Supplementary Information ## Supplementary Text S1. Monte Carlo simulations and derivation of probability density functions. In order to avoid random event sampling during the Monte Carlo (MC) simulations, the ranges for the end-member values were restricted to -1000 to 150 % for Δ^{14} C and -40 to 0 % for δ^{13} C. Additional runs were performed with narrower ranges, resulting in small changes in the standard deviations, but only very minimal changes in the calculated mean values. This suggests that the current range (-1000 to 150 % for Δ^{14} C and -40 to 0 % for δ^{13} C) does not impose any bias on the calculated distribution functions (probability density functions). This observation reflects the small numerical spread of the distributions compared to the allowed range. We tested the repeatability and predictability for the MC calculations. When repeating a given calculation at least 5 times the variation in the calculated mean is typically less than 0.3%. This value is much less than the standard deviations calculated from the probability density functions (Table S1). This shows that the current calculations have a high precision and that the calculated standard deviations are due to the numerical spread of the end-member values. In order to test the predictability of the method, calculations were run where the input data $(\delta^{I3}C_{sample})$ and $\Delta^{I4}C_{sample}$ in Eq. (2) and (3)) were set to the mean end-member values for the different sources: riverine, erosion and marine (Table S1). These calculations show that the marine source has the best repeatability (94%) followed by erosion (83%) and riverine (76%). These values are influenced by both the mean and the standard deviation of the end-member values. The reason that 100% repeatability is not obtained is simply because the standard deviations of the end-member distributions are not equal to zero. The high repeatability for marine samples is mainly due the small standard deviations for the end-members. Even though the standard deviation for Δ^{14} C in erosion is much larger (201‰ on total range of 1150‰, gives 17%) than for riverine sources (68‰ on total range of 1150‰, gives 6%) the repeatability for erosion is higher. This can be explained by the separation of the mean value for erosion from the marine and riverine values. It is interesting to note that the standard deviations of the repeatability calculations (0.03 - 0.11) are generally lower compared to the values obtained for the field samples (0.07 - 0.15). This suggests that there is some numerical ambiguity in the field samples, which can be explained simply by the fact that they are derived from mixed sources and as such are partially numerically overlapping. ## Calculating statistical parameters from the probability density functions The mean (μ) and standard deviation (σ) were calculated from the probability density functions $(p(i), \text{ where } \sum_{i=1}^{N} p(i) = 1)$ according to: $$\mu = \sum_{i=1}^{N} i p(i)$$ $$\sigma = \sqrt{\sum_{i=1}^{N} (i - \mu)^2 p(i)}$$ where N is the bin size in the histograms (N = 256). **Supplementary Table S1** Statistical parameters for repeatability calculated from the distribution functions using the mean end-member source values as input data (given as mean±standard deviation). | source | Δ^{14} C | δ^{13} C (‰) | riverine | erosion | marine | |----------|-----------------|---------------------|---------------|-----------------|-----------------| | riverine | -296 | -29.3 | 0.76±0.11 | 0.12±0.09 | 0.11±0.07 | | erosion | -788 | -25.8 | 0.11±0.07 | 0.83 ± 0.06 | 0.07 ± 0.05 | | marine | 25 | -21.0 | 0.04 ± 0.03 | 0.02 ± 0.02 | 0.94 ± 0.03 | **Supplementary Table S2**. Concentrations (μ g/gOC) of *n*-alkanes and homohopanes in surface sediments and surface water suspended particulate matter (n.d. is not detected). | <i>n</i> -alkanes | | | | Surface s | sediments | | | | | Surface particulate matter | | | | | | |--------------------------------------|------|-------|-----|-----------|-----------|------|------|------|------|----------------------------|------|------|------|--|--| | | 34B | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 34B | 35 | 37 | 39 | 41 | | | | 14 | 0.86 | 0.032 | 7.4 | 4.6 | 3.8 | 0.75 | 0.99 | 0.33 | n.d. | n.d. | n.d. | n.d. | n.d. | | | | 15 | 0.82 | 0.16 | 5.5 | 2.2 | 2.8 | 1.8 | 1.1 | 1.0 | n.d. | n.d. | n.d. | n.d. | 0.85 | | | | 16 | 2.1 | 0.90 | 30 | 16 | 14 | 10 | 6.8 | 5.0 | n.d. | 5.6 | n.d. | 2.1 | 6.3 | | | | 17 | 2.6 | 2.0 | 34 | 5.8 | 7.5 | 19 | 7.6 | 7.3 | 41 | 10 | 4.4 | 2.0 | 8.5 | | | | 18 | 4.2 | 3.7 | 41 | 21 | 8.9 | 20 | 11 | 4.9 | 24 | 23 | 6.0 | n.d. | n.d. | | | | 19 | 11 | 4.7 | 25 | 11 | 7.4 | 20 | 8.4 | 6.5 | 16 | 23 | 3.7 | 6.0 | 9.3 | | | | 20 | 11 | 7.5 | 39 | 23 | 11 | 24 | 12 | 18 | 31 | 44 | 4.9 | 6.1 | 21 | | | | 21 | 42 | 20 | 97 | 50 | 60 | 73 | 25 | 56 | 52 | 28 | 4.3 | 17 | 20 | | | | 22 | 30 | 23 | 100 | 47 | 34 | 48 | 23 | 48 | 41 | 30 | 9.0 | 8.5 | 21 | | | | 23 | 120 | 61 | 250 | 130 | 90 | 84 | 58 | 92 | 97 | 39 | 15 | 10 | 41 | | | | 24 | 38 | 36 | 170 | 74 | 42 | 36 | 30 | 30 | 44 | 33 | 19 | 7.8 | 29 | | | | 25 | 170 | 86 | 390 | 200 | 140 | 97 | 91 | 77 | 120 | 53 | 31 | 13 | 65 | | | | 26 | 28 | 23 | 100 | 57 | 31 | 28 | 30 | 20 | 46 | 38 | 43 | 13 | 46 | | | | 27 | 300 | 120 | 500 | 250 | 170 | 110 | 120 | 90 | 66 | 35 | 18 | 17 | 48 | | | | 28 | 24 | 16 | 68 | 34 | 22 | 18 | 22 | 14 | n.d. | 8.1 | 7.3 | 14 | 15 | | | | 29 | 210 | 110 | 470 | 210 | 170 | 100 | 110 | 81 | 23 | 14 | 15 | 20 | 42 | | | | 30 | 8.0 | 7.1 | 36 | 22 | 13 | 9.7 | 14 | 8.2 | n.d. | 10 | 30 | n.d. | n.d. | | | | 31 | 190 | 130 | 580 | 250 | 170 | 110 | 130 | 91 | n.d. | 17 | 12 | 23 | 53 | | | | 32 | 4.5 | 4.3 | 17 | 11 | 7.1 | 4.8 | 6.2 | 3.7 | n.d. | n.d. | n.d. | n.d. | n.d. | | | | 33 | 62 | 47 | 170 | 120 | 53 | 37 | 44 | 35 | n.d. | n.d. | n.d. | n.d. | n.d. | | | | $\beta\beta$ - C_{29} hopane | 4.0 | 4.0 | 19 | 15 | 14 | 14 | 20 | 13 | n.d. | n.d. | n.d. | n.d. | n.d. | | | | $\beta\beta$ -C ₃₀ hopane | 11 | 5.5 | 14 | 13 | 12 | 9.3 | 30 | 19 | n.d. | n.d. | n.d. | n.d. | n.d. | | | | $\beta\beta$ -C ₃₁ hopane | 4.0 | 4.3 | 22 | 14 | 13 | 13 | 20 | 11 | n.d. | n.d. | n.d. | n.d. | n.d. | | | **Supplementary Table S3**. Concentrations ($\mu g/gOC$) of *n*-alkanoic acids in surface sediments and surface water suspended particulate matter (n.d. is not detected). | <i>n</i> -alkanoic acids | | | Surf | ace sedime | nts | | | | Surface particulate matter | | | | | | |--------------------------|-----|-----|------|------------|------|-------|------|------|----------------------------|-------|------|------|-------|--| | | 34B | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 34B | 35 | 37 | 39 | 41 | | | 12 | 6.5 | 12 | 48 | 74 | 190 | 300 | 31 | 70 | 120 | 100 | 95 | 86 | 140 | | | 13 | 2.3 | 3.9 | 5.3 | 23 | 40 | 63 | 8.8 | 16 | 96 | 41 | 71 | 29 | 34 | | | 14 | 66 | 320 | 170 | 1600 | 930 | 2200 | 450 | 670 | 600 | 5300 | 4100 | 2400 | 5700 | | | 15 | 21 | 31 | 88 | 340 | 820 | 1000 | 150 | 230 | 190 | 170 | 270 | 230 | 250 | | | 16 | 310 | 530 | 1000 | 5600 | n.d. | 11000 | n.d. | n.d. | 7600 | 13000 | 7600 | 5400 | 13000 | | | 17 | 16 | 13 | 15 | 56 | 79 | 78 | 29 | 37 | 39 | 60 | 54 | 81 | 82 | | | 18 | 170 | 120 | 120 | 540 | 630 | 830 | 220 | 180 | 860 | 1900 | 1300 | 680 | 2800 | | | 19 | 17 | 13 | 8.8 | 26 | 26 | 19 | 12 | 12 | 8.9 | 21 | 5.1 | 5.1 | 13 | | | 20 | 180 | 88 | 49 | 130 | 120 | 140 | 38 | 39 | 81 | 74 | 61 | 28 | 110 | | | 21 | 110 | 65 | 37 | 75 | 46 | 26 | 19 | 20 | 22 | 14 | 6.3 | 3.0 | 14 | | | 22 | 690 | 430 | 210 | 550 | 280 | 160 | 130 | 120 | 140 | 65 | 67 | 27 | 190 | | | 23 | 370 | 300 | 140 | 310 | 170 | 71 | 94 | 75 | 41 | 24 | 8.1 | 3.8 | 43 | | | 24 | 960 | 860 | 510 | 1400 | 660 | 320 | 460 | 370 | 140 | 84 | 33 | 28 | 180 | | | 25 | 180 | 240 | 130 | 320 | 160 | 70 | 130 | 110 | 30 | 23 | 3.8 | 4.9 | 32 | | | 26 | 520 | 650 | 400 | 1100 | 550 | 210 | 460 | 390 | 63 | 44 | 9.6 | 11 | 91 | | | 27 | 70 | 130 | 73 | 170 | 100 | 43 | 90 | 88 | 9.4 | 8.7 | 2.6 | 2.9 | 19 | | | 28 | 400 | 610 | 300 | 820 | 400 | 150 | 350 | 370 | 33 | 28 | 7.4 | 8.2 | 79 | | | 29 | 43 | 86 | 50 | 120 | 66 | 36 | 58 | 63 | n.d. | n.d. | n.d. | n.d. | 12 | | | 30 | 180 | 300 | 150 | 360 | 190 | 87 | 160 | 190 | 15 | n.d. | 5.3 | 6.8 | 39 | | | 31 | 26 | 45 | 30 | 47 | 31 | 22 | 30 | 32 | n.d. | n.d. | n.d. | n.d. | n.d. | | | 32 | 59 | 110 | 40 | 110 | 75 | 48 | 72 | 82 | n.d. | n.d. | n.d. | n.d. | n.d. | | **Supplementary Table S4.** Concentrations (μ g/gOC) of *n*-alkanols, sterols and stanols in surface sediments and surface water suspended particulate matter (n.d. is not detected). | <i>n</i> -alkanols | | | | Surface | sediment | | | Surface particulate matter | | | | | | | |--|-------|------|------|---------|----------|------|------|----------------------------|------|------|------|------|------|--| | | 34B | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 34B | 35 | 37 | 39 | 41 | | | 14 | 0.43 | 0.96 | 2.4 | 6.9 | 16 | 21 | 2.7 | 7.6 | 46 | 30 | 520 | 170 | 190 | | | 15 | 0.087 | 0.23 | 0.45 | 1.1 | 6.4 | 71 | 0.40 | 0.27 | 0.15 | n.d. | 1.4 | 2.5 | 0.89 | | | 16 | 1.3 | 2.2 | 4.6 | 13 | 24 | 39 | 5.4 | 9.7 | 78 | 38 | 570 | 139 | 200 | | | 17 | 0.33 | 0.38 | 0.54 | 0.81 | 0.62 | 2.0 | 0.60 | 0.75 | 0.32 | n.d. | 1.2 | 0.55 | 1.0 | | | 18 | 2.0 | 1.8 | 2.2 | 4.4 | 2.8 | 3.7 | 2.3 | 2.8 | 3.0 | 4.3 | 14 | 5.4 | 15 | | | 19 | 1.8 | 1.6 | 1.9 | 2.3 | 0.95 | 1.7 | 0.77 | 0.99 | n.d. | n.d. | 0.91 | 0.27 | 0.90 | | | 20 | 32 | 24 | 20 | 30 | 13 | 9.7 | 9.3 | 10 | 1.5 | 3.1 | 4.4 | 1.9 | 6.5 | | | 21 | 13 | 14 | 13 | 17 | 8.1 | 6.3 | 5.4 | 5.8 | 0.60 | 1.3 | 1.5 | 0.63 | 2.4 | | | 22 | 94 | 33 | 60 | 75 | 47 | 43 | 35 | 48 | 3.2 | 5.5 | 7.5 | 6.2 | 14 | | | 23 | 12 | 16 | 17 | 18 | 9.8 | 7.9 | 7.9 | 10 | 0.51 | n.d. | 0.98 | 0.66 | 2.4 | | | 24 | 46 | 39 | 47 | 47 | 26 | 20 | 23 | 35 | 1.1 | 1.0 | 2.8 | 1.4 | 8.1 | | | 25 | 5.4 | 8.3 | 12 | 12 | 5.8 | 4.4 | 16 | 6.7 | 0.24 | n.d. | 0.76 | 0.28 | 1.7 | | | 26 | 74 | 28 | 100 | 77 | 55 | 35 | 39 | 59 | 2.0 | n.d. | 4.7 | 2.6 | 20 | | | 27 | 3.5 | 5.1 | 8.2 | 7.7 | 4.1 | 3.0 | 6.0 | 5.3 | n.d. | n.d. | n.d. | n.d. | 0.88 | | | 28 | 46 | 53 | 91 | 71 | 45 | 34 | 47 | 74 | 2.5 | n.d. | 11 | 5.7 | 16 | | | 29 | 1.4 | 1.9 | 3.5 | 3.1 | 1.4 | 1.3 | 1.5 | 2.3 | n.d. | n.d. | n.d. | n.d. | n.d. | | | 30 | 6.7 | 8.7 | 14 | 12 | 6.0 | 4.3 | 5.8 | 8.4 | n.d. | n.d. | n.d. | n.d. | n.d. | | | 31 | 0.55 | 0.84 | 1.7 | 0.85 | 0.59 | 0.50 | 0.82 | 0.99 | n.d. | n.d. | n.d. | n.d. | n.d. | | | 32 | 1.5 | 2.3 | 4.1 | 3.2 | 1.8 | 1.8 | 3.4 | 3.1 | n.d. | n.d. | n.d. | n.d. | n.d. | | | sterols and stanols | | | | | | | | | | | | | | | | asterosterol ^a | 0.68 | 1.9 | 2.6 | 4.5 | 5.7 | 8.4 | 6.6 | 2.3 | 0.76 | 820 | 320 | 110 | 230 | | | cis-22-dehydrocholesterol ^b | 0.28 | 0.35 | 1.2 | 0.73 | 1.5 | 1.4 | n.d. | 1.3 | n.d. | 50 | 140 | 76 | 120 | | | trans-22-dehydrocholesterol ^c | 1.6 | 3.1 | 2.2 | 5.6 | 6.3 | 10 | 4.1 | 4.7 | 1.5 | 3200 | 160 | 86 | 79 | | | cholesterol ^d | 21 | 23 | 11 | 19 | 24 | 21 | 31 | 17 | 3.0 | 1900 | 410 | 290 | 170 | | | brassicasterol ^e | 4.8 | 8.2 | 5.1 | 15 | 38 | 53 | 20 | 13 | 2.9 | 4600 | 240 | 55 | 110 | | | 24-methylenecholesterol ^f | 1.9 | 3.7 | 4.3 | 10 | 17 | 17 | 4.6 | 11 | 1.5 | 560 | 190 | 200 | 58 | | | campesterolg | 5.8 | 5.7 | 12 | 17 | 48 | 25 | 21 | 39 | 0.30 | 130 | 18 | n.d. | n.d. | | | stigmasterol ^h | 5.8 | 6.3 | 3.3 | 5.6 | 6.6 | 5.6 | 5.0 | 7.2 | 0.56 | 150 | 18 | 9.2 | 8.5 | |----------------------------|------|------|------|------|-----|-----|-----|-----|------|------|------|------|------| | β-sitosterol ⁱ | 73 | 31 | 10 | 23 | 39 | 35 | 13 | 22 | 1.3 | n.d. | 190 | n.d. | 75 | | isofucosterol ^j | n.d. | n.d. | n.d. | n.d. | 8.4 | 7.5 | 1.2 | 6.3 | 1.2 | 410 | 100 | n.d. | 67 | | dinosterol ^k | 0.28 | 0.77 | 0.53 | 0.95 | 2.0 | 1.4 | 1.9 | 2.7 | n.d. | n.d. | 11 | 7.1 | 6.5 | | cholestanol ¹ | 1.5 | 2.8 | 1.9 | 3.9 | 9.9 | 3.2 | 4.7 | 19 | 0.11 | 41 | 17 | 15 | 9.8 | | campestanol ^m | 1.3 | 1.2 | 1.5 | 5.0 | 17 | 22 | 9.5 | 14 | n.d. | n.d. | n.d. | n.d. | n.d. | | stigmastanol ⁿ | 9.6 | 5.8 | 2.6 | 6.4 | 6.9 | 8.3 | 4.3 | 6.5 | n.d. | n.d. | n.d. | n.d. | n.d. | IUPAC names sterols and stanols: a 24-nor-5α-cholesta-7,trans-22-dien-3β-ol, b cis-(22E)-cholesta-5,22-dien-3β-ol, c trans-(22E)-cholesta-5,22-dien-3β-ol, c trans-(22E)-cholesta-5,22-dien-3β-ol, c campest-5-en-3β-ol, b (22E)-stigmasta-5,22-dien-3β-ol, i stigmast-5-en-3β-ol, i (24Z)-stigmasta-5,24(24')-dien-3β-ol, k 4,23,24-trimethyl-5α-cholest-22-en-3β-ol, i 5α-cholestane-3β-ol, m 24-Methyl-5α-cholestan-3β-ol Supplementary Figure S1. Satellite images (from www.visibleearth.nasa.gov) illustrating the ice conditions in the Kolyma coastal region in early summer. (A) Land-fast ice is still present at the mouth of the delta. The brown color of the ice likely reflects suspended and bottom sediments from coastally eroded material (visible as turbidity clouds on Fig. 1B) that are incorporated in the sea ice during autumn freeze-up. This sediment-laden sea ice can be transported over long distances; (B) and (C) show the development of the Kolyma River plume during freshet, with part of the fluvial material flooding on top of the ice cover in the East Siberian Sea.