data points overlap. NO−3 range is limited to 200 mg N.kg−1 soil as there is few

data between 200 and 800 mg N.kg−1 soil.
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Fig. D1. Scatterplots of the combination of Da, NO−
3 , WFPS, OM, pH and T . A light grey dot

represents one data point. Dots get darker as data points overlap. NO−
3 range is limited to

200 mg N kg−1 soil as there is few data between 200 and 800 mg N kg−1 soil.
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