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Abstract

The distribution of dissolved CH4 in the Southern Ocean at 140◦ E was measured dur-
ing the austral summer. Surface CH4 was supersaturated on average, and the calcu-
lated mean sea-air flux rate was 0.32 µmol m−2 d−1. The vertical distributions exhibited
a CH4 maximum at approximately 125 m (∆CH4, 2.94 nM) below the chlorophyll-rich5

layer, suggesting a relationship between CH4 production and plankton dynamics in this
area. CH4 oxidation and ocean movement characteristics in the deep layer led to the
enrichment and fluctuation of δ13CCH4

. We estimated the influence of Southern Ocean
CH4, a source of isotopically heavy CH4 to the atmosphere, on the global CH4 budget
to be approximately 0.19 Gg d−1.10

1 Introduction

Considerable attention has recently been focused on biogenic trace gases in ecosys-
tems because they include a significant amount of greenhouse gases. Methane (CH4)
is an effective greenhouse gas that is approximately 20 times more effective in radiative
forcing than CO2 on a per mole basis and contributes significantly to global warming15

(Schneider, 1989). The atmospheric concentration of CH4 is currently increasing faster
than that of other biogenic greenhouse gases (Pearman and Fraser, 1988; Bouwman,
1990). Each year, 50 million tons of CH4 are added to the atmosphere, resulting in a rel-
ative annual increase of more than 1% (Bouwman, 1990). The primary sources of CH4
include wetlands, paddy fields, intestinal fermentation, and pyrolysis of organic matter,20

i.e., biomass burning (Cicerone and Oremland, 1988). However, methane produced
in marine environments also contributes to atmospheric greenhouse gas concentra-
tions and organic carbon cycle pathways. Furthermore, the isotopic signature of CH4
is recognized as providing constraints on relative source strength and information on
reaction dynamics concerning relevant formation, destruction, and biological pathways.25
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The Southern Ocean, one of the most productive water bodies in the world, has some
characteristics unique among the world’s oceans, i.e., the near-circular symmetry of
most of its physical and chemical characteristics; the immense expanse of cold surface
water, which is globally by far the largest; and the most pronounced seasonal variation
in sea surface temperature of any comparable ocean basin (Lutjeharms, 1990). The5

temporal and spatial distribution of these physical and chemical variables should also
be reflected in the distribution patterns of biological processes. Here we describe the
results of isotopic studies of dissolved CH4 in the Southern Ocean at 140◦ E to elucidate
the origins of CH4 in the ocean and to estimate its CH4 contribution to the atmosphere.

2 Materials and methods10

2.1 Study sites and sampling

Samples were collected during the 43rd Japanese Antarctic Research Expedition
(JARE-43), 2002 Marine Science Cruise on the R/V Tangaroa from 6 February to
7 March 2002. The purpose of the expedition was to study the biogeochemical cycles
and biological processes of the Southern Ocean as they relate to global environmental15

issues. The production and consumption of dissolved CH4 in Southern Ocean ecosys-
tems were investigated by collecting seawater samples at stations 1 (open water), 5
(marginal ice zone), and 8 (previous ice zone; Fig. 1). Water samples were collected
at the indicated depths using a CTD water sampler (SBE 32 24x10-L Carousel Water
Sampler). For CH4 analyses, water samples were put in 125-ml glass vials and ster-20

ilized with mercury chloride (1 ml of saturated HgCl2 solution per vial). The vials were
then sealed with a butyl-rubber septum and an aluminum cap, taking care to avoid
bubble formation, and stored at 4 ◦C in the laboratory until analysis.
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2.2 Chemical analysis

Salinity and temperature were recorded using a CTD sampler (SBE 911plus). Dis-
solved oxygen was measured with a dissolved oxygen auto-titrator based on the
Scripps Institute of Oceanography design.

2.3 Dissolved CH4 and carbon isotope analysis5

In the laboratory, water samples were transferred to a stripping chamber using helium
gas replacement in the sample vials. After H2O and CO2 were removed in a magne-
sium perchlorate [Mg(ClO4)2] and Ascarite (sodium hydroxide-coated silica) column,
CH4 was collected in a U-shaped tube filled with activated charcoal (AC1) at liquid ni-
trogen temperature. At the end of the quantitative extraction of CH4, the U-tube was10

heated to room temperature (25 ◦C) by removing a liquid nitrogen trap. The desorbed
gas from the AC1 was separated in a molecular sieve column. The purified CH4 fraction
was collected again in an activated charcoal (AC2) tube at liquid nitrogen temperature.
The AC2 was then heated to room temperature by removal of the liquid nitrogen. The
desorbed CH4 was cryofocused before being introduced into the system GC and then15

separated in a PoraPlot Q column (25 m) at 30 ◦C. The GC was connected to a combus-
tion furnace made of quartz (0.6 mm×15 cm) filled with CuO at 960 ◦C. Methane was
then combusted into CO2 and H2O, and the produced H2O was removed by diffusion
through a Nafion membrane tube. He-carrier gas was then partially separated using
a helium separator, and CO2 was introduced into the isotope ratio mass spectrometer20

(Finnigan, MAT 252). The carbon isotopic composition results were expressed as δ13C
values, defined as:

δ13C (‰) =
[(
RSAMPLE/RSTANDARD

)
− 1

]
× 1000, (1)

where RSAMPLE and RSTANDARD are the isotope ratios (13C/12C) for samples and stan-
dards, respectively. Carbon isotope ratios of dissolved CH4 were expressed in ‰ de-25

viations from PeeDee belemnite (PDB) carbonate. The δ13C values were reproducible
7211
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to within ±0.3‰. The atmospheric equilibrium concentration of CH4 was calculated
from in situ water temperatures and the atmospheric mixing ratio (1.7 ppmv; Quay et
al., 1991; Holmes et al., 2000) following the methods of Yamamoto et al. (1976).

3 Results and discussion

Methane concentrations and isotope ratio profiles in the Southern Ocean water column5

during the austral summer (Fig. 2) revealed that methane distribution and production
were related to physical and biological properties in the area. CH4 concentrations and
δ13C values of the dissolved CH4 in surface water were almost in equilibrium with the
atmosphere, with mean excess CH4 (∆CH4) and δ13C at 0.06 nM (or 102% saturation)
and −46.3‰, respectively. The ∆CH4 maximum (2.94 nM or about 200% saturation)10

was observed in the subsurface (at a depth of approximately 125 m) and decreased
to a constant value below 1000 m at station 1. The δ13C value at this station was
generally enriched below 200 m, in contrast to the CH4 concentration. However, small
enrichments in δ13C were also observed in the CH4 maximum layer. While CH4 at sta-
tion 5 exhibited no subsurface maximum, the CH4 concentration gradually decreased15

with increased δ13C from the surface and reached a constant value below 500 m. At
station 8, the CH4 concentration and δ13C value remained close to atmospheric equi-
librium from the surface to the deep region.

As CH4 is produced and/or oxidized by bacteria and also lost to the atmosphere
through gas exchange, the shape of a vertical profile must be determined by the bal-20

ance between in situ biological production and consumption and physical processes of
diffusion, advection, and gas exchange. Thus, dissolved CH4 and its isotope ratio could
be categorized into three parts: surface, subsurface (including the CH4 maximum), and
deeper regions.

At the surface where gas exchange occurs, the CH4 concentration is governed by25

physical factors, mainly temperature and wind, with gas saturation values up to about
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5% above or below saturation (Bieri et al., 1966, 1968). The surface equilibrium of CH4
in the Southern Ocean could be caused by high wind speeds, given that temperatures
in the area are quite stable during the austral summer. The δ13C values of surface
dissolved CH4 at all stations were enriched by 0.2–1.2‰ relative to the atmospheric
value (−47 to −47.4‰; Holmes et al., 2000; Stevens, 1993), possibly because of the5

kinetic fractionation factors during CH4 invasion and evasion. Fuex (1980) found that
the equilibrium fractionation (αeq) for methane was about 1.00033, a value similar to
our result and those observed in other areas (e.g., Holmes et al., 2000; Tsunogai et
al., 2000; Valentine et al., 2001). The δ13C of dissolved CH4, however, was enriched
by more than 1‰, a value greater than can be attributed to analytical error at station 110

where wind speeds were high and were expected to result in a high CH4 exchange rate
with surface water. This result suggests that the exchange of CH4 between ocean and
atmosphere and its isotopic fractionation should be treated kinetically and considered
temporally and spatially variable, as well as related to high in situ δ13C(CH4), even at
the surface.15

Given that the microbial production of CH4 cannot occur in an oxic environment
(Wolfe, 1971), it is thought that CH4 forms mostly within the reducing interiors of par-
ticles, as supported by incubation experiments (Karl and Tilbrook, 1994; Marty et al.,
1997; Owens et al., 1991). In the Southern Ocean waters surrounding Antarctica,
phytoplankton blooms fueled by nutrient-rich waters lead to the growth of vast swarms20

of krill (Euphausia superba) each summer. Consequently, settling particles, such as
fecal pellets, may be produced during the life cycle of the krill, either directly or indi-
rectly. Chlorophyll-a is the most important phytopigment and can be used as a semi-
quantitative measure of phytoplankton abundance. Hirawake et al. (2003) reported that
chlorophyll-a concentrations show clear seasonal variation with a complicated spa-25

tial distribution; concentrations were very low (<0.3 mg m−3) in October, but rapidly
increased to 1–5 mg m−3 through December near the sea-ice edge and in the open
ocean. Furthermore, these particles do not consist only of inorganic or dead organic
matter; they also host microbial communities, including bacteria, various protozoa, and
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algal cells (Fenchel et al., 2000). Therefore, such particles could be expected to include
anoxic microsites with active CH4 production (Alldredge and Cohen, 1987; Kiene, 1991;
Sieburth, 1987). Biogenic CH4 is known to be produced via microbial methanogenesis.
Major substrates for methanogenic bacteria include acetate and CO2/H2 (Cicerone and
Oremland, 1988; Whiticar et al., 1986). In the former substrate, CH4 is derived from5

the methyl group of acetate, and this process depends on the production of acetate at
anaerobic sites during decomposition of organic matter. The carbon isotope fraction-
ation factor for reduction of CO2 to CH4 has been reported for a pure culture system,
and the high fractionation factor of 1.045 was reported for wetlands rich in labile organic
matter (Games et al., 1978). The general trend that governs the variation in δ13C of10

bacterial methane has been examined through paddy soil incubation experiments. The
δ13C value of CH4 from acetate was close to that of methyl carbon in acetate (−43 to
−30‰), while that from CO2/H2 reduction was −70 to −60‰ (Sugimoto and Wada,
1993). The δ13C(CH4) value at the ∆CH4 maximum, i.e., about −43.4‰ at station 1,
suggested that the formation of CH4 in this subsurface was produced via acetate fer-15

mentation. Blair and Carter (1992) reported the δ13C value of acetate and estimated
the δ13C of CH4 derived from acetate to be −43‰ in anoxic marine sediment, which
agrees well with our results. However, the large δ13C variation in settling organic mat-
ter in the Antarctic Ocean (−26.7 to −20.5‰; Wada et al., 1987) may affect the δ13C
of CH4 produced via acetate fermentation. The oxidation of the methyl position of ac-20

etate to CO2 may also cause the isotopic fractionation of the produced CH4 (Whiticar
et al., 1986). However, the ∆CH4 maximum peak was only observed at station 1, sug-
gesting that the magnitude of CH4 production varied with abundance, distribution, and
migration of phytoplankton and zooplankton in the area.

In the deeper subsurface waters, the ∆CH4 value became negative in association25

with 13C enrichment, suggesting the oxidation of dissolved CH4 with less or without
new CH4 production. Thus, the residual, heavier δ13C CH4 should be found based
on the kinetic isotope effect during oxidation. Several researchers have demonstrated
this process with aerobic culture systems and have found that the magnitude of carbon

7214

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/7207/2010/bgd-7-7207-2010-print.pdf
http://www.biogeosciences-discuss.net/7/7207/2010/bgd-7-7207-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 7207–7225, 2010

Methane production
and consumption in
the Southern Ocean

N. Boontanon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

isotope fractionation varies from 5 to 31‰ (e.g., Barker and Fritz, 1981; Zyakun et al.,
1984). Such water column CH4 oxidation has also been observed in other areas, such
as at the ALOHA station and in the North Atlantic (Holmes et al., 2000), suggesting that
the oxidative consumption could occur normally in oxic water column environments.
Other parameters that could indicate CH4 oxidation include the preferential loss of CH45

relative to higher molecular weight hydrocarbons (Whiticar, 1999) and the systematic
shift in H isotope ratios (Coleman et al., 1981; Whiticar, 1999). Furthermore, in deep
water, at approximately 2500 m, the horizontal and vertical movements of cold water
from inshore induced by the geopotential anomaly of the strong steering of the cur-
rent by the ridge system around Antarctica (see Lutjeharms, 1990; Orsi et al., 1995)10

should affect the δ13C level of CH4. The ∆CH4 values did not decrease below 500 m
and 1000 m at stations 5 and 1, respectively, probably because of the lack of CH4 con-
sumption in deeper water (Scranton and Brewer, 1978). Also, the isotope ratio varies
with depth because of the mixing of different water masses with different histories of
CH4 input (Holmes et al., 2000). It should be noted that at station 8, located in a shallow15

water column close to shore, the strong steering of the summer current may promote
vertical homogeneity of the CH4 concentrations and isotopic compositions.

The degassing of supersaturated surface seawater could release CH4 and sources
of isotopically heavy CH4 into the earth’s atmosphere by simple diffusion and thereby
contribute to the net flux of CH4 across the sea-air interface. It is premature to quanti-20

tatively calculate the influence of the Southern Ocean on the global CH4 budget from
the present data alone; however, our results do provide some insight into the contribu-
tion of the Southern Ocean. The estimated amount of CH4 that will eventually reach
the atmosphere after transport through the unsaturated zone can be determined from
the empirical relationship between wind speed and gas transfer rate with measured25

values for wind speed, temperature, and surface concentrations of CH4, according to
the following equation (Liss and Slater, 1974):

F = KL (CS − CE), (2)
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where KL is the liquid-phase gas-transfer coefficient, CS is the gas concentration in
the surface water; and CE is the gas concentration of the solution during equilibrium
with the overlying gas phase. The liquid-phase gas-transfer coefficient, KL, used in
calculating the flux was obtained from Liss and Merlivat (1986):

KL = 2.85 V − 9.65
(

cm h−1
)
, (3)5

and Wanninkhof (1992):

KL = 0.31 V 2
(
Sc
660

)−1/2 (
cm h−1

)
, (4)

where V is wind velocity (m s−1), and Sc is the Schmidt number. The Schmidt number
for CH4 in seawater is expressed as a decreasing function of temperature (Wanninkhof,
1992):10

ScCH4
= 2039.2 − 120.31 T + 3.4209 T 2 − 0.040437 T 3 (5)

The calculated net sea-air flux of CH4 in the Southern Ocean is an average of
0.32 µmol m−2 d−1 (−0.09 to 0.74 µmol m−2 d−1), using the Liss and Merlivat (1986) and
Wanninkhof (1992) transfer coefficients. The ∆CH4 maximum observed at the base of
the mixed layer would result in a diffusive flux of CH4 into the surface layer. We also15

obtained δ13C of about −41.8‰ for the source of CH4 formation from the isotopic cor-
relation with the inverse concentration between the surface and the CH4 maximum and
estimated the vertical net flux to be about 0.26 µmol m−2d−1 from the one-dimensional
vertical mixing coefficient (Li et al., 1984) at station 1. This input accounted for about
80% of the estimated net flux of CH4 in the Southern Ocean to the atmosphere and20

suggested that CH4 was produced by in situ biological processes, diffused through the
mixed layer, and then released by sea-air exchange. The consumption loss rate of
0.01 µmol m−2 d−1, calculated from an average CH4 concentration in the upper 70 m
and an average CH4 turnover time, was negligible compared to the losses associated
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with sea-air exchange because of the long turnover time (an average of 65 yr; Jones,
1991; Ward et al., 1987). The CH4 flux in this area was much higher than that reported
for Drake Passage and the Weddell Sea during the austral summer and autumn, re-
spectively (Heeschen et al., 2004; Tilbrook and Karl, 1994); both locations showed
negative flux values (Table 1). However, positive flux values have been found in coastal5

areas with CH4 accumulation (Tilbrook and Karl, 1994). This could suggest that sea-air
flux of CH4 varies greatly in time and space depending on physical factors as well as
the magnitude of CH4 diffusion from the CH4 maximum layer. If this flux value could be
applied to the entire Southern Ocean, which has an area of about 37×1012 m2 (Peng,
1984), for the duration of the austral summer, the total CH4 flux to the atmosphere from10

this region would be 0.19 Gg d−1. The value of δ13C for the CH4 flux to the atmosphere
was calculated using the following equation from Quay et al. (1993) and Hoefs (1987):

δ13CCH4
flux (‰) =


Gαk

(pCH4[atm]Ratmαsol − pCH4[ml]Rml)
G (pCH4[atm] − pCH4[ml])

RPDB

 − 1

 × 1000, (6)

where Ratm is the 13C/12C ratio of atmospheric CH4, Rml is the 13C/12C ratio of CH4
in the mixed layer, αk is 0.9992 (Knox et al., 1992; Happell et al., 1995), αsol is15

1.00033 (Fuex, 1980), pCH4 in the methane partial pressure, δ13CCH4[atm]
is −47.0

to −47.4‰ (Quay et al., 1991; Holmes et al., 2000), and RPDB, the isotopic ratio of the
PDB standard, is 0.011237 (Craig, 1957). We determined that the average δ13C value
supplied to the atmosphere in the CH4 flux from this area was −42.7‰ (Table 1). This
contribution (approx. 0.19 Gg d−1) is a significant part of the global oceanic CH4 flux of20

5–50 Tg yr−1 (2.4–24 µmol m−2 d−1; Prather, 1995). Thus, the Southern Ocean could
be contributing 0.14–1.39% of the total oceanic flux of CH4. However, if we consider
other results from the circum-Antarctic region (Heeschen et al., 2004; Tilbrook and
Karl, 1994), the total net sea-air CH4 flux from the Southern Ocean would be about
0.15 Tg yr−1, equivalent to 0.30–3.0% of the total oceanic CH4 contribution. Moreover,25
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the δ13CCH4
flux could provide information concerning the isotopically heavy source

also entering the atmosphere (−54.2‰; Whiticar, 1993).

4 Conclusions

The distribution of CH4 and its isotopic compositions in the Southern Ocean during
the austral summer suggest that surface water CH4 concentrations are controlled by5

physical factors and ocean water movement from glacial regions. A subsurface CH4
maximum was associated with the decomposition of sinking organic matter, suggest-
ing a relationship between CH4 production and plankton dynamics in the area. CH4
oxidation and physical characteristics of water movements in the deep layer led to the
enrichment and fluctuation of δ13CCH4

. We estimated the influence of Southern Ocean10

CH4, a source of isotopically heavy CH4 to the atmosphere, on the global CH4 budget
to be about 0.19 Gg d−1.
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Table 1. Methane concentrations and δ13CCH4
and fluxes to the atmosphere from the ocean

surface. Numbers in parentheses indicate ranges in value.

Location Mixed layer [CH4] Mixed layer δ13CCH4
Sea-air flux Sea-air flux δ13CCH4

Reference
(nM) (‰) (µmol m−2 d−1) (‰)

Arabian Sea 9.25a (4.6 to 13.9) Owens et al., 1991
Caribbean Sea 0.23 (–) Ward et al., 1987
Subtropical Atlantic 0.08 (–) Scranton and Brewer, 1978
Atlantic Ocean (50◦ N–35◦ S) 0.23 (0.09 to 4.65) Conrad and Seiler, 1988
Open ocean 2.76a (2.05 to 3.46) Ehhalt, 1974
Eastern tropical North Pacific 2.30 (2.26 to 3.96) −40.7 (−46.9 to −41.5) 1.88a (0.77 to 3.0) −42.6a (−48.2 to −37.0) Sansone et al., 2001
North Atlantic 2.7a (2.4 to 3.0) −46.1a (−46.6 to −45.5) 3.0a (1.6 to 4.4) −44.0a (−45.0 to −43.0) Holmes et al., 2000

Southern Ocean

Drake Passage 2.69 (2.22 to 3.09) −0.35 (−0.77 to 0.01) Tilbrook and Karl, 1994
South Shetland Islands 3.80 (2.80 to 7.09) 1.05 (−0.41 to 5.86) Tilbrook and Karl, 1994
Bransfield Strait 3.18 (2.71 to 3.97) 0.15 (−0.54 to 1.30) Tilbrook and Karl, 1994
Weddell Sea 2.86b −46.0 (–) −0.47 (–) −54.1b (−55.8 to −52.5) Heeschen et al., 2004
Front at 173∼177◦ E 2.72 (2.10 to 3.04) Swinnerton and Lamontagne, 1974
Front at 140◦ E 3.16 (3.07 to 3.22) −46.6 (−46.7 to −46.4) 0.32 (−0.09 to 0.74) −42.7 (−47.9 to −34.8) This study

a average value from the range; b calculated value from the raw data.
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Figure 1 
 

Fig. 1. Location of sampling stations during the JARE-43 Marine Science Cruise on the
R/V Tangaroa.
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Fig. 2. Depth profiles of ∆CH4 (diamonds) and δ13CCH4
(triangles) at (a) station 1, (b) station 5,

and (c) station 8 in the Southern Ocean during the austral summer.

7225

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/7207/2010/bgd-7-7207-2010-print.pdf
http://www.biogeosciences-discuss.net/7/7207/2010/bgd-7-7207-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

