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Abstract

The solid-pore distribution pattern plays an important role in soil functioning being re-
lated with the main physical, chemical and biological multiscale and multitemporal pro-
cesses. In the present research, this pattern is extracted from the digital images of
three soils (Chernozem, Solonetz and “Chocolate” Clay) and compared in terms of5

roughness of the gray-intensity distribution (the measurand) quantified by several mea-
surement techniques. Special attention was paid to the uncertainty of each of them
and to the measurement function which best fits to the experimental results. Some
of the applied techniques are known as classical in the fractal context (box-counting,
rescaling-range and wavelets analyses, etc.) while the others have been recently de-10

veloped by our Group. The combination of all these techniques, coming from Fractal
Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this
paper Fractal Metrology (FM). We show the usefulness of FM through a case study of
soil physical and chemical degradation applying the selected toolbox to describe and
compare the main structural attributes of three porous media with contrasting structure15

but similar clay mineralogy dominated by montmorillonites.

1 Introduction

“If you cannot measure it you cannot manage it” (Cox, 2002). If you cannot measure
something with known exactness and precision you cannot make unbiased decisions.
The science of measurements is called Metrology and it deals with the theoretical20

and practical aspects of measurements (ISO, 2004; JCGM, 2008). The main goal
for Metrology is to outline ways in which metrological constants can be measured to
required accuracies (NIST, 2001). To date, some nine well-defined disciplines have de-
veloped from the original Metrology, each one focusing on specific objectives (Fig. 1),
with several emerging areas in the development phase (such as Roughness Metrol-25

ogy, Villarubia, 2005). Uncertainty and bias are the scopes of Statistical Metrology
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(Willink, 2005; Cox et al., 2008), while the features which affect the reliability of the
measurements of linear and angular quantities in industrial production are analyzed
by Dimensional Metrology (Curtis and Farago, 2007). The structure of uncertainty is
analyzed in a reference way by Working Group 1 of the Joint Committee for Guides
in Metrology (JCGM/WG1). We suggest that the study of complex and deeply in-5

terconnected Biogeosystems, whose behavior is defined by a common principle of
self-organizing criticality (Beiró et al., 2008), requires special measurands (quantities
to be measured, ISO, 2004) and a corresponding toolbox of reference measurement
techniques to quantify scale invariance (SI), universality (UNI), nonlinearity (NL), com-
plexity (COM), criticality (CR) as well as the uncertainty of their measurements. The10

lack of reference techniques, standards and quality control for the measurements of
these basic attributes of complex systems, makes difficult any intergroup comparisons
of the usually extensive data surveys, resulting in unsustainable decision-making. In
this study, we combine some principles and techniques of Fractal Geometry, Metrology,
Informatics, Probability Theory and Statistics inside a new branch of Metrology, called15

Fractal Metrology, and introduce scale invariant roughness as the main measurand of
SI, UN, COM and CR of complex systems (Oleschko et al., 2008).

The present study has three goals: (i) To validate the step-by-step protocol for mea-
suring the scale invariance of roughness on the structural patterns of a complex system
(soil in our case), paying special attention to the uncertainty of each used measurement20

technique; (ii) To test some new (designed by our group), as well as some common
roughness measurement techniques on three soils with contrasting structural patterns,
but with the same reference-mineralogy; (iii) To compare qualitatively (by visualization)
and a quantitatively (in terms of the Hurst exponent) the symmetry breaking of soil
aggregates under a degradation process (sodium salinization).25
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2 Complexity, criticality and roughness

We designed Fractal Metrology to measure the degree of complexity and criticality of
complex biogeosystems in terms of the roughness (main measurand) of their structural
patterns. Under complexity, following Christensen and Moloney (2005), we understand
the phenomenon when “the repeated application of simple rules in systems with many5

degrees of freedom gives rise to emergent behavior not encoded in the rules them-
selves”. In the present research this behavior was observed during the collapse of
the solid and pore patterns of Chernozem under a common agricultural degradation
process, salinization, leading to an emergent new unfertile soil, namely Solonetz. The
structural pattern of the later is compared with the pure “Chocolate” Clay (a kind of10

clayey deposits in Russia with chocolate color) composed by minerals of the montmo-
rillonite group. The main difference between these soils is the origin of the dominating
cation inside the CEC (Cation Exchange Complex): calcium is dominating in the Cal-
cic Chernozem, while sodium prevails in Solonetz and Chocolate Clay. The Solonetz
was formed from the Chernozem inside the same Chernozem-Solonetz pedological15

complex (Oleschko, 1981), while the Chocolate Clay was taken as the example of
a reference-matrix which has never been involved in the aggregation process (Vadyun-
ina et al., 1980).

The term criticality refers to the behavior of the system at the point of phase transi-
tion, where no characteristic scale exists (and therefore there is pure scale invariance,20

Christensen and Moloney, 2005). In the present study we are looking for critical behav-
ior in the Chernozem-Solonetz complex, comparing the soil structural patterns before
and after the transition from the totally aggregated (State I, Chernozem) to massive
(State II, Solonetz) structure (Oleschko, 1981). During this transition, the structural
pattern of Chernozem, a highly fertile soil with perfectly permeable sponge structure25

(Fig. 3a) gets transformed into the massive structure (Fig. 3c) of the unfertile bad land
(Solonetz). Note that these two soils were located inside a surface mosaic only a few
meters from each other. In the present study we focus our attention on those main
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structural attributes of Chernozem which have remained unchanged during the transi-
tion to Solonetz, and test the ability of Fractal Metrology to measure the differences or
similarities between the compared soils.

Roughness is a basic common feature of all kinds of either real-world systems (nat-
ural, social, economical or technological) or mathematics. Weisstein (2010), in agree-5

ment with Finch (2001, 2003) defines a k-rough (or k-jagged) number as a positive
integer whose prime factors are all greater than or equal to k. In the real-world, rough-
ness characterization is mostly limited to visual judgment. The surface roughness ap-
pears as a set of apparently random peaks and valleys, resulting in the fine-texture ir-
regularities due to the interaction of internal and external processes (El-Sonbaty et al.,10

2008). Smooth surfaces are rare in Nature (Majumdar and Bhushan, 1991), while
rough ones have many useful properties (“rough skin is good” for suppressing air tur-
bulence, see Monroe, 2006; Fransson et al., 2006). Roughness has a considerable
effect on the contact of surfaces (Borri-Brunetto et al., 1999); it can influence adhe-
sion (Wang et al., 2008), friction (Kim et al., 2006), wear (Bigerelle et al., 2007), and15

reflection (Verhoest et al., 2008). While surface roughness has a positive effect in in-
creasing adhesion it is considered as an undesirable imperfection from the point of
view of friction (Chandrasekaran and Sundararajan, 2004; Jensen, 2006). In each of
the above-mentioned examples a small change in the distribution of heights, widths, or
curvatures of the peaks has an important effect on the rough surface’s behavior (Kim20

et al., 2006). Light scattering from optical coatings is the best example for how strongly
processes could be affected by the roughness of interfaces (Germer, 2000). However,
in spite of the great influence of surface roughness on system behavior its measure-
ment is still a notable problem of Metrology (Villarubia, 2005; Van Gorp et al., 2007).
Therefore, a quantitative measurement of surface roughness is essential for several25

applied and theoretical fields (Diehl and Holm, 2006), and would be especially useful
in Biogeosciences. The question is: how to measure roughness in reference mode?
We propose to extract the roughness from bi-dimensional digital images, time series
and signals by methods suitable for box-counting and scale invariance analyses.
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3 Fractals and scale invariance

No formal definition of fractals exists. Informally, Mandelbrot (2002) defines the fractals
as irregular shapes, in either mathematics or the real world, with the property that each
small part of them is a reduced-size copy of the whole. Mandelbrot emphasizes that
the use of words fracture and fractal derived from the same root (fractus) is not a mere5

accident. First by Mandelbrot et al. (1984), and then by numerous follow-up studies, it
has been shown that the fractal dimension D (the main distinctive attribute of a fractal)
is an invariant measure of the roughness of fractures in metals and rocks (Mandelbrot,
2002). Mandelbrot proposed to view Fractal Geometry as a scientific approach to de-
scribe the sensation of rough versus smooth, as a “study of scale invariant roughness”.10

Fractal Metrology has the same goal and measurand but it focuses on the selection
and calibration of reference measurement techniques and their comparison in terms of
uncertainty, as well as the best fitting measurement model.

Spatio-temporal invariance which is a main feature of natural nets and the basic
concept of Physics is especially suitable to describe the structural patterns of complex15

systems. At present, the four most widely used types of spatial invariance in Physics
(Nambu, 2008) are rotational invariance (ferromagnets); translational invariance (crys-
tals); local gauge invariance (superconductors); and, global gauge invariance (super-
fluids). Recently, scale invariance as well has been found useful in applied sciences
and for theoretical purposes.20

We propose the scale invariant roughness as the main measurand of Fractal Metrol-
ogy. Mandelbrot (2002, 5–6) argued that “much in nature is ruled by what used to
be called pathology” but, fortunately, the latter “is not unmanageable”. He continued:
“This is so because it obeys a form of invariance or symmetry that overlaps Nature and
Mathematics, and is called scale invariance or scaling that is central to my life work. . .25

The challenge is to explain why so many rough facets of Nature are scale-invariant.”
At this step, we define the main goal of Fractal Metrology as the pass from roughness
sensation to quantitative measure (in agreement with Mandelbrot, 2002) by introducing
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the metrological measurand, selection of the corresponding reference measuring tools
and assignment of a realistic uncertainty to the measurements (compared by Student’-
t and Pearson’s r correlation analyses). This way, we shall accomplish the three main
tasks of Metrology (NIST, 2001).

3.1 Optics of fractal objects5

Surface reflectance properties are among the most important attributes of matter. Rec-
ognizing the material from these properties (such as lightness and gloss) is a nontrivial
task (Fleming et al., 2003), being related with problems of the “universe of projec-
tions” (Puente, 2004). The reflectance measurements by a scanning optical micro-
scope proved to be statistically effective to inspect the surfaces of optical components10

for imperfections (ranging from sub-micrometer to several micrometres, Gomez et al.,
1998). Fleming et al. (2003) documented that a skewed distribution of illuminant inten-
sities is a necessary condition for perceiving surface reflectance, as the skew tends to
increase the contrast between darkest and brightest regions. Korvin (2005) general-
ized Pentland’s (1984) result about the fractal dimension of the optical image of rough15

surfaces. He proved, without imposing the condition that the reflection obeys Lam-
bert’s Law, that the surface and the image have the same fractal dimension and there-
fore the roughness can be statistically extracted from the images. We designed two
methods to extract the digital image roughness, by converting the original image con-
sisting of Nr×Nc pixels to a time series (.ts). Every pixel has a gray value pi j between20

0 and 255. Here i=1,...,Nr is the row-index, j=1,...,Nc is the column index, where
Nr and Nc depend on the image size (mean image size in the present research was
1000×874). One way to convert an image to a time series is to rearrange all pixels row-
wise into a 1-dimensional (1-D) array F={p11,p12,...,p1N ,p21,...p2N ,...,pN1,...pNN} of
length 1000×874, what we call firmagram (Oleschko et al., 2004) and whose rough-25

ness can be measured by algorithms available for the analysis of self-affine sets. An
other possibility is to consider the empirical histogram nk={#(pi j=k

∣∣k=0,1,...,255)},
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or its normalized version, the empirical PDF pk=
{

nk
N2

∣∣∣k=0,1,...,255
}

. The series

p1,p2,...,p255, extracted from each digital image of interest constitutes the time series
for further fractal analysis. Note that by definition a stochastic process (or random func-
tion {x(t)}α) is a family of real- (or complex-) valued functions depending on a random
parameter α, where t usually plays the role of time. In the case of images analysis t5

represents the pixel position (in case of firmagram analysis) or pixel value (in case of
PDF analysis).

4 Metrology

While as Hardy (1940) observed, a mathematician makes patterns, the specialist in
Metrology should make these patterns workable. Metrology is the science looking10

for the specific theoretical and practical aspects of the measurement and traceability,
uncertainty and calibration carried out in the numerous applied and theoretical fields
(JCGM, 2008). It was born to make comparisons based on quantitative measurements
and directed to understand, interpret and make correct decisions about the system of
interest. The selection of measurand is the first step in each measuring process. When15

this selection is made keeping in mind the strict standards of Metrology, the objects
or system measurements become statistically precise and close to the true values of
parameters.

5 Fractal metrology

Complex systems exhibit scaling properties which obey power laws (Katz, 2006; Plow-20

man et al., 2007). In spite of the above-mentioned diversity of the branches of Metrol-
ogy (Fig. 1), two main features of complex systems – scale invariance and sponta-
neous symmetry breaking (Brink, 2008) – are still not measurable by standardized
quantities (measurands) and reference measurement techniques. In a search for the
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general (and probably universal) principles underlying the internal structure and exter-
nal behavior of such systems it is indispensable to develop a generic pattern-oriented
framework based on metrological principles and suitable for the measurement of com-
plexity (Grimm et al., 2005). This framework should provide a unifying scheme for the
main definitions, notions and techniques. The standardization however, is by no means5

a trivial procedure (Berry, 2001).

5.1 Basic concepts of fractal metrology

The metrological description of each phenomena of interest comprises certain clearly
defined steps (JCGM, 2008). The present research focuses on three of them: 1. The
selection of the main measurand; 2. The comparison in terms of uncertainty between10

the known techniques for measurand quantification; 3. The selection of measurement
model for measurements representation. These steps are visualized on Fig. 2. The
image of a tree (Mezquite from Queretaro State, Mexico) was used as to represent
the branching structure (Dodds, 2010) of the information required by Fractal Metrology.
This tree forms the base of the hierarchical ordering, clustering, coding, switching and15

control in a Fractal Metrology network of elements (Kaneko, 1990). This graph is suit-
able to design the step-by-step procedure for measurement of scale invariant rough-
ness of multiscale and multitemporal images, time series or signals. The distinctive fea-
ture of this information organization and management is a clear hierarchical and logical
character of the system functioning. Three main roots are constituted by data banks20

which alimented the highly ramified branches (consisting of by known and new mea-
surement techniques) through the unique trunk corresponding to the dimensionless
measurands of roughness (fractal dimensions and corresponding Hurst exponents).
The uncertainty is taken as the main indicator of efficiency of each compared tech-
nique to quantify the measurand with known precision. The Weierstrass-Mandelbrot25

function is selected to represent analytically the measurement function that fits well
to experimental measurements of scale invariant roughness. This way of analysis en-
sures optimal interaction among all elements of the net, putting in evidence “why leaves
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aren’t trees” (Monroe, 2010).

5.1.1 Hurst exponent as the measurand

We selected the Hurst exponent as the main measurand of roughness and therefore
of Fractal Metrology, because of its ability to express the asymptotic statistical proper-
ties of a random process x(t) (Denisov, 1998), and because it merges local and global5

features of space/time anisotropy inside the unique variable called roughness. Pro-
posed by the hydrologist Harold Edwin Hurst (1951), the classical rescaled adjusted
range R/S-statistics have become a popular and robust technique for local and global
dependence analysis (Mandelbrot, 2002). In time-series the Hurst exponent measures
the growth of the standardized range of the partial sum of deviations of a data set10

from its mean (Ellis, 2007). Mandelbrot and Wallis (1968) have incorporated in the
Hurst methodology ordinary least squares (OLS) regression techniques, and proposed
to estimate the statistics over several subseries (windows) dividing the whole series
length (Ellis, 2007). The Hurst exponent (H) is related to the fractal dimension (D) by
a simple (conjectured) rule, that first time appeared in Hardy’s (1916) work:15

D=2−H, (1)

where 2 is the Euclidean dimension of the space where the fractal is embedded. The
Hurst exponent is especially suitable to characterize stochastic processes (Mandelbrot
and van Ness, 1968) from the point of view of scale invariance (Bassler et al., 2006).
There are basic differences between persistent (H>0.5) and antipersistent (H<0.5)20

processes, while the white noise is characterized by H=0.5. Note that the H values
tend to 0 when the roughness is growing.

5.2 “Toolbox” of fractal metrology

The soil roughness was extracted from digital images and measured on firmagram,
histogram and probability density function by selected measurement techniques.25

4758



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

5.2.1 Firmagram roughness

Image digitization refers to the transformation of an apparently continuous image into
discrete intensity values distributed at equally spaced locations across an xy -grid,
called a raster (Pawley, 2006). The procedure results in an array of rows and columns
which we (Oleschko et al., 2004) proposed to analyze as a one-dimensional array of5

data gathered inside the same column. The graphical representation of this column is
the above-mentioned firmagram (Oleschko et al., 2004). The whole distribution of gray-
tones (from 0 – black, to 255 – white) inside an image represents its global roughness
(Fig. 4Ab, Bb, Cb), while a baseline of each selected area refers to the local roughness.
This dual representation visualizes how the image roughness is changing with scale,10

with an accuracy of one pixel. The Histo Gene algorithm (Parrot, 2003) scans the im-
age from the first pixel on the top line until the final one on the bottom, building a column
of the intensity values. The output files are in .ts format therefore the measurement of
their roughness becomes a trivial task (see measurement techniques).

5.2.2 Histogram roughness15

The second way to extract the measurand for our research is using the histogram.
The histogram is considered a precise way to summarize the statistical information
associated with a complex system (Strauss, 2009; Tancrez et al., 2009). To get the his-
togram in the present work we used the algorithm Frequ Hist, written by Parrot (2003).
The Frequ Hist output file consists of the frequencies of occurrence (y) of each gray-20

intensity value (x), forming a time series whose roughness can be measured by se-
lected reference techniques. The output file of the Hist Gene (.ts) is transferred to
Frequ Hist (.xls). The output file of the latter algorithm consists of four data columns.
The first one contains the values of gray tones extracted from the original gray-scale
image, arranged in decreasing order. The second one displays the frequency of each25

gray scale value. These two columns correspond to the histogram constructed with the
precision of one pixel. The third and forth columns correspond to the gray value and
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respective probability to find it inside the image, constituting the effective probability
density function (PDFef) of the analyzed image (Fig. 4Ad, Bd, Cd). The roughness of
both PDFs is quantified by the measurement techniques (see Sect. 5.3). The PDFef is
compared with the modeled theoretical distribution by means of the @RISK (Palisade
Corporation, 2005) software (Fig. 4Ae, Be, Ce).5

5.2.3 Probability density function roughness

The Histogram is one of the most useful forms of summarizing random data for vi-
sual and statistical analysis (Lu and Guan, 2009). It is an extremely useful tool for
graphically represent data variability which is described in quantitative terms by the
probability density function (Strauss, 2009). For a continuous function, the PDF ex-10

presses the probability that the variable of interest X lies in an interval (a b), (see, e.g.
NIST/SEMANTECH, 2006):∫ b

a
f (x)dx=Pr[a≤X ≤b].

For a discrete distribution, the PDF represents the probability that the variable X takes
the value x. Note, that when displayed, the PDF graph has the same appearance as15

the histogram (Fig. 4Ad, Bd, Cd, Fig. 4Ae, Be, Ce).
Berry (1996) was first who drew attention to “some unexpected fractal properties” of

the probability density

P (r,t)≡ |Ψ(r,t)|2 (r = {x1,x2,...xD})

for what he called “the simplest imaginable nonstationary Schrödinger wave Ψ”. He20

proved that the discordance in the initial and boundary conditions in a D-dimensional
box B, enforcing an initial discontinuity at the walls, making superposition Ψ(r,t) a frac-
tal function in time and space (Berry, 1996). He computed the plan view of the rough-
ness of the fractal probability density landscape P (ξ,τ) in time and space. For the
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fractals in fractal boxes he has suggested some simple modifications which give Dtime
and Dspace.

In our research the fractal behavior of PDF was found empirically. In addition to the
PDF estimation by means of Frequ Hist, the statistical analysis of the gray-tone dis-
tribution across each analyzed image has also been accomplished by the commercial5

software @RISK 4.5 add-in for Microsoft Excel (Palisade Corporation, 2005). The tools
of Risk Analysis have been used since long for the analysis of financial data oscilla-
tions, but rarely applied in Natural Sciences. We have found @RISK a user-friendly
software (except its rather high price!) suitable for Biogeoscience studies because of
its precision and relative simplicity.10

The @RISK 4.5 package selects the best fit to the experimental data function from
among 37 different theoretical probability distributions (Normal, Lognormal, Logistic,
Beta, Gamma, Pareto, etc.). The algorithm is based on a Monte-Carlo simulation tech-
nique which replaces the uncertain or unknown values of an experimental dataset by
a range of more probable values. The list of five selected, best fitting functions are dis-15

played automatically, the first one being the most probable for the studied data. To cre-
ate a histogram, the software finds the maximum and minimum values of a data range,
divides the range into classes whose level of importance depends on the probability
of occurrence of values, defined as {p}={p1,p2,...,pn}=data rank array. In @RISK
4.5 (Palisade Corporation, 2005) the probability density function is used to construct20

the frequency distribution from an infinitely large set of values where the class size
is becoming infinitesimally small. The visual similarity between PDFs constructed by
Frequ Hist and @RISK can be observed in Fig. 4Ad, Bd, Cd and Ae, Be, Ce.

5.3 Measurement techniques

There are a legion of fractal descriptors suitable to quantify the specific attributes of25

complex systems. For instance, the fractal dimension (D) measures the set’s space-
filling ability (Mandelbrot, 1982); the degree of its translation invariance is quantified by
lacunarity Λ (Pendleton et al., 2005; Feagin, 2003; Feagin et al. 2007); the continuity
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and tortuosity of the pore and solid networks are measured by random-walk fractal di-
mensions (Korvin, 1992; Rodriguez-Iturbe and Rinaldo, 1997), or spectral dimension
or fracton (Orbach, 1986). The main advantages and problems of fractal descriptor
measurements have been described in details in some by now standard (Korvin, 1992;
Barton and La Pointe, 1995; Falconer, 1997; Turcotte, 1997, etc.) as well as recent (Tél5

and Gruiz, 2006) books. There are several useful reviews comparing the algorithmic
aspects of these measurements and the performance of each fractal dimension: for
instance, the boundary fractal dimension is treated in Klinkenberg (1994) and Gallant
et al. (1994); self-affine time series analysis in Malamud and Turcotte (1999) and Pel-
letier and Turcotte (1999), while the correlation dimension was the subject of Kogan’s10

(2007) detailed study. A comparison of computer-simulated examples was given by Be-
hery (2006). The compilation of Sun et al. (2006, Table 1), focusing on the techniques
used for the fractal dimension analyses of the surface features extracted by remote
sensing, is especially useful for summarizing and comparing the different techniques.

Mandelbrot (2002) proposed to put the most important fractal analysis techniques15

into a “toolbox”, just as the tools of the electricians’ and plumbers’. The “power-law”
figuring in the probability distribution Pr{U>u}∼u−α describing the distribution of a sys-
tem’s attributes having a size U>u can be used in Fractal Metrology as a superior tool
for fractal modeling. Levitz (2007) used the notion “basic toolbox” to capture forms and
patterns, while we applied the term “toolkit” as more proper for applied sciences (in20

Oleschko et al., 2010). For Fractal Metrology we propose to use the original term “tool-
box” (or effective toolbox), to honor to the pioneering works of Mandelbrot (2002). We
shall put inside this box some tools designed by us in addition to the common fractal
techniques of one of the available commercial software – Benoit (1.3) (SCION Corp.,
Trusoft, 1999, one of its early versions was reviewed by Seffens, 1999). Each Benoit25

technique is based on some specific relationship (such as: power law) established
theoretically, empirically, or by computational experiment between a system attribute
and the scale of its observation. The box-counting (Dbox), perimeter-area (Dp), in-
formation (Di), mass fractal (Dm), and ruler (Dr) dimensions (and corresponding Hurst
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exponents) are designed for self-similar sets or curves, while the rescaled range (DRS),
power spectrum (DPS), roughness/length (Dr), variogram (Dv), and wavelet (Dw) di-
mensions are used for self-affine traces or time series (SCION Corp., Trusoft, 1999).
The following discussion will involve only five of the mentioned techniques.

5.3.1 Box dimension (DB)5

The size of a self-similar fractal set has been shown to display a power-law relationship
with the measurement scale where the fractal dimension is the exponent of the power-
law (Tang and Marangoni, 2006). The Box Dimension technique is the classical way
to prove the fractal behavior of the studied mathematical, computer-simulated or real
physical set and is used in this work to measure the roughness from the space-filling10

ability of solid and pore networks. In this technique, the counting of boxes contain-
ing pixels of the object is accomplished, considering the box as occupied if at least
one analyzed intensity value belongs to the box. The following equation is basic for
Dboxcalculation:

N(d )∼ 1

dDb
(2)15

where N (counted for a set of box sizes with different orientation) is the number of those
boxes of linear size d which contain at least one point of the structure (Fig. 3f).

5.3.2 R/S Analysis (DR/S)

The R/S analysis is used to describe the self-similarity properties of time series through
the Hurst exponent (Scipioni et al., 2008). This traditional method can be described in20

terms of the range of partial sums of deviations of values from the mean of a time se-
ries, normalized by its standard deviation (Alvarez-Ramirez et al., 2008). The Rescaled
range R/S(w) is defined as (TruSoft, 1999):

R/S(w)=
〈
R(w)

S(w)

〉
, (3)
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where w is the window length; R(w) is the range of values inside the sampled interval;
S(w) is the average standard deviation, angular brackets denote expected values. The
following equation shows the power-law relation which can be established between the
R/S ratio and window length via the Hurst exponent H :

R/S(w)∼wH . (4)5

The linearity of the double logarithmic plot of R/S(w) as a function of w reveals
a scaling law, where H is the Hurst exponent which is obtained from the slope of the
straight line. The relationship between fractal dimension and Hurst exponent is given
by Hardy’s (1916) conjecture (see Eq. 1).

5.3.3 Power spectrum (DPS)10

A powerful method to extract the hidden structural information (such as: periodicities
and persistence) from a fluctuating time-series is to calculate its power spectrum (Su
and Wu, 2007). The power spectrum method gives a scale invariant measure of fractal
dimension since the log-log slope of the power spectrum is invariant to arbitrary rescal-
ing of the input (Wilson, 1997). Usually, the Fast Fourier Transform (FFT) is applied15

to estimate the power spectrum (Dimri and Prakash, 2001). To obtain an estimate of
the fractal dimension, the power spectrum P (k) (where k=2π/λ is the wavenumber,
and λ is the wavelength) is first calculated and plotted on a double logarithmic plot as
P (k) versus k. If the time-series is self-affine, this plot should follow a straight line for
large wavenumbers, with a negative slope −b which is estimated by regression. The20

exponent −b is related to the fractal dimension DPS as follows (TruSoft, 1999):

DPS =
5−b

2
. (5)

5.3.4 Wavelets (DW)

Wavelets are localized functions of zero mean, constructed by the linear combination
of scaling functions (Bakucz and Krüger-Sehm, 2009). They are especially useful for25
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compressing images due to certain wavelet transform properties which are in some
ways superior to the conventional Fourier transform (Weisstein, 2010). The Wavelet
Method is based on the fact that the wavelet transform of a self-affine trace is also self-
affine (Rehman and Siddiqi, 2009). The characteristic measure of wavelet variance
analysis is the wavelet exponent, Hw (Malamud and Turcotte, 1999). Wavelets are5

implemented using trigonometric functions that are oscillating around zero in a non-
smooth sweep, and localizing them in the frequency space (Jones and Jelinek, 2001).
Consider n wavelet transforms all of them with a different scaling coefficient ai , let
S1,S2,...Sn be their standards deviations from zero. Define the ratios G1,G2,...,Gn−1
of the standard deviations as G1=S1/S2,G2=S2/S3,...,Gn−1=Sn−1/Sn, and compute10

the average value of Gi as (TruSoft, 1999):

Gavg =

n−1∑
i=1

Gi

n−1
. (6)

The Hurst exponent (H) is H=f (Gavg), where f is a heuristic function which describes H
by Gavg for stochastic self-affine traces (TruSoft, 1999). The mother wavelet in Benoit
1.3 is a step function. Malamud and Turcotte (1999) have underlined that wavelets15

analysis does not share the power-spectral analysis’ inherent problems, such as win-
dowing, detrending etc.

5.4 Measurement uncertainty

We propose to measure the uncertainty in terms of standard deviation (σ). The H
and σ values extracted by selected Benoit techniques from the original digital images,20

firmagrams and PDF were subjected to Person’s r and Student’s t statistical analyses
in order to estimate the statistical significance of the differences between them.

Comparative analysis of the five selected reference measurement tools is realized
in the present research following the Guide to the expression of uncertainty (GUM)
in measurement (2008), published by the Joint Committee for Guides in Metrology25
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(JCGM). The statement of measurement uncertainty is used in its broadest sense as
a doubt defining it as a parameter, associated with the result of a measurement, that
characterizes the dispersion of the values that could be reasonably attributed to the
measurand (JCGM, 2008, p. 2). The GUM recognizes two types of measurement er-
rors (systematic and random) putting them on a probabilistic basis through the concept5

of measurement uncertainty (JCGM, 2009). The latter is described as the measure of
how well one believes one knows the measurand value (JCGM, 2009, p. 3).

The standard uncertainty is defined as the standard deviation (JCGM, 2008) of the
input quantity. We propose to measure the uncertainty of fractal analyses in terms of
the standard deviation (σ) for the Benoit results.10

The statistical significance of the differences in standard uncertainties of the Benoit’s
data was quantified by Student’s-t and Pearson’s r correlation analyses. The Pearson’s
r correlation matrix (computed by the MINITAB Software, 1998) was constructed as:

rXY =

∑n
i=1 (Xi − X̄ )(Yi − Ȳ )

(n−1)SXSY
, (7)

where X,Y are all possible pairs of the compared variables, see Tables 7–11. Here,15

X̄ and Ȳ are mean values, SX and SY are standard deviations. Student’s t-test was
carried out for paired variables in the SPSS Inc. (1989–2004) environment.

For the @RISK results we carried out the statistical comparison of the significance
of the obtained differences in a few statistics built from the first four moments: mean,
variance, kurtosis and skewness (Tables 8–11).20

The standard deviations of all used techniques (except the wavelets) were analyzed
by the same statistical tests but independently of H . Additionally, the Person’s r and
Student’s t-tests were applied to the three compared soils of contrasting genesis, look-
ing for a correlation between the roughness of their images. Finally, the same two
statistical tests were applied to the four statistics yielded by @Risk PDF analysis.25
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5.5 Measurement function

The rule for converting a quantity value into the corresponding value of the measurand
is named a measurement model (JCGM 200, 2008). We selected the Weierstrass-
Mandelbrot function (Berry and Lewis, 1980) as the measurement model (JCGM,
2009) which fits well to our experimental data (the firmagram as well as the prob-5

ability density function, see later). Developing a measurement model corresponds
to the formulation stage of uncertainty evaluation (JCGM, 2009). The Weierstrass
function W0(t) is an everywhere continuous but nowhere differentiable function (NIST,
2010 online Digital Library of Mathematical Functions, DLMF) constituted by the sum
of a convergent trigonometric series of the form10

W0(t)=
∑∞

n=0
ωnexp(2πibnt), (8)

where the subscript in W0(t) corresponds to “original”; the base b is a real number
>1, and the weight ω is written either ω=b−H , with 0<H<1 or as ω=bD−2, where
1<D=2−H<2; it can be proven that D is the Minkowski-Bouligand dimension for the
graph of W0(t) (Mandelbrot, 2002, 146–147). Several systems with fractal features (i.e.15

exhibiting scale invariant roughness) can be described with the modified Weierstrass
function introduced by Mandelbrot who added to the series further subharmonics or
quasi-subharmonics. This special and pathological function, called as Weierstrass-
Mandelbrot function (Berry and Lewis, 1980; Wang et al., 2008) is continuous, non
differentiable and possesses no scale. It is defined as:20

W (x)=
∞∑

n=−∞

(1−e(iγnx))eiφn

γ(D−2)n
, (1<D< 2,γ > 1,φnarbitrary) (9)

where D is the fractal box-dimension of the graph of W (x), γ is a parameter, and the
phases φn can be chosen to make W exhibit deterministic or stochastic behavior.
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6 Results and discussion

6.1 Experimental setup

Seventeen micromorphological images of three soils with contrasting structural pat-
terns but with similar clay content and mineralogy (Oleschko, 1981) were used for the
statistical comparison of the measurement techniques selected for inclusion in Fractal5

Metrology. The Chernozem-Solonetz pedological complex was sampled in the same
agricultural field (Tambov State, Russia). The undisturbed samples (8 cm×4 cm) were
collected with specially designed samplers from the arable horizon of each studied soil.
All samples were taken at field moisture in order to conserve the soil’s structural pat-
tern. In the laboratory, samples were dried by the acetone replacement method and10

impregnated with resin. The hardened samples were sectioned horizontally making
sure that the natural solid-pore distribution anisotropy derived from the tillage prac-
tices is preserved (Fig. 3a, c, e). Thin sections (2 cm×4 cm) with 30 µm thickness,
were prepared by standard in Russia petrographic procedure (Parfenova and Yarilova,
1977; Brewer, 1964) and analyzed under the petrographic (Carl Zeiss) microscope. All15

thin sections and digital images are representative of the structural patterns’ original
anisotropy.

The Chernozem and Solonetz are located five-ten meters apart of each other, inside
the patches of a typical mosaic of a man-induced Bad Lands landscape. However,
the Chernozem is the black soil with the highest known level of sponge-type structure20

development (Phase 1), while the Solonetz is a saline-sodium soil with typical mas-
sive pattern and ephemeral fractures derived from the altering expansion/contraction
cycles (Phase 2). Solonetz had originated from the Chernozem as a result of chemical
degradation due to unsustainable irrigation with saline water. Therefore, the experi-
mental setup was focused to capture the critical behavior and phase transition of the25

soil’s structural pattern during this degradation, applying the above-described Fractal
Metrology techniques.
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Figures 3a, b, c and 4Aa, Ba, Ca show the representative examples of micromor-
phological images of Chernozem (Figs. 3a and 4Aa) and Solonetz (Figs. 3c and 4Ba),
visualizing their contrasting structural patterns that have resulted in statistically different
physical properties (Table 2) and soil behavior. The loss of the original quality is related
to the structure’s collapse in response to the drastic changes which occurred inside the5

cation exchange complex where the calcium dominating in Chernozem had been re-
placed by sodium, resulting in Solonetz formation. The phase transition from the highly
connected to massive pattern with water-unstable structure and ephemeral fractures
has occurred when the sodium concentration exceeded the permissible (critical) level
of the macro- and microaggregates’ stability. Because of the universality of phase tran-10

sitions (Stanley, 1971), we expected the similarity of Hurst exponents in case of both
soils regardless of some local details. In our case the divergences of the order parame-
ters at the critical Na content CNa,crit scale near the critical point as ∼

∣∣CNa,crit−CNa

∣∣−λ.
We tried to capture and visualize this trend for the compared soils, measuring it by
Fractal Metrology toolbox. The final comparison was carried out between the structural15

patterns of both soils and the Chocolate Clay whose massive microstructure had never
passed through an aggregation process (Fig. 3e).

The compared images were taken from thin sections using an optical microscope
under 10× magnification (Oleschko, 1981).

6.2 Structural patterns comparison20

The mean value of the fractal box dimensions for the three compared soils, extracted
from the original image and the negative image of the firmagram (Benoit’s box counting
algorithm is working only on the white part of an image, Fig. 3f) is close to 1.89, the
fractal dimension of the Sierpinski carpet (Korvin, 1992), varying between 1.87 (Cher-
nozem) and 1.92 (Solonetz). The data variation is low, with highest mean standard25

deviation of 0.017 obtained for Dbox of Chernozem (original image) and the minimal
(0.002) for the same soil but when H was extracted from the negative of the firmagram.
We concluded that all compared porous materials can be defined as homogeneous
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from the point of view of the space filling ability of their solid and pore patterns, and
their roughness calculated by the box fractal dimension. Note that the box counting
analysis of the firmagram extracts more precise information about the matrix density
(solids and pores mutual distribution) inside the original images.

The apparent independence of the box counting dimension on soil genesis for the5

studied pedological complex compared with Chocolate Clay (porous material which
can not be named soil) can be observed in Table 1. This independence can be inter-
preted as empirical evidence for some generic features (universality?) of roughness of
these materials with similar clay mineralogy (micro-scale) but contrasting appearance
of structural patterns (macro-scale). Therefore, neither the box fractal dimension nor10

the standard deviation were able to detect any differences in the roughness of digital
images of the compared soils.

Our previous physical experiments, and corresponding computer simulations, have
shown similar trends for soils of different genesis (Oleschko et al., 2000). Fractal analy-
sis of multiscale soil images, firmagrams as well as observed and computer-simulated15

microwaves scattered from soil (has not been done in the present study), yielded simi-
lar values for the fractal parameters (Oleschko et al., 2002, 2003).

In Table 2 the microaggregate composition of the Chernozem and Solonetz esti-
mated by the reference pipette method (Vadyunina and Korchagina, 1973) are com-
pared for two genetic horizons. The high content of physical clay (the physically active20

fraction of particles with size <0.01 mm, considered as most important for microag-
gregation) in both soils ensures their suitability to form clusters of fine particles (mi-
croaggregates). Notwithstanding, the differences in the nature of the dominant cation
in CEC are responsible for contrasting physical and chemical properties of Chernozem
and Solonetz. We speculate that the similarity in roughness between these soils is due25

to their high physical clay content, which increased significantly with depth (Oleschko,
1980).

The Person’s r analysis as well as the Student t-test show the strongly significant
correlations between the roughness of all compared soils and therefore non significant

4770



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

differences, independently on the applied measurement techniques (Tables 3 and 4).

6.3 Uncertainty of fractal measurements

As the second step of measurements protocol, the Hurst exponent values, extracted
from the images, firmagrams and PDFs by Box Counting, Rescaled-Range, Power
Spectrum and Wavelets techniques were compared as regards the mean value of the5

Hurst exponent and its standard deviation (Table 5). The HRS extracted from the orig-
inal images transformed into time series (ts) has highest mean value in Chernozem
(0.064) as compared with Solonetz (0.039) and Clay (0.031). The mean standard de-
viation shows the same tendency: its value is higher for the HRS of Chernozem (0.742)
in comparison with Solonetz (0.362) and Chocolate Clay (0.377). We note that the10

Chernozem’s standard deviation measured by Rescaled Range technique (0.742) is
more than almost 50 times larger than for Box Counting (0.017).

As in the case of box counting (Table 5), the standard deviation was smaller for HRS
extracted from the firmagrams, being equal to 0.193 for Chernozem and minimal for
Clay (0.104). The mean value of HRS measured for the firmagrams three soils was15

0.229, and therefore the corresponding mean fractal dimension was DRS=1.771. The
values of roughness measured by the power spectrum method applied on the origi-
nal images and firmagrams were comparable with those values obtained by the R/S
technique (except the “Clay” samples where the fractal dimension has reached the
topological limit of 2): the mean value of HPS is equal to 0.208 for images. For all tech-20

niques the roughness information extracted from the PDF was noisier in comparison
with the two other sources namely original digital images and firmagrams. In spite of
the listed differences between the differently measured Hurst exponents, these were
not statistically significant only for four compared standard deviation pairs (Tables 5
and 6). The H values measured by Wavelets technique fluctuated around 0.5 (the25

Hurst exponent value of white noise) similarly to the above-discussed PDF case. We
concluded that the Wavelets technique was not sufficiently precise for the roughness
measurement of the compared soils.
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The mean HRS value measured on the firmagram was equal to 0.229 (with standard
deviation 0.141) showing that the HRS extracted from the original image has higher
roughness (mean HRS=0.044) and higher uncertainty (SRS=0.493). The power spec-
trum technique gave the similar mean HPS value of 0.208 for the original images of the
compared soils, showing higher roughness for the firmagram (HPS=0.048). The values5

of Hw measured by Wavelets method fluctuated around 0.5 for images, firmagrams and
PDF, the mean Hw value was equal to 0.40 for the original images (Table 5).

This conclusion is confirmed by Pearson’s r analysis where 45 different pairs of H
were compared (Table 7), showing the statistically significant correlation at the 0.01
level among 7 of them, at the level 0.05 among four pairs, and uncorrelated values of10

the remaining 34 pairs. However, it is notable that among these 34 pairs, 23 corre-
spond to the Hurst exponents measured by wavelets technique (which have correlated
negatively −0.80, and only once with the HRS of soil firmagrams) while the other eleven
have correlation coefficients close to 0.45.

In spite of the statistical similarity between the compared soils’ roughness (Table 4),15

the precision of the compared techniques measured in terms of standard deviation was
significantly different, except for the following pairs which show significant correlation:
Sbox(image) versus Sbox(firmagram) with correlation coefficient of −0.528; SRS(image) and
SPS(image), where r=−0.72, (Table 6).

The outlier (high) standard deviation values of the spectral dimension might be due20

to the special construction of the time series extracted from the digital images and
firmagrams. In the image one should expect a spatial correlation over a distance of
a few pixel-sizes between the neighboring values pi ,j ;pi±1,j ;pi±2,j ;.... Because of this,
some artificial periodicity in the firmagram of period ≈N could have appeared, so that
the lags, window-length, etc., used to estimate H or D from the images and firmagrams25

must be kept much less than image size N in order to avoid this artifact.
Statistical comparison was also accomplished among the central moments (mean,

variance, kurtosis, skewness) of the empirical and theoretical PDFs extracted by
the @Risk software, confirming the similarity of the gray-level distribution across the

4772



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Chernozem-Solonetz pedological complex images and the Chocolate Clay (Tables 8–
11). We speculate that the influence of microstructure and soil mineralogy on image
roughness is more important than all other attributes characteristic for the macrofea-
tures of the structural pattern. The detailed architecture of Solonetz on the microscale
preserved the original Chernozem features, conserving the self-organizing capacity of5

the fine matrix near the transition point when sodium content overpasses the critical
value. This catastrophic event, known as soil chemical degradation, involves a struc-
tural phase transition detectable by visual comparison of microscopic images. The
Chernozem aggregates collapsed at all hierarchical levels, resulting in the massive
pattern of Solonetz, where the major attraction between the solid particles (with high10

content of montmorillonites) is responsible for the low inter-aggregate porosity and high
fracture density. This re-arrangement of structural patterns does not cause statistically
significant changes in the scale-invariance of the microstructure. However, in spite of
the statistically insignificant differences of the Hurst exponent values, the H values of
Solonetz and Chocolate Clay for some techniques tend to be smaller, indicating higher15

roughness (Table 5). These changes can be interpreted as indications of the break-
down of interconnected porosity in Solonetz, due to the soil’s chemical degradation.
In most of the analyzed cases the roughness of the micromorphological images has
antipersistent character.

7 Conclusions20

The presented results of applying the Fractal Metrology toolbox to three soils with
contrasting structural patterns but very similar mineralogy prove the effectiveness of
certain fractal descriptors for measuring the dynamics of complex systems. The box
counting dimension extracted from the images and firmagrams was more precise in
terms of standard deviation in comparison with the three other techniques selected for25

testing. The Rescaled-Range method extracted similar values for the digital images’
roughness, but its uncertainty was several times higher. The power spectrum technique
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yields results close to those in case of the box- and R/S analyses but it has incompa-
rably higher uncertainty probably due to the artificial construction of the firmagrams.
The wavelets technique was not able to extract meaningful roughness estimates from
the studied images, the resulting H values fluctuated around H=0.5 characteristic for
white noise. Similar tendency was found for the Hurst values extracted from the PDFs5

of gray intensities. Notwithstanding, the statistically significant similarity between the
roughness of Chernozem and Solonetz belonging to the same pedological complex
affected by salinization proves the suitability of the proposed step by step technique
to look for the critical behavior of soil structural patterns related with degradation. The
selected toolbox can be useful for the quantification of the spatio-temporal dynamics10

and behavior of other Earth systems, especially in similar cases of phase-transition.
We conclude that a combined use of different fractal descriptors ensures the required
statistical control for fractal measurements of complex system attributes and behavior,
and provides data for unbiased comparison. The optimal selection of fractal parame-
ters to capture critical behavior and phase transition should be tested for each specific15

application.
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Table 1. Hurst exponent (H), fractal dimension (D) and standard deviation (S) measured by box
counting method for seventeen analyzed images of three soils and their respective firmagrams.

Image Dbox Dbox firmagram
H D S H D S

D-13-Chernozem 0.083 1.917 0.017 0.075 1.925 0.002
D-19-Chernozem 0.083 1.917 0.016 0.23 1.77 0.001
D-1-Solonetz 0.116 1.884 0.018 0.127 1.873 0.001
D-2- Solonetz 0.09 1.91 0.008 0.119 1.881 0.01
D-3- Solonetz 0.102 1.898 0.014 0.129 1.871 0.005
D-14- Solonetz 0.107 1.893 0.015 0.092 1.908 0.006
D-16- Solonetz 0.103 1.897 0.015 0.109 1.891 0.002
D-17- Solonetz 0.104 1.896 0.014 0.124 1.876 0.008
D-18- Solonetz 0.083 1.917 0.015 0.13 1.87 0.008
D-4-Clay 0.134 1.866 0.024 0.139 1.861 0.001
D-5-Clay 0.109 1.891 0.01 0.111 1.889 0.001
D-6-Clay 0.133 1.867 0.011 0.087 1.913 0.008
D-7-Clay 0.101 1.899 0.006 0.085 1.915 0.009
D-9-Clay 0.094 1.906 0.01 0.156 1.844 0.002
D-10-Clay 0.116 1.884 0.012 0.069 1.931 0.004
D-11-Clay 0.126 1.874 0.014 0.124 1.876 0.001
D-12-Clay 0.124 1.876 0.018 0.077 1.923 0.004

Mean 0.106 1.894 0.014 0.117 1.883 0.004
Maximum 0.134 1.917 0.024 0.230 1.931 0.010
Minimum 0.083 1.866 0.006 0.069 1.770 0.001
S 0.017 0.017 0.004 0.038 0.038 0.003
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Table 2. The microaggregate composition of the Chernozem and Solonetz soils at different
depths.

Microaggregate fraction (%)
Soil Depth 1–0.25 0.05– 0.01– 0.005–

(cm) (%) 0.01 0.005 0.001 <0.001 <0.01 >0.01

Chernozem (0–20) 0.0 46.9 17.8 8.2 2.5 28.5 71.5
(40–50) 0.2 44.8 15.8 17.7 2.7 36.2 63.8

Solonetz (0–20) 0.0 46.5 21.5 13.5 9.9 44.9 55.1
(40–50) 0.0 21.1 17.6 12.3 45 74.9 25.1
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Table 3. Pearson’s r correlation matrix for the Hurst exponent of three studied soils.

Clay Solonetz Chernozem

Clay 1 0.872∗∗ 0.909∗∗

0.001 0

Solonetz 1 0.870∗∗

0.001

Chernozem 1

∗ Correlation is significant at the 0.05 level (2-tailed).
∗∗ Correlation is significant at the 0.01 level (2-tailed).
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Table 4. Student t-test for the Hurst exponents of three compared soils.

Paired differences
Mean S SEM 95% confidence t d f Sig.

interval of the (2-tailed)
difference
Lower Upper

Clay - Solonetz 0.025 0.101 0.032 −0.047 0.097 0.786 9 0.452

Clay - Chernozem 0.021 0.086 0.027 −0.041 0.083 0.771 9 0.461

Solonetz -
Chernozem −0.004 0.087 0.028 −0.066 0.058 −0.146 9 0.887

∗ The differences are significant at the 0.05 level (2-tailed).
∗∗ The differences are significant at the 0.01 level (2-tailed).
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Table 5. Hurst exponent (H) and standard deviation (S) for each soil type and technique used.

Total mean Chernozem Solonetz Clay

Hbox(image)/Sbox(image) 0.100/0.014 0.083/0.017 0.101/0.014 0.117/0.013

Hbox(firmagram)/Sbox(firmagram) 0.125/0.004 0.153/0.002 0.119/0.006 0.106/0.004

HRS(image)/SRS(image) 0.044/0.493 0.064/0.742 0.039/0.362 0.031/0.377

HRS(PDF)/SRS(PDF) 0.444/0.007 0.424/0.006 0.505/0.010 0.404/0.006

HRS(firmagram)/SRS(firmagram) 0.229/0.141 0.270/0.193 0.201/0.127 0.217/0.104

HPS(image)/SPS(image) 0.208/144 302.145 0.151/133 766.650 0.233/146 878.879 0.241/152 260.906

HPS(PDF)/SPS(PDF) 0.417/11.244 0.454/10.960 0.435/14.941 0.366/7.831

HPS(firmagram)/SPS(firmagram) 0.048/40 068.195 0.121/48 708.625 0.024/38 070.717 0.000/33 425.244

HW(image) 0.400 0.413 0.360 0.428

HW(PDF) 0.560 0.565 0.426 0.689

HW(firmagram) 0.427 0.319 0.466 0.497
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Table 6. Pearson’s r correlation matrix for the standard deviations (S) of three applied tech-
niques: Box dimension, R/S analysis and Power spectrum.

Sbox Sbox SRS SRS SPS SPS

(image) (firmagram) (image) (PDF) (image) (PDF)

Sbox(image) 1 −0.528∗ 0.059 −0.013 −0.207 0.179
0.029 0.821 0.960 0.426 0.492

Sbox(firmagram) 1 −0.249 0.286 −0.128 0.126
0.336 0.266 0.625 0.629

SRS(image) 1 0.014 −0.715∗∗ −0.321
0.959 0.001 0.210

SRS(PDF) 1 −0.012 0.475
0.965 0.054

SPS(image) 1 0.331
0.194

SPS(PDF) 1

∗ Correlation is significant at the 0.05 level (2-tailed).
∗∗ Correlation is significant at the 0.01 level (2-tailed).
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Table 7. Pearson’s r correlation matrix for the Hurst exponents of four techniques applied: Box
dimension, R/S analysis, Power spectrum and Wavelets.

Hbox Hbox HRS HRS HPS HPS Hw Hw Hw

(image) (firmagram) (image) (PDF) (image) (PDF) (image) (PDF) (firmagram)

Hbox(image) 1 −0.341 −0.405 −0.436 0.446 −0.414 0.213 −0.114 0.094
0.181 0.107 0.081 0.073 0.099 0.412 0.664 0.719

Hbox(firmagram) 1 0.748∗∗ 0.718∗∗ −0.869∗∗ 0.457 −0.01 −0.175 0.328
0.001 0.001 0.000 0.065 0.969 0.501 0.199

HRS(image) 1 0.583∗ −0.674∗∗ 0.608∗ −0.149 −0.007 0.004
0.014 0.003 0.010 0.569 0.979 0.987

HRS(PDF) 1 −0.582∗ 0.644∗∗ −0.132 0.022 0.463
0.014 0.005 0.614 0.934 0.061

HPS(image) 1 −0.412 0.190 0.022 −0.246
0.100 0.466 0.932 0.340

HPS(PDF) 1 −0.391 0.130 −0.128
0.121 0.620 0.624

HW(image) 1 0.140 0.133
0.591 0.610

HW(PDF) 1 0.057
0.828

HW(firmagram) 1

∗ Correlation is significant at the 0.05 level (2-tailed).
∗∗ Correlation is significant at the 0.01 level (2-tailed).
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Table 8. Pearson’s r correlation matrix for the Central moments (raw data) of three studied
soils.

Chernozem Solonetz Clay

Chernozem 1 0.99972∗∗ 0.99999∗∗

0.00028 0.00001

Solonetz 1 0.99983∗∗

0.00017

Clay 1

∗ Correlation is significant at the 0.05 level (2-tailed).
∗∗ Correlation is significant at the 0.01 level (2-tailed).
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Table 9. Student t-test for the Central moments (raw data) of three compared soils.

Paired differences
Mean SD SEM 95% confidence t d f Sig.

interval of the (2-tailed)
difference
Lower Upper

Chernozem-
Solonetz 252.983 517.124 258.562 −569.876 1075.842 0.978 3 0.400

Chernozem-
Clay −30.430 46.664 23.332 −104.682 43.822 −1.304 3 0.283

Solonetz-
Clay −283.413 562.444 281.222 −1178.387 611.560 −1.008 3 0.388

∗ The differences are significant at the 0.05 level (2-tailed).
∗∗ The differences are significant at the 0.01 level (2-tailed).
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Table 10. Pearson’s r correlation matrix for the Central moments (fit data) of three studied
soils.

ChernozemFit SolonetzFit ClayFit

ChernozemFit 1 0.99999∗∗ 0.99980∗∗

0.00001 0.00020

SolonetzFit 1 0.99987∗∗

0.00013

ClayFit 1

∗ Correlation is significant at the 0.05 level (2-tailed).
∗∗ Correlation is significant at the 0.01 level (2-tailed).
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Table 11. Student t-test for the Central moments (fit data) of three studied soils.

Paired differences
Mean SD SEM 95% confidence t d f Sig.

interval of the (2-tailed)
difference
Lower Upper

ChernozemFit-
SolonetzFit −50.388 86.680 43.340 −188.316 87.540 −1.163 3 0.329

ChernozemFit-
ClayFit 190.321 391.331 195.665 −432.374 813.016 0.973 3 0.402

SolonetzFit-
ClayFit 240.709 477.327 238.663 −518.824 1000.242 1.009 3 0.387

∗ The differences are significant at the 0.05 level (2-tailed).
∗∗ The differences are significant at the 0.01 level (2-tailed).
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METROLOGY

SCIENTIFIC INDUSTRIAL LEGALSCIENTIFIC  INDUSTRIAL LEGAL 
METROLOGY METROLOGY METROLOGY

DIMENSIONAL
METROLOGY

Concerns with the measurement of 
length and its application to pattern 
analysis and feature size control 

(Heilmann et al., 2004).

The study of surface geometry, also 
called surface texture or surface

Refers to the study of the effects of 
data computational analysis on the

The pass from roughness 
sensation to quantitative

SURFACE
METROLOGY

COMPUTATIONAL
METROLOGY

FRACTAL
METROLOGY

called surface texture or surface 
roughness. Measure and analyze the 

surface texture in order to 
understand how the texture is 

influenced by history and behavior
(SML, 2008) .

data computational analysis on the 
performance of measurement 

systems. 
(Hopp, 1993).

sensation to quantitative  
measure, selection of the 
corresponding reference 

measuring tools and uncertainty 
assignment.

NANO 
METROLOGY

CHEMICAL 
METROLOGY

OPTICAL 
METROLOGY

BIO 
METROLOGY

BAYES 
METROLOGY

STATISTICAL 
METROLOGY

d f d Th di i li I thTh di i li C ith Identify systematic and 
random sources of

interconnect  structure 
variation.  Requires a 

large number of 
measurements

in order to extract the

The discipline 
concerning  to 

measurement with 
light. Such 

measurements can 
either  quantify the 
target properties of

Is the
discipline of 

measurement at the 
nanoscale level. 

Includes length or size
measurements as well 
as measurement of

The discipline
concerned with studying 
and providing the basis 
for comparability of 

chemical measurements
and their traceability

(Marschal et al 2002)

This discipline is applied 
to the metrological 

problems in four specific 
areas: traceability, 
interlaboratory
comparisons, 

calibration and part

Concerns with 
biologically based 

measurements and the 
development of 

relevant standards and 
reference materials 
(Partis et al 2002) in order to  extract  the 

noise or wrong sources 
to reduce errors in final 

results 
(Chang et al., 1995).

target properties of 
light itself  (Paschota, 

2009).

as measurement of 
force, mass, electrical 
and other properties 
(Lojkowski et al.,  

2006).

(Marschal et al., 2002). calibration, and part 
inspection

(Eberhardt et al.,  2001).

(Partis et al., 2002).

Fig. 1. Metrology division in sub-disciplines.
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MEASUREMENT FUNCTION: 
WEIERSTRASS-MANDELBROT

UNCERTAINTY OF H DATA
(CENTRAL MOMENTS OF GRAY DISTRIBUTION )(CENTRAL  MOMENTS OF GRAY DISTRIBUTION )

PDF FIRMAGRAM HISTOGRAMPDFFIRMAGRAM HISTOGRAM

FRACTAL
DIMENSION 

HURST 
EXPONENT 

(H)

MEASURAND:
SCALE

INVARIANT
ROUGHNESS

FRACTAL

MEASUREMENT TECNIQUES FOR:                
SELF-AFFINE SETS

(R/S, POWER SPECTRUM, 
WAVELETS)

MEASUREMENT TECNIQUES FOR: 
SELF-SIMILAR SETS

(BOX COUNTING)

METROLOGY

MULTISCALE AND
MULTITEMPORAL

DATA BANK (RAW DATA)

TIME
SERIES

SIGNALS

( )

IMAGES

Fig. 2. Hierarchically organized Fractal Metrology construction.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Benoit (Version 1.3) outputs of the compared methods: R/S analysis (b), wavelets (d)
and box counting (e) applied to images of the Chernozem (a), Solonetz (c) and Clay (e) visual-
izing the details of each procedure.
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(A) (a) (b)

Hbox
(image)

Hbox
(firmagram)

HRS
(image)

HRS
(PDF)

HRS
(firmagram)

HPS
(image)

HPS
(PDF)

HW
(image)

HW
(PDF)

HW
(firmagram)

0.083 0.075 0.021 0.25 0.349 0.27 0.344 0.478 0.564 0.197

(c)

Fit I t (d)(f)N/A Fit Input
Function ########## N/A
Shift N/A N/A
a1 1.16640218 N/A
-a2 0.79032083 N/A
min 0.99247841 N/A
max 255 N/A
N/A N/A N/A
Left X 25.1 25.1
Left P 5 00% 4 27%

(d)(f)

Left P 5.00% 4.27%
Right X 250.1 250.1
Right P 95.00% 97.55%
Diff. X 225.0715 225.0715
Diff. P 90.00% 93.28%
Minimum 0.99248 1
Maximum 255 255
Mean 152.41 150.8
Mode 255 245.00 [est]
Median 161.95 156

(e)

Median
Std. Deviation 72.483 75.216
Variance 5253.82 5657.43
Skewness -0.3405 -0.2115
Kurtosis 1.9283 1.6916

Sbox
(image)

Sbox
(firmagram)

SRS 
(image)

SRS 
(PDF)

SRS
(firmagram)

SPS 
(imagen)

SPS 
(PDF)

SPS
(firmagram)

0.017 0.002 0.373 0.003 0.115 160194 17.8 57078.05

(g)

Fig. 4. Firmagrams (Ab, Bb, Cb) extracted from the micromorphological images of three stud-
ied soils: Chernozem (Aa); Solonetz (Ba) and Clay (Ca), with contrasting structural patterns.
The roughness values expressed in terms of Hurst (H) exponent (Ac, Bc, Cc) and their stan-
dard deviation (Ag, Bg, Cg) for the compared techniques. The distributions of gray intensities
(Ad, Bd, Cd) are identified as visual singularities of image: PDF (Ad, Bd, Cd). These differ-
ences are detectable by eye when the graphs of data are fitted to the most probable theoretical
distribution by software @Risk (Ae, Be, Ce), and with the central moments calculated by the
same software (Af, Bf, Cf).
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(B) (a) (b)

Hbox
(image)

Hbox
(firmagram)

HRS
(image)

HRS
(PDF)

HRS
(firmagram)

HPS
(image)

HPS
(PDF)

HW
(image)

HW
(PDF)

HW
(firmagram)

0.107 0.092 0.035 0.426 0.199 0.231 0.47 0.161 0.209 0.464

(c)

Fit I t (d)N/A Fit Input
Function ########## N/A
Shift N/A N/A
a1 2.09339997 N/A
-a2 1.62733436 N/A
min 0.93896285 N/A
max 251.107105 N/A
N/A N/A N/A
Left X 43.7 43.7
Left P 5 00% 4 34%

(d)(f)

Left P 5.00% 4.34%
Right X 229.3 229.3
Right P 95.00% 93.27%
Diff. X 185.5623 185.5623
Diff. P 90.00% 88.93%
Minimum 0.93896 1
Maximum 251.11 251
Mean 141.69 140.93
Mode 159.9 240.00 [est]
Median 144.76 140

(e)

Median
Std. Deviation 57.117 56.767
Variance 3262.32 3222.4
Skewness -0.1918 -0.062
Kurtosis 2.1542 2.1802

Sbox
(image)

Sbox
(firmagram)

SRS 
(image)

SRS 
(PDF)

SRS
(firmagram)

SPS 
(imagen)

SPS 
(PDF)

SPS
(firmagram)

0.015 0.006 0.294 0.005 0.1 147173 11.5 34694.45

(g)

Fig. 4. Continued.
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(C) (a) (b)

Hbox
(image)

Hbox
(firmagram)

HRS
(image)

HRS
(PDF)

HRS
(firmagram)

HPS
(image)

HPS
(PDF)

HW
(image)

HW
(PDF)

HW
(firmagram)

0.094 0.156 0.025 0.508 0.088 0.126 0.276 0.526 0.601 0.724

(c)

Fit I t (d)(f)N/A Fit Input
Function ########## N/A
Shift N/A N/A
a1 2.81835131 N/A
-a2 246 N/A
min 253.07713 N/A
max N/A N/A
N/A N/A N/A
Left X 58 58
Left P 5 00% 8 67%

(d)(f)

Left P 5.00% 8.67%
Right X 243.3 243.3
Right P 95.00% 94.03%
Diff. X 185.2857 185.2857
Diff. P 90.00% 85.36%
Minimum 2.8184 15
Maximum 253.08 253
Mean 167.3 176.84
Mode 246 240.00 [est]
Median 177.26 194

(e)

Median
Std. Deviation 58.17 62.203
Variance 3383.8 3869.12
Skewness -0.5641 -0.9822
Kurtosis 2.4 2.986

Sbox
(image)

Sbox
(firmagram)

SRS 
(image)

SRS 
(PDF)

SRS
(firmagram)

SPS 
(imagen)

SPS 
(PDF)

SPS
(firmagram)

0.01 0.002 .493 .004 .065 155004.67 4.3 32958.29

(g)

Fig. 4. Continued.
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