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Abstract

Given the large differences between biospheric model estimates of regional carbon
exchange, there is a need to understand and reconcile the predicted spatial variabil-
ity of fluxes across models. This paper presents a set of quantitative tools that can
be applied for comparing flux estimates in light of the inherent differences in model5

formulation. The presented methods include variogram analysis, variable selection,
and geostatistical regression. These methods are evaluated in terms of their ability
to assess and identify differences in spatial variability in flux estimates across North
America among a small subset of models, as well as differences in the environmen-
tal drivers that appear to have the greatest control over the spatial variability of pre-10

dicted fluxes. The examined models are the Simple Biosphere (SiB 3.0), Carnegie
Ames Stanford Approach (CASA), and CASA coupled with the Global Fire Emissions
Database (CASA GFEDv2), and the analyses are performed on model-predicted net
ecosystem exchange, gross primary production, and ecosystem respiration. Variogram
analysis reveals consistent seasonal differences in spatial variability among modeled15

fluxes at a 1◦×1◦ spatial resolution. However, significant differences are observed in
the overall magnitude of the carbon flux spatial variability across models, in both net
ecosystem exchange and component fluxes. Results of the variable selection and geo-
statistical regression analyses suggest fundamental differences between the models in
terms of the factors that control the spatial variability of predicted flux. For example,20

carbon flux is more strongly correlated with percent land cover in CASA GFEDv2 than
in SiB or CASA. Some of these factors can be linked back to model formulation, and
would have been difficult to identify simply by comparing net fluxes between models.
Overall, the quantitative approach presented here provides a set of tools for compar-
ing predicted grid-scale fluxes across models, a task that has historically been difficult25

unless standardized forcing data were prescribed or a detailed sensitivity analysis was
performed.
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1 Introduction

The quantification of net ecosystem exchange (NEE) and its regional variability involves
a great deal of uncertainty, due to the considerable spatial complexity of, and interac-
tions among, its individual controlling processes (Melillo et al., 1995; House et al.,
2003). This uncertainty is compounded by the fact that, at global and regional scales,5

carbon flux cannot be measured directly (Cramer et al., 1999). Yet, climate change
predictions depend on our ability to appropriately assess and model the current (and
future) behavior of carbon uptake and release across various spatial scales.

In response to this need, a number of biospheric or process-based models have
been developed to estimate the magnitude of carbon sources and sinks across re-10

gional and continental scales. These models are based on the current mechanistic
understanding of how carbon is exchanged within ecosystems. Models are typically
driven by climate data, and constrained with environmental parameters and informa-
tion about soil properties, nutrient cycling, vegetative cover, and other parameters that
influence carbon fixation and respiration (Wulder et al., 2007). Models differ, however,15

in terms of the factors considered (e.g., land-use change, disturbance events, nutrient
cycling), how processes are formulated within the model, or the type of environmental
driver data used (Knorr, 2000). This is due, in part, to the various purposes for which
the models were created (e.g., tracking carbon stocks, estimating energy and/or car-
bon fluxes, forecasting future carbon cycling behavior or vegetative cover migration).20

As a result, each model generates a unique, and sometimes significantly different spa-
tial distribution of fluxes for a given time period.

There are several approaches for evaluating biospheric models. One way to as-
sess model performance is through validation with observational data. For example,
some models are parameterized (and validated) with site-level observations from eddy-25

covariance flux towers (Baldocchi et al., 2001). However, because direct observations
of carbon flux are not available at regional or continental scales, models run over
large regions cannot be validated directly using field observations. Continental- to
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global-scale forward models can be compared with estimates from atmospheric inver-
sion models that couple measurements of CO2 concentrations with transport models
to infer surface flux distributions (e.g., Rödenbeck et al., 2003; Gurney et al., 2004;
Peters et al., 2007; Gourdji et al., 2008). However, many of these inversions use bio-
spheric model output as prior estimates of carbon flux, and, therefore, the resultant5

fluxes are not independent of biospheric model assumptions. In the absence of direct
observations, forward model inter-comparisons are a necessary first-step in assessing
model performance, and evaluating our current understanding of the terrestrial carbon
cycle system.

Model assumptions, formulation, and the environmental driver data used all have an10

impact on the magnitude and spatial distribution of model-estimated fluxes. There is
a great deal of uncertainty, therefore, when comparing fluxes among models and mak-
ing inferences about the root of their similarities and differences. In order to reduce
some of this uncertainty, several studies (Melillo et al., 1995; Heimann et al., 1998;
Cramer et al., 1999; Knorr, 2000) have compared model results after imposing a stan-15

dardized set of input driver data, thereby providing a uniform basis for comparison.
Significant effort is required, however, for organizing and conducting a formal model
intercomparison with standardized environmental driving data, spin up, and land-use
history. And, such an approach may not be feasible without sufficient resources and
access to model code and input variables. Thus, as a complement to detailed sensi-20

tivity analyses, there is a need for quantitative tools that can be applied to compare
existing, in-hand model results.

In the absence of standardized model simulations and/or detailed sensitivity analy-
ses, quantitative methods employed in model intercomparisons have traditionally relied
on the direct comparison of estimated fluxes, or on relatively simple statistics. For ex-25

ample, the use of linear correlation statistics such as the Pearson correlation coefficient
(e.g., Bondeau et al., 1999) or Spearman Rank correlations (e.g., Schloss et al., 1999)
have been used to examine the correlation of estimated fluxes to individual environ-
mental or climatic parameters such as precipitation, temperature, water availability, or
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vegetation indices. Ruimy et al. (1999) applied linear regression to examine the di-
rect dependence of NPP on light use efficiency (LUE) in several biospheric models.
Similarly, Pan et al. (1998) studied the relationship of net primary productivity (NPP)
to mean annual temperature and annual precipitation within individual biomes using
multiple linear regression.5

In these types of approaches, the influence or importance of selected environmen-
tal factors on flux is examined individually and independently, and often without taking
into account the spatial autocorrelation of fluxes. Not accounting for the spatial corre-
lation of model estimates of NEE, however, can lead to misrepresentations of inferred
relationships and their associated uncertainty (Hoeting et al., 2006). More importantly,10

linear regression of fluxes to a single environmental variable may produce erroneous
results. For example, many environmental variables exhibit a seasonal cycle similar
to NEE. When only one environmental variable is regressed against NEE, the derived
relationship may be a result of correlation in their seasonal cycles rather than a true
explanatory relationship. Therefore, the resultant regression represents a scaling pa-15

rameter (e.g., how to scale the variable to look like NEE), rather than that variable’s
relationship to flux.

Recently, some studies have applied more sophisticated statistical methods. For ex-
ample, Wulder et al. (2007) used local spatial autocorrelation to compare outputs from
multiple runs of a forest-growth model, to identify areas where there was a systematic20

sensitivity of the model to underlying changes in soil water and fertility inputs. Geo-
statistical regression and model selection approaches have been used to assess the
influence of different environmental factors on net flux observed at flux tower sites (e.g.,
Mueller et al., 2010; Yadav et al., 2010), and wavelet analysis has been used at flux
tower sites to decompose NEE into its component fluxes of gross primary production25

(GPP) and ecosystem respiration (RE) (e.g., Stoy et al., 2005, 2009). Although both of
these approaches account for autocorrelation in NEE, they deal with autocorrelation of
fluxes in time, rather than space.
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In this paper, statistical tools are applied that account for the spatial autocorrelation
in land-atmosphere carbon fluxes in order to compare flux estimates across models,
in light of inherent differences among the models, and without the need for new model
simulations. The goal of this work is to introduce a set of methods commonly used
in environmental studies to assess spatial data and correlation, and adapt them for5

use as tools for comparing model estimates of NEE and its component fluxes, gross
primary production (GPP) and ecosystem respiration (RE), within North America. We
then evaluate these methods in terms of their ability to assess the overall similarities
and differences in modeled flux, as well as identify the environmental drivers that ap-
pear to have the greatest control over the spatial variability of predicted fluxes. The10

objective of this study is not to perform a detailed intercomparison of biospheric mod-
els, but instead to assess the methods presented in terms of their ability to: (1) quantify
the degree of spatial variability or autocorrelation of modeled carbon exchange across
North America; (2) identify the environmental variables that appear most significant
in explaining the spatial variability or patterns of modeled fluxes; and (3) quantify the15

relationship between these variables and modeled flux. The methods are evaluated
using a small set of biospheric models: the Simple Biosphere Model (SiB 3.0, e.g.,
Baker et al., 2008); the Carnegie Ames Stanford Approach (CASA, e.g., Potter et al.,
1993); and CASA coupled with the Global Fire Emissions Database (CASA GFEDv2,
e.g., van der Werf et al., 2006).20

2 Methods

Geostatistical approaches have been applied to many fields in the earth and envi-
ronmental sciences, including geology, ecology, and hydrology to study spatial phe-
nomena (e.g., Chiles and Delfiner, 1999; Webster and Oliver, 2007). In studying
land-atmosphere carbon dynamics, geostatistical inversion modeling has been used25

to estimate the spatial distribution of carbon sources and sinks both globally and re-
gionally over North America (e.g., Michalak et al., 2004; Gourdji et al., 2008, 2010;

7908

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/7903/2010/bgd-7-7903-2010-print.pdf
http://www.biogeosciences-discuss.net/7/7903/2010/bgd-7-7903-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 7903–7943, 2010

An approach for
comparing regional

carbon flux estimates

D. N. Huntzinger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Mueller et al., 2008). Geostatistical regression approaches, such as the one described
here, have been used regionally to evaluate the relationship between environmental
variables (e.g., Erickson et al., 2005), and have recently been applied to evaluate the
potential controls on carbon uptake and release at flux tower sites within North America
(NA) (e.g., Mueller et al., 2010; Yadav et al., 2010).5

The approach presented here draws on the basics of geostatistical regression mod-
eling as a means to compare the spatial patterns of estimated flux from biospheric
models. Thus, the analysis includes variogram analysis of modeled NEE and its
component fluxes (GPP) and (RE), variable selection methods, and geostatistical re-
gression. Matlab code implementing the approach described here is available at10

http://puorg.engin.umich.edu.

2.1 Models

The three terrestrial biospheric models chosen for this analysis are the Simple Bio-
sphere Model (SiB 3.0), the Carnegie Ames Stanford Approach (CASA) model, and
CASA coupled with the Global Fire Emissions Database (CASA GFEDv2) (Table 1).15

These models are used to evaluate the information that can be gained by applying
the proposed methods. The models chosen as examples in this study differ in how
they represent the processes controlling carbon exchange between the land and atmo-
sphere, and were selected because (1) they have been widely applied across a variety
of regions and (2) are frequently used as prior estimates in inverse modeling studies20

(e.g., Gurney et al., 2004; Peters et al., 2007; Wang et al., 2007). There is growing
awareness of the strong influence of prior estimates in inversion results (Rödenbeck
et al., 2003; Michalak et al., 2004; Mueller et al., 2008). Therefore, understanding how
forward model estimates of NEE, GPP, and RE vary spatially and what drives this vari-
ability is of great importance, not only for forward model intercomparisons, but also for25

atmospheric inversion studies.
Key features of the models are summarized in Table 1, along with information about

the driving environmental variables used in each model and how photosynthesis,
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respiration and water availability are represented. Monthly NEE, GPP, and RE are com-
pared among the models for 2002 over the domain of 10◦ to 70◦ N and 50◦ to 170◦ W, at
a spatial resolution of 1◦×1◦ (approximately 110 km by 50 km; the distance per degree
change in longitude varies across the domain).

2.1.1 Simple Biosphere Model (SiB 3.0)5

SiB (Sellers et al., 1986, 1996a,b) is a biophysically-based, land-surface model in which
the exchange of CO2 is linked to exchanges of water and heat at the vegetative land-
surface. Like other land-surface parameterizations, SiB 3.0 (Baker et al., 2008) is
formulated based on the theory that the physiological controls operating at the plant
level seek to maximize photosynthesis while minimizing water loss (Baker et al., 2003).10

Thus, photosynthetic carbon fixation is based on enzyme kinetics (Farquhar et al.,
1980), and linked to stomatal conductance through the Ball-Berry equation (Collatz
et al., 1991). Soil respiration is calculated based on temperature and soil moisture in
each soil layer. Overall, ecosystem respiration is forced within the model to balance
annually with net uptake (Denning et al., 1996; Baker et al., 2003). SiB 3.0, hereafter15

referred to as SiB, specifies spatial heterogeneity in some of its canopy properties
through the use of satellite-derived vegetative indices such as leaf area index (LAI)
and absorbed fraction of photosynthetically active radiation (PAR), rather than using
published values of vegetation and soil parameters tied solely to vegetation type (Baker
et al., 2003). SiB has been coupled with the Regional Atmospheric Modeling System20

(e.g., SiB-RAMS) in regional inversion and error estimation studies (Denning et al.,
2003; Nicholls et al., 2004; Zupanski et al., 2007; Lokupitiya et al., 2008).

2.1.2 Carnegie Ames Stanford Approach (CASA)

CASA is a biogeochemical model that uses a system of first-order linear differential
equations to represent the flow of carbon between various pools, and track the long-25

term change in terrestrial carbon stocks on a monthly time-step (Potter et al., 1993;
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Randerson et al., 1997; Schaefer et al., 2008). CASA tracks photosynthesis using
a simple light-use efficiency model, where maximum light-use efficiency is modified by
factors such as temperature, water availability, and litter substrate quality. Heterotrophic
(i.e., soil) respiration is simulated within a number of soil-organic carbon pools; whereas
autotrophic respiration is assumed a constant fraction of GPP. The model’s soil mois-5

ture submodel is used to regulate both plant production and respiration. This version of
CASA is used as a priori information in, among other studies, the TransCom3 inversion
intercomparison study (e.g., Gurney et al., 2004; Baker et al. 2006). No component
fluxes (e.g., GPP and RE) were available for this version of CASA.

2.1.3 CASA coupled with the Global Fire Emissions Database (CASA GFEDv2)10

The CASA GFEDv2 model (van der Werf et al., 2004, 2006) is based on the CASA
model described above, although fPAR is estimated from Advanced Very High Resolu-
tion Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) instead from
NOAA/NASA Pathfinder NDVI (as in CASA). In addition, CASA GFEDv2 accounts for
the indirect (e.g. mortality and subsequent decay and re-growth) effects of forest fires15

on carbon stocks in CASA’s above-ground carbon pools (leaf, wood, and litter). In
both CASA and CASA GFEDv2, the light utilization efficiency term is set uniformly to
a value derived from calibration of predicted annual NPP to previous field estimates
(Potter et al., 1993).

2.2 Spatial covariance of modeled fluxes20

We apply variogram analysis to quantify monthly spatial autocorrelation of predicted
NEE, and to examine how that variability changes with season. Here, autocorrelation is
defined as the similarity of fluxes as a function of their separation distance, and is used
as means to quantify spatial variability. This approach enables not only the estimation
of spatial variability in each of the models, but, more importantly, the comparison of25

spatial variability in predicted NEE across models. In addition, the spatial variability of
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NEE’s component fluxes (GPP and RE) is quantified for the three summer months of
June, July, and August.

Quantifying spatial autocorrelation is needed to inform the statistical analysis (e.g.,
Sect. 2.3), geared towards identifying potential drivers of observed spatial patterns of
flux among the models. The comparison of spatial variability among the models also5

provides a quantitative counterpart to the visual examination of variability depicted in
maps of the spatial pattern of fluxes (e.g., Fig. 1). Quantitative comparisons help to
identify significant differences between the models, and can help to inform the compar-
ison of model results.

A variogram is a function used to describe the spatial correlation of observations,10

and is based on the degree of dissimilarity between two points, y(x) and y(x+h):

γ(h)=
1
2

E
[
(y(x+h)−y(x))2

]
(1)

Where y represents the grid-scale flux (i.e., NEE, GPP, or RE) predicted from the mod-
els, and h is the separation distance between two grid-scale estimates of flux. The raw
variogram derived from Eq. (1) is normally modeled using a theoretical variogram func-15

tion. Here, we use an exponential model to examine the spatial correlation of a particu-
lar biospheric model’s estimate of carbon flux. This choice is based on an examination
of the raw variograms of flux estimates constructed from the different models, and is
consistent with the work of Michalak et al. (2004). The exponential variogram is defined
as:20

γ(h)=σ2
(

1−exp
(
−h
l

))
(2)

where σ2 represents the expected variance of carbon flux at large separation distances,
and l is the correlation range parameter. The practical correlation length (L) is approx-
imately 3l , beyond which the covariance between points is negligible (e.g., Kitanidis,
1997).25
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To obtain an overall measure of spatial variability for each of the models, the spatial
covariance parameters (σ2, l ) of grid-scale estimates of flux for land cells within NA are
optimized by fitting the theoretical variogram in Eq. (2) to the raw variogram (derived
from Eq. (1) using ordinary least squares (OLS). Conceptually, a higher variance is
indicative of greater overall spatial variability, while a shorter correlation length indicates5

greater spatial variability at smaller scales.
In order to better compare the spatial variability in carbon flux predicted by the mod-

els, the parameter h0 (Alkhaled et al., 2008) is used to merge information from the
fitted variance and correlation range parameters, and to provide an overall measure of
spatial variability:10

h0 =−l ln
(

1−
γmax

σ2

)
(3)

where l and σ2 are the fitted variogram parameters for each model from Eq. (2), and h0
represents the distance at which the variogram reaches a certain preset value (γmax).
Therefore, h0 provides a single diagnostic metric with which to compare the overall
spatial variability of the models. Both a higher regional variance (σ2) and a shorter cor-15

relation range parameter (l ) results in a shorter overall h0, indicating a greater degree
of spatial variability of the modeled flux over smaller spatial scales. The value of gmax
used in the analysis of model estimates of NEE and component fluxes (GPP and RE)
was chosen to be 0.05 and 1.0 (µmol m−2 s−1)2, respectively. The choice of this value
is somewhat flexible, as long as it is below the lowest observed σ2.20

2.3 Variable selection and regression analysis

The geostatistical regression (GR) approach presented here includes a combination of
variable selection (e.g., Burnham and Anderson, 2002) and geostatistical regression
(i.e. universal kriging) (e.g., Kitanidis, 1997) in order to identify the factors explain-
ing the spatial variability in monthly predicted NEE, GPP, and RE among biospheric25

models. Several factors influence the response of estimated fluxes to environmental
7913
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variables, including model assumptions, the manner in which mechanistic processes
are formulated within the model, and the chosen driver or input data. Variable selection
methods provide a measure of the overall linear sensitivity of estimated fluxes to envi-
ronmental variables, or other derived quantities such as Q10, without having to recreate
the complex relationships or formulations within the models. Even if these formulations5

could be recreated, such an approach would be undesirable because it would not of-
fer a common metric of comparison across models. Variable selection also provides
a means to compare models in light of their differences (e.g., formulations, environ-
mental drivers), and to evaluate whether the same environmental variables appear as
significant in explaining the spatial variability in flux across models.10

Similarly to multiple linear regression, the GR approach expresses the dependent
variable, in this case the estimated NEE (or GPP or RE) predicted from the models, y ,
as the sum of a deterministic component, (Xβ), and a stochastic term, (ε) (Kitanidis,
1997):

y =Xβ+ε (4)15

The deterministic component represents the portion of the predicted flux that can be
explained using a set of grid-scale environmental variables or covariates, while the
stochastic component describes the spatial variability in flux that could not be explained
by the deterministic component. The deterministic component takes the form of Xβ,
were X is a (n×p) matrix containing columns of p environmental variables that are20

scaled by a p×1 vector of unknown drift coefficients or weights (β). The simplest
model is a spatially constant mean, where p=1, X is a vector of ones, and β is the
constant mean. More complex models include both the constant mean and a linear
combination of environmental variables that best describe or represent the physical
process being modeled (e.g., Erickson et al., 2005; Gourdji et al., 2008; Mueller et al.,25

2010; Yadav et al., 2010). Even though the columns in X are linearly related to y,
the columns themselves can contain derived quantities or transformations of one or
more environmental variables (e.g., Erickson et al., 2005; Mueller et al., 2010). In this
analysis, however, no derived quantities or transformations were used.
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The variable selection step provides a means of objectively selecting the environ-
mental variables to be included in X, while the geostatistical regression is used to
obtain the best estimate of the drift coefficients (β̂) which represent the relationship of
model-predicted NEE, GPP, and RE to the selected environmental variables, along with
their associated uncertainties (σ2

β̂
).5

Together, these two approaches have several advantages over previous model in-
tercomparison approaches. First, the application of a variable selection method re-
duces the risk of identifying spurious relationships between environmental variables
and modeled fluxes as significant, because only variables that jointly provide signifi-
cant explanatory power can be selected. Second, the combination of variable selec-10

tion and regression analysis serves as a systematic sensitivity test of flux estimates to
common environmental drivers used in biospheric models. Thus, biospheric models
can be assessed by comparing which environmental variables are selected as part of
the GR model (Sect. 2.3.1), and by comparing the estimated drift coefficients relating
the selected environmental variables to each model’s estimate of flux (Sect. 2.3.2).15

2.3.1 Bayes Information Criterion (BIC)

One of the most widely used variable or model selection techniques is the Bayes Infor-
mation Criterion (BIC) (Schwarz, 1987). The BIC is typically favored over hypothesis
testing approaches because it is able to objectively compare non-nested, competing
models (Burnham and Anderson, 2002). The term “model” here refers to X, or a collec-20

tion of environmental variables that, either individually or collectively, have the most ex-
planatory power in terms of the spatial variability of biospheric-model-derived monthly
NEE, GPP, and RE.

Criterion-based approaches, such as the BIC, have been applied recently in stud-
ies focused on model selection for geospatial data (Hoeting et al., 2006) and, more25

specifically, at elucidating processes controlling carbon exchange at various temporal
scales at eddy covariance tower sites (Mueller et al., 2010; Yadav et al., 2010). BIC
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is based on the idea that models should be compared based on their posterior prob-
abilities (Schwarz, 1978). In other words, selecting the combination of environmental
variables that is most probable (Forster, 2000) in terms of explaining the variability of
fluxes, if we assume that at least one “model” is true.

The BIC criterion of a particular combination of environmental variables, Xj , with p5

covariates and n observations is given by (Schwarz, 1978):

BICj =−2ln
(
L̂j

)
+pln(n) (5)

where the likelihood, L̂j , of a particular collection of environmental variables best ex-
plaining modeled flux, is a function of the unknown drift coefficients, β, and the covari-
ance of the regression residuals, ε, assuming that the regression residuals (Sect. 2.3.2)10

follow a Gaussian distribution (Mueller et al., 2010).
If the residuals are assumed second-order stationary (i.e., spatially constant mean;

e.g., Xβ), and the correlation between two points is solely a function of separation
distance, then the covariance of the regression residuals, ε, is

Q(h)=E [(y(x)−Xβ)(y(x+h)−Xβ)] (6)15

Where y represents the grid-scale flux (i.e., NEE, GPP, or RE) predicted by the bio-
spheric model, Q(h) is the covariance of the residuals with a separation distance, h,
and E [ ] denotes the expectation operator. Q is modeled using the exponential vari-
ogram function presented in Eq. (1) (Sect. 2.2):

Q=σ2
(

exp
(
−h
l

))
(7)20

Where Q is an n×n covariance matrix and h is an n×n matrix of separation distances
between flux estimate locations (i.e., points on the model grid). The spatial covariance
parameters (σ2 and l ) in Q are optimized in a similar manner as described in Eq. (2) and
Sect. 2.2 except that the covariance is quantified for the residuals, ε, (Eq. 5) from the
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regression (see Gourdji et al., 2008). Accounting for the fact that the drift coefficients
β are unknown, the BIC equation becomes (Mueller et al., 2010):

BICj = ln|Q|+yT
(

Q−1−Q−1X
(

XTQ−1X
)−1

XTQ−1
)
y+pln(n) (8)

The reader is referred to Burnham and Anderson (2002) for a more detailed description
of BIC, and to Mueller et al. (2010) and Yadav et al. (2010) for additional information5

on how the BIC approach has been applied in the context of NEE and component flux
modeling.

The BIC and GR analysis is conducted on 2002 monthly fluxes covering the three
summer months of June, July and August. A small subset of monthly-averaged envi-
ronmental variables is considered in the BIC analysis (Table 2). These variables were10

chosen because they have full spatial coverage over North America and have a known
association with biospheric fluxes. The variables in Table 2 were mean-deviated and
normalized by their standard deviation prior to the regression analysis, in order to make
estimated regression coefficients, β̂, comparable across variables.

2.3.2 Geostatistical regression analysis15

Estimates of the drift coefficients, β̂, and the covariance matrix describing their uncer-
tainties, Vβ̂, are obtained as (e.g., Cressie, 1993):

β̂=
(

XTQ−1X
)−1

XTQ−1y (9)

Vβ̂ =
(

XTQ−1X
)−1

(10)

The diagonal elements of Vβ̂ are the variances representing the uncertainty of the20

drift coefficients (σ2
β̂

). The fraction of the flux variability explained by the GR model is
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quantified using the coefficient of determination:

R2 =1−

(
y−Xβ̂

)T(
y−Xβ̂

)
(y−E [y])T (y−E [y])

(11)

Where E [y] is the mean of the estimated flux from a given biospheric model.

3 Results and discussion

3.1 Spatial covariance5

Non-growing season NEE consistently exhibits lower variances (σ2), reaching a mini-
mum in October (∼0.2 to 0.5 (µmol m−2 s−1)2), and remaining relatively constant until
bud-burst and leaf-out in April and May (Fig. 2). The variance during the growing sea-
son, on the other hand, is quite different between the models, with the greatest variance
in NEE exhibited by SiB (Figs. 2 and 3). Similarly, correlation lengths (L) are generally10

longer during the dormant months, which is consistent with the lower spatial variability
observed in the variance parameter.

The h0 parameter (Eq. 3) confirms that NEE from SiB is more variable relative to
the other models for most months, and especially during the dormant months, followed
by CASA and CASA GFEDv2 (Fig. 3). SiB’s forced cell-by-cell, long-term balance15

in photosynthesis and respiration likely drives its greater spatial variability during the
winter or dormant months, because the underlying spatial structure or variability is
retained during the dormant season within SiB, much more so than for CASA or CASA
GFEDv2.

Both SiB 3.0 and CASA GFEDv2’s predictions of GPP have significantly greater spa-20

tial variability over smaller scales than that of NEE, and slightly greater spatial variability
than RE. Component fluxes for CASA were not available. The average summertime
variance in GPP and RE predicted by CASA GFEDv2 is greater than that of SiB 3.0
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(see Fig. 4). The correlation lengths, however, of SiB’s summertime GPP and RE
(1100 km and 1300 km, respectively) are slightly shorter than for GFED (1200 km and
1400 km, respectively). Thus, using a γmax of 1.0 (µmol m−2 s−1)2, we see that the over-
all spatial variability of GPP for SiB (h0=130 km) and CASA GFEDv2 (h0=110 km) are
comparable. However, CASA GFED (h0=190 km) exhibits slightly greater overall spa-5

tial variability in RE during June, July, and August relative to SiB (h0=270 km). Recall
that the smaller h0, the more variable the modeled flux over smaller spatial scales. The
differing degrees of variability in RE among the models, combined with somewhat com-
parable degrees of variability in GPP, leads to the overall spatial variability observed
in NEE. Conceptually, NEE is the small difference between two large fluxes: gross10

primary productivity and ecosystem respiration. Large differences in the variability of
GPP and RE, as seen in SiB 3.0, can translate into more variability in resultant NEE
fluxes.

Both models assume autotrophic respiration to be a fraction of GPP; however, they
compute heterotrophic respiration in different ways (Table 1). CASA GFEDv2 treats soil15

respiration uniformly as a Q10 response. However, it scales respiration with the same
soil moisture submodel that regulates productivity (Table 1). Therefore, soil carbon flux
is controlled by nondimensional scalars related to air temperature, soil moisture, litter
substrate quality, and soil texture (Zhou et al., 2009). Conversely, SiB 3.0 calculates
soil respiration from temperature and soil moisture in each layer, then scales respiration20

to achieve carbon balance over an annual scale (Baker et al., 2003). No such annual
balance is enforced in CASA GFEDv2, which allows carbon to accumulate and move
through various carbon pools. In the summer months, this prescribed annual balance
in SiB may dampen the soil respiration variability, and therefore ecosystem respiration,
causing it to be less spatially variable (compared to CASA GFEDv2) at certain times of25

the year.
The spatial variability of soil respiration can be affected by other factors, in addi-

tion to the soil respiration algorithm used in the model. For example, indirect effects,
such as the model’s ability to model soil temperature and/or soil water content can
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also significantly impact how soil respiration is represented. Nevertheless, quantifying
spatial variability allows for the comparison of flux estimates across models in terms
of how differences in the degree of spatial variability in component fluxes translate into
each model’s grid-scale estimates of NEE.

Overall, variogram analysis quantifies spatial variability among the models, which,5

combined with knowledge about the model structure and formulations, is seen here
to be a valuable tool for model intercomparisons. In addition, this type of information
helps inform statistical analyses that correlate modeled fluxes to climatic variables and
other environmental parameters. This is shown in the next section, where the spatial
correlation structure described in Eq. (2) and shown in Fig. 2 is used to assess the10

relationship of flux to environmental drivers and other ancillary variables.

3.2 Variable selection and regression analysis

Drift coefficients and their associated uncertainties were estimated for those variables
selected using the BIC as outlined in Sects. 2.3.1 and 2.3.2 (Table 3). A positive sign
on β̂i indicates the variable is associated with an increase in RE or a decrease in GPP,15

while a negative sign indicates that a variable is correlated with a net increase in GPP
or decrease in RE.

3.2.1 Explanatory variables for modeled net ecosystem exchange

Only evapotranspiration and the percent land cover by mixed and deciduous forests
(MDBF) were found to have a significant relationship with estimated NEE across all20

models (Table 3). This is consistent with the expected strong relationship between tran-
spiration and photosynthesis. The connection between land cover types, such as de-
ciduous forest, and NEE is intuitive as well. Highly productive regions tend to have large
gross fluxes, and small changes in these fluxes (relative to mean uptake/respiration)
can have a large impact on net flux. Thus, the BIC successfully identifies variables with25

known strong correlations to NEE.
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The magnitude and sign of the drift coefficient (β̂) for evapotranspiration in rela-
tion to NEE is consistent among the three biospheric models (Table 3) indicating that
evapotranspiration has a similar importance in each of the models or at least the spa-
tial distribution of evapotranspiration is correlated similarly to the spatial distribution of
NEE. In contrast, even though the percent cover of MDBF was selected as a significant5

variable explaining NEE across models, its weight (i.e., drift coefficient) varies, with the
greatest correlation observed for CASA GFEDv2 and the lowest correlation in SiB 3.0.
The sign on the drift coefficients are consistent, however, with MDBF being associated
with an overall uptake of CO2 across models (Table 3).

The amount of NEE’s spatial variability explained by the selected environmental10

variables for each model is shown in Fig. 5 using experimental variograms (e.g.,
a smoothed variogram generated by averaging the raw variogram over consecutive
separation distance intervals, similarly as for a histogram). Included in Fig. 5 is the ex-
perimental variogram resulting if only those variables commonly selected across mod-
els (i.e., evapotranspiration and MDBF) are used in the trend, as well as when each15

model is detrended using all of the variables selected for that model (Xβ̂). Evapotran-
spiration and percent cover of MDBF explain only a small portion of spatial variability
in estimated NEE, compared to the complete model-specific environmental variables
selected through BIC. This implies that the model-specific variables selected for each
model are more important for interpreting the predicted carbon flux than are the vari-20

ables commonly selected for all models. Such a finding is important because it sug-
gests fundamental differences in the models and the factors that control predicted flux.
For a given scale and time period, this in turn, provides an opportunity for comparing
the variables selected for each model with those found to be important in explaining
real flux observations (e.g., Law et al., 2002; Urbanski, 2008; Mueller et al., 2010; Ya-25

dav et al., 2010), thereby providing a potential new avenue for model evaluation and
improvement.
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In the analysis conducted with SiB fluxes, the GR approach selected the fraction
of photosynthetically active radiation (fPAR), LAI, downward short-wave radiation, soil
moisture, and Q10, in addition to evapotranspiration and percent cover by MDBF, as
having the greatest explanatory power for modeled NEE (Table 3). This is in contrast
to those additional variables selected as having a significant relationship to CASA’s5

NEE fluxes, which include the enhanced vegetation index (EVI), normalized difference
vegetation index (NDVI), precipitation, and the percent land cover by croplands. While
precipitation and percent cover by cropland were also selected for CASA GFEDv2,
temperature, Q10, and land cover type appear to be more highly correlated with mod-
eled NEE than in the other two models. Some of the differences in variables selected10

for a given model may be less important (e.g., LAI and fPAR, versus EVI and NDVI)
because these variables are similar. What is interesting is that very few variables were
commonly selected in CASA and CASA GFEDv2, even though the same base model
is used for each (Table 3). In the modifications of CASA to account for fire, the mortality
of woody vegetation in CASA GFEDv2 is scaled with the amount of tree cover. There-15

fore, a cell with high percentage tree cover will have higher mortality than, for example,
an open grassland. (van der Werf et al., 2003). Mortality rates due to fire have an indi-
rect effect on respiration and productivity, and thus, might explain the higher apparent
correlation of CASA GFEDv2 fluxes to percent land cover relative to CASA or SiB3.0.

Q10 was selected for both SiB 3.0 and CASA GFEDv2 as having a significant rela-20

tionship to NEE. However, in SiB, Q10 is correlated with uptake or sink in CO2 in SiB,
while in CASA GFEDv2 it is linked to an overall release (Table 3). For CASA GFEDv2,
the drift coefficients of Q10 and evapotranspiration are highly correlated, and therefore
their impact cannot be assessed independently. In examining the net apparent impact
(Xβ̂) of temperature on NEE in CASA GFEDv2 (not shown), temperature accounts for25

the greatest net uptake of CO2, more than twice the magnitude of any other variable.
Conversely, in SiB, evapotranspiration and Q10 are correlated with the greatest overall
uptake and downward shortwave radiation with the largest release of CO2 from the
land to the atmosphere.
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To further examine these relationships and to compare the models, a similar analysis
was conducted on NEE’s component fluxes of GPP and RE. Because environmental
variables, such as light, water availability, and temperature may have complex relation-
ships with each other, as well as photosynthesis and respiration, isolating the GPP and
RE estimates from the models may allow for a more robust comparison of modeled5

output.

3.2.2 Explanatory variables for modeled gross primary production
and respiration

In general, a greater number of environmental variables are consistently identified as
being correlated with GPP and RE across models, than were observed in the analysis10

conducted with NEE. In addition, for a given biospheric model, many of the same envi-
ronmental variables are correlated to both GPP and RE (Table 3). However, with most
variables, the sign of the recovered drift coefficients on GPP and RE is reversed. In
the analysis of component fluxes, uptake of CO2 (i.e., GPP) is denoted with a negative
sign, while a positive sign represents release of CO2 from the land to the atmosphere15

(i.e., RE). Those environmental variables that are correlated with an uptake of CO2
from the atmosphere in the analysis with GPP, are correlated with a source of CO2
when examined against RE. In CASA, CASA GFEDv2, and SiB 3.0, autotrophic respi-
ration is formulated as being an instantaneous fraction of GPP. Therefore, the similar
but opposite relationship of selected environmental variables to GPP and RE may be20

a result of model formulation rather than a real association with the physiological pro-
cesses driving RE. However, the heterotrophic contribution to RE could be 50% or
more, and the controls on heterotrophic respiration (RH) may vary among the models.
For example, in a study by Mueller et al. (2010), which examined the relationship of
environmental variables to measured flux from an eddy-covariance flux tower, different25

variables were found to be correlated with GPP than to RE. Thus, the degree to which
RE predictions from biospheric models can be interpreted here, may need to be re-
evaluated. Because of this inverse relationship in some environmental variables, their
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influence cancels out when the GR approach is used directly with model estimates of
NEE. This can be seen in Table 3 when the results of the NEE analysis are compared
to those of the component fluxes.

From the component flux analysis, it appears that temperature has a stronger cor-
relation to RE in CASA GFEDv2 compared to SiB, which is the reverse of what was5

observed in the NEE analysis, where temperature was correlated with a net uptake of
CO2 (Table 3). Temperature was not selected in the GPP analysis with CASA GFEDv2.
In terms of NEE, temperature may be acting as a proxy for another variable not included
in the analysis, or the interaction of variables whose spatial coverage can be captured
(in part) by temperature.10

Vegetative indices appear to be similarly correlated to GPP and RE in SiB and CASA
GFEDv2. While land cover classification appears to have a significant impact in both
models, as also seen with NEE, the relationship to flux is stronger in CASA GFEDv2.
The incremental impact of land cover is largest for deciduous and mixed broadleaf
forests, evergreen and needleleaf forests, and croplands. This relationship between15

flux and land cover makes intuitive sense. In areas where CO2 uptake is large (e.g.,
deciduous and mixed forests or croplands), respiration will likely be large as well. Fur-
thermore, in regions where there are large gross fluxes, there is also the possibility for
the largest variability in flux. The converse would be true for relatively unproductive
regions, such as shrublands. This, combined with the potential impact of how mortality20

rates are parameterized in CASA GFEDv2, explains the apparent strong relationship
between percent land cover and CASA GFEDv2’s prediction of GPP, RE, and subse-
quently NEE.

The linear combination of selected variables (i.e., Xβ̂) associated with carbon up-
take (GPP) and release (RE) explains approximately 70% of CASA GFEDv2 flux vari-25

ability during the summer months and approximately half that amount for SiB 3.0 (Ta-
ble 3). This can also be seen in Fig. 6, where the variability at smaller scales is only
marginally reduced for SiB when GPP and RE are detrended using the selected vari-
ables, whereas the variability for CASA GFEDv2 is reduced at all separation distances.
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In addition, a significant proportion of the variability explained in both SiB and CASA
GFED’s GPP and RE by their model-specific GR trends is from those variables com-
monly selected across both models (Fig. 6). The magnitude of the drift coefficients
on these common variables differs between the two biospheric models, however, with
larger drift coefficients estimated for CASA GFEDv2 fluxes versus SiB 3.0.5

The greater overall ability of the GR models to explain component flux spatial vari-
ability (and NEE) in CASA GFEDv2, compared to SiB, likely results for the types of
candidate environmental variables used in this study (Table 2). CASA is a diagnostic
model that uses remote sensing data as input. Thus, it makes sense that the flux es-
timates from CASA would be more sensitive to datasets derived from remote sensing10

information (e.g., vegetative indices, land cover). While SiB fluxes are also sensitive
to similar ancillary environmental variables, these parameters explain far less of SiB’s
spatial variability. Such a finding has several possible implications. If the true flux vari-
ability does not significantly correlate with remote-sensing-based products, model esti-
mates that strongly correlate with, and depend on, such datasets (such as those from15

CASA) could potentially have significant biases. Conversely, more complex models,
such as SiB, that derive their own measures of plant phenology based on environmen-
tal conditions, depend heavily on their model formulation rather than the variability in
observed environmental drivers. Self-derived quantities within such models could also
introduce a bias if the process parameterizations do not emulate the behavior of the20

real processes driving phenological variability. While this type of diversity in models
makes intercomparisons difficult, the GR approach helps to highlight the impact of dif-
ferences caused by alternative model formulations, which can be used to guide further
model enhancements.
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4 Conclusions

This study proposes a set of quantitative methods, including variogram analysis, vari-
able selection, and geostatistical regression, for comparing biospheric model estimates
of NEE and its component fluxes. Using a small subset of biospheric models, these
methods are evaluated in terms of their ability to identify overall similarities and dif-5

ferences in modeled fluxes, quantify and compare the scales of variability among the
models, and determine the environmental factors explaining the observed variability in
fluxes.

Both the variogram analysis and the related h0 parameter provide information about
the degree of flux spatial variability in the different models, beyond what is evident from10

visual examination and comparison of flux patterns. The results show that while SiB
exhibits greater variability in NEE than both CASA and CASA GFEDv2, particularly
during the dormant and transition months of the year, the overall small scale variability
in SiB’s component fluxes is much less than that of CASA GFEDv2. Moreover, it is
these differences in the amount of variability in SiB’s RE and GPP that drive the over-15

all variability observed in NEE. In addition, as seen with GPP and RE, h0 is a single
diagnostic that allows for the comparison of complex variability, where the influence of
variance and correlation length are merged to provide a more informative, and com-
parable, measure of flux variability over smaller scales. Finally, information about flux
autocorrelation helps to inform the regression analysis used to correlate modeled NEE20

to common climatic and environmental parameters.
The GR approach, which combines variable selection and geostatistical regression,

provides a means to identify and compare the environmental variables that are most
significant in explaining modeled flux spatial variability. The approach highlights those
environmental variables that correlate to flux as predicted by each examined model,25

and provides a means for identifying the strength of the relationship between these
variables and predicted flux. This, in turn, provides an opportunity for comparing the
variables selected for each model with those found to be important in explaining true
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flux observations (e.g., eddy-covariance flux tower measurements or inventory-based
estimates). For example, in a study conducted by Mueller et al. (2010) examining the
factors explaining temporal flux variability at the University of Michigan Biological Sta-
tion eddy covariance site, different environmental variables were found to be correlated
with GPP than to RE. This is contrary to the results of this analysis, which found the bio-5

spheric model estimates of GPP and RE to be sensitive to similar sets of environmental
variables. This inconsistency between the sensitivity of modeled and observed fluxes
indicates that, for the examined models, predictions of RE appear to reflect a scaling of
GPP, rather than sensitivity to environmental variables that control respiration directly.
Whether this type of relationship is reasonable requires further investigation with other10

models and flux measurements, and provides a new avenue for model-data intercom-
parisons.

Furthermore, the GR analysis can be used to draw inferences about how differences
in model formulation translate into observed differences in flux variability across mod-
els. For example, CASA GFEDv2’s method of scaling mortality with percent tree cover15

appears to strongly influence its flux distribution. As a result, the spatial variability of
carbon exchange across North America in CASA GFEDv2 is strongly correlated to
land cover. In addition, SiB’s model formulation appears to be far more important in ex-
plaining the spatial variability of fluxes than environmental factors such as temperature,
precipitation, or land cover.20

While the methods presented here can point to key differences between models,
they cannot tell which model is more correct. For example, the regression approach
presented cannot identify exactly which processes within the models are formulated
realistically versus those that are modeled incorrectly. However, using the types of
quantitative model evaluation methods presented here, in conjunction with existing sci-25

entific and modeling understanding provided by model developers, can help to improve
process-based biospheric models through the comparison of flux across a range of
biospheric models. These methods provide a quantitative understanding how models
differ in their spatial representation of surface flux and how flux correlates with common
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environmental drivers.
Statistical methods, such as the ones applied here, represent powerful tools for com-

paring biospheric model estimates of flux. Care must be taken in implementing and in-
terpreting results from statistical analyses, however, because results can be impacted
by the environmental variables considered and the spatiotemporal scale of the analy-5

sis (e.g., 1◦×1◦ spatial and monthly temporal resolution). Therefore the analysis should
be set up to ensure that key variables or derived parameters needed to explain mod-
eled flux variability are included in the analysis. The effect of missing environmental
variables could be aliased onto other variables, thereby acting as a proxy for the true
correlation. In addition, the conclusions have to be interpreted at the scale at which10

the analysis was performed, both in terms of the time period covered (e.g., summer
months), as well as the native spatial resolution of the models.

Overall, the quantitative approach presented here provides a toolset for compar-
ing existing model estimates of carbon flux, a task that has historically been difficult
unless standardized simulations and forcing data are prescribed. The results show15

that both variogram analysis and GR help to improve our understanding of model dif-
ferences caused by alternative model formulations, which can be used as a guide for
model enhancement, as well as for reconciling difference in modeled estimates of land-
atmosphere carbon exchange. As such, tools such as those presented here provide
an opportunity to improve large-scale biospheric model intercomparison studies.20

Acknowledgements. The authors gratefully acknowledge Wilfred Post and Ian Baker for impor-
tant feedback on this manuscript. In addition, the authors would like to thank Ian Baker and
James Randerson for providing their model estimates for this work. This work was supported
by the National Aeronautics and Space Administration under grant NNX06AE84G “Constrain-
ing North American Fluxes of Carbon Dioxide and Inferring Their Spatiotemporal Covariances25

through Assimilation of Remote Sensing and Atmospheric Data in a Geostatistical Framework”
issued through the ROSES A.6 North American Carbon Program to the University of Michigan.

7928

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/7903/2010/bgd-7-7903-2010-print.pdf
http://www.biogeosciences-discuss.net/7/7903/2010/bgd-7-7903-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 7903–7943, 2010

An approach for
comparing regional

carbon flux estimates

D. N. Huntzinger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

References

Alkhaled, A. A., Michalak, A. M., Kawa, S. R., Olsen, S. C., and Wang, J. W.: A global evaluation
of the regional spatial variability of column integrated CO2 distributions, J. Geophys. Res.-
Atmos., 113, doi:10.1029/2007jd009693, 2008.

Baker, I., Denning, A. S., Hanan, N., Prihodko, L., Uliasz, M., Vidale, P. L., Davis, K., and5

Bakwin, P.: Simulated and observed fluxes of sensible and latent heat and CO2 at the
WLEF-TV tower using SiB2.5, Glob. Change Biol., 9, 1262–1277, 2003.

Baker, I. T., Prihodko, L., Denning, A. S., Goulden, M., Miller, S., and da Rocha, H. R.: Sea-
sonal drought stress in the Amazon: reconciling models and observations, J. Geophys. Res.-
Biogeo., 113, G00b01, doi:10.1029/2007jg000644, 2008.10

Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bern-
hofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H.,
Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P.,
Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Fluxnet: a new tool to study
the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and en-15

ergy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Bondeau, A., Kicklighter, D. W., Kaduk, J., and participants Potsdam, N. P. P. M. I.: Comparing

global models of terrestrial net primary productivity (NPP): importance of vegetation structure
on seasonal NPP estimates, Glob. Change Biol., 5, 35–45, 1999.

Burnham, K. P. and Anderson, D. R.: Model Selection and Multimodel Inference: A Practical20

Information-Theoretical Approach, 2nd edn., Springer Science, New York, 2002.
Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldoc-

chi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., Aber, J. D.,
Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A.,
McGuire, A. D., Melillo, J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L.,25

Ryan, M. G., Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze, E. D.: Rec-
onciling carbon-cycle concepts, terminology, and methods, Ecosystems, 9, 1041–1050,
doi:10.1007/s10021-005-0105-7, 2006.

Chiles, J. P. and Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, John Wiley and Sons,
New York, 695 pp. 1999.30

Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and environmental-regulation
of stomatal conductance, photosynthesis and transpiration – a model that includes a laminar

7929

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/7903/2010/bgd-7-7903-2010-print.pdf
http://www.biogeosciences-discuss.net/7/7903/2010/bgd-7-7903-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 7903–7943, 2010

An approach for
comparing regional

carbon flux estimates

D. N. Huntzinger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

boundary-layer, Agr. Forest Meteorol., 54, 107–136, 1991.
Cramer, W. and Field, C. B.: Comparing global models of terrestrial net primary productivity

(NPP): introduction, Glob. Change Biol., 5, III–IV, 1999.
Cramer, W., Kicklighter, D. W., Bondeau, A., Moore, B., Churkina, C., Nemry, B., Ruimy, A.,

and Schloss, A. L.: Comparing global models of terrestrial net primary productivity (NPP):5

overview and key results, Glob. Change Biol., 5, 1–15, 1999.
Cressie, N. A. C.: Statistics for Spatial Data, John Wiley, New York, 990 pp., 1993.
Denning, A. S., Collatz, G. J., Zhang, C. G., Randall, D. A., Berry, J. A., Sellers, P. J.,

Colello, G. D., and Dazlich, D. A.: Simulations of terrestrial carbon metabolism and atmo-
spheric CO2 in a general circulation model: 1. Surface carbon fluxes, Tellus B, 48, 521–542,10

1996.
Denning, A. S., Nicholls, M., Prihodko, L., Baker, I., Vidale, P. L., Davis, K., and Bakwin, P.: Sim-

ulated variations in atmospheric CO2 over a Wisconsin forest using a coupled ecosystem-
atmosphere model, Glob. Change Biol., 9, 1241–1250, 2003.

Dorman, J. L. and Sellers P. J.: A global climatology of albedo, roughness length and stomatal-15

resistance for atmospheric general circulation models as represented by the Simple Bio-
sphere Model (SiB), J. Appl. Meteorol., 28(9), 833–855, 1989.

Erickson, T. A., Williams, M. W., and Winstral, A.: Persistence of topographic controls on the
spatial distribution of snow in rugged mountain terrain, Colorado, US, Water Resour. Res.,
41, W04014, doi:10.1029/2003wr002973, 2005.20

Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.: A biochemical-model of photosynthetic
CO2 assimilation in leaves of C-3 species, Planta, 149(1), 78–90, 1980.

Food and Agriculture Organization of the United Nations (FAO), 1971–1981, FAO/Unesco Soil
Map of the World, 1:5.000.000, Vol. 1-10, Unesco, Paris.

Forster, M. R.: Key concepts in model selection: performance and generalizability, J. Math.25

Psychol., 44, 205–231, 2000.
Gourdji, S. M., Mueller, K. L., Schaefer, K., and Michalak, A. M.: Global monthly averaged CO2

fluxes recovered using a geostatistical inverse modeling approach: 2. Results including auxil-
iary environmental data, J. Geophys. Res.-Atmos., 113, D21115, doi:10.1029/2007jd009733,
2008.30

Gourdji, S. M., Hirsch, A. I., Mueller, K. L., Yadav, V., Andrews, A. E., and Michalak, A. M.:
Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic
data study, Atmos. Chem. Phys., 10, 6151–6167, doi:10.5194/acp-10-6151-2010, 2010.

7930

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/7903/2010/bgd-7-7903-2010-print.pdf
http://www.biogeosciences-discuss.net/7/7903/2010/bgd-7-7903-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 7903–7943, 2010

An approach for
comparing regional

carbon flux estimates

D. N. Huntzinger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Heimann, M., Esser, G., Haxeltine, A., Kaduk, J., Kicklighter, D. W., Knorr, W., Kohlmaier, G. H.,
McGuire, A. D., Melillo, J., Moore, B., Otto, R. D., Prentice, I. C., Sauf, W., Schloss, A.,
Sitch, S., Wittenberg, U., and Wurth, G.: Evaluation of terrestrial carbon cycle models
through simulations of the seasonal cycle of atmospheric CO2: first results of a model in-
tercomparison study, Global Biogeochem. Cy., 12, 1–24, 1998.5

Hoeting, J. A., Davis, R. A., Merton, A. A., and Thompson, S. E.: Model selection for geostatis-
tical models, Ecol. Appl., 16, 87–98, 2006.

House, J. I., Prentice, I. C., Ramankutty, N., Houghton, R. A., and Heimann, M.: Reconciling
apparent inconsistencies in estimates of terrestrial CO2 sources and sinks, Tellus B, 55,
345–363, 2003.10

Kitanidis, P. K.: Introduction to Geostatistics: Applications in Hydrogeology, Cambridge Univer-
sity Press, New York, 249 pp., 1997.

Knorr, W.: Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based
simulations and uncertainties, Global Ecol. Biogeogr., 9, 225–252, 2000.

Law, B. E., Falge, E., Gu, L., Baldocchi, D. D., Bakwin, P., Berbigier, P., Davis, K., Dol-15

man, A. J., Falk, M., Fuentes, J. D., Goldstein, A., Granier, A., Grelle, A., Hollinger, D.,
Janssens, I. A., Jarvis, P., Jensen, N. O., Katul, G., Mahli, Y., Matteucci, G., Meyers, T.,
Monson, R., Munger, W., Oechel, W., Olson, R., Pilegaard, K., Paw, K. T., Thorgeirsson, H.,
Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Environmental controls over
carbon dioxide and water vapor exchange of terrestrial vegetation, Agr. Forest Meteorol.,20

113, 97–120, 2002.
Lokupitiya, R. S., Zupanski, D., Denning, A. S., Kawa, S. R., Gurney, K. R., and Zupanski, M.:

Estimation of global CO2 fluxes at regional scale using the maximum likelihood ensemble
filter, J. Geophys. Res.-Atmos., 113, 19, D20110, doi:10.1029/2007jd009679, 2008.

Melillo, J. M., Borchers, J., Chaney, J., Fisher, H., Fox, S., Haxeltine, A., Janetos, A., Kick-25

lighter, D. W., Kittel, T. G. F., McGuire, A. D., McKeown, R., Neilson, R., Nemani, R.,
Ojima, D. S., Painter, T., Pan, Y., Parton, W. J., Pierce, L., Pitelka, L., Prentice, C., Rizzo, B.,
Rosenbloom, N. A., Running, S., Schimel, D. S., Sitch, S., Smith, T., and Woodward, I.: Veg-
etation ecosystem modeling and analysis project – comparing biogeography and biogeo-
chemistry models in a continental-scale study of terrestrial ecosystem responses to climate-30

change and CO2 doubling, Global Biogeochem. Cy., 9, 407–437, 1995.
Michalak, A. M., Bruhwiler, L., and Tans, P. P.: A geostatistical approach to surface

flux estimation of atmospheric trace gases, J. Geophys. Res.-Atmos., 109, D14109,

7931

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/7903/2010/bgd-7-7903-2010-print.pdf
http://www.biogeosciences-discuss.net/7/7903/2010/bgd-7-7903-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 7903–7943, 2010

An approach for
comparing regional

carbon flux estimates

D. N. Huntzinger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

doi:10.1029/2003jd004422, 2004.
Mueller, K. L., Gourdji, S. M., and Michalak, A. M.: Global monthly averaged CO2 fluxes re-

covered using a geostatistical inverse modeling approach: 1. Results using atmospheric
measurements, J. Geophys. Res.-Atmos., 113, D21114, doi:10.1029/2007jd009734, 2008.

Mueller, K. L., Yadav, V., Curtis, P. S., Vogel, C. S., and Michalak, A. M.: Attributing the vari-5

ability of eddy-covariance CO2 flux measurements at various temporal scales using envi-
ronmental data for a mixed northern hardwood forest, Global Biogeochem. Cy., GB3023,
doi:10.1029/2009GB003642, 2010.

Nicholls, M. E., Denning, A. S., Prihodko, L., Vidale, P. L., Baker, I., Davis, K., and
Bakwin, P.: A multiple-scale simulation of variations in atmospheric carbon dioxide us-10

ing a coupled biosphere-atmospheric model, J. Geophys. Res.-Atmos., 109, D18117,
doi:10.1029/2003jd004482, 2004.

Olsen, S. C. and Randerson, J. T.: Differences between surface and column atmospheric
CO2 and implications for carbon cycle research, J. Geophys. Res.-Atmos., 109, D02301,
doi:10.1029/2003jd003968, 2004.15

Pan, Y. D., Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Pitelka, L. F., Hibbard, K.,
Pierce, L. L., Running, S. W., Ojima, D. S., Parton, W. J., Schimel, D. S., and Members, V.:
Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison
of simulations by the biogeochemistry models of the vegetation/ecosystem modeling and
analysis project (vemap), Oecologia, 114, 389–404, 1998.20

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K.,
Miller, J. B., Bruhwiler, L. M. P., Petron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R.,
Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An atmospheric perspective
on North American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci. USA, 104,
18925–18930, 2007.25

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., and
Klooster, S. A.: Terrestrial ecosystem production – a process model-based on global satellite
and surface data, Global Biogeochem. Cy., 7, 811–841, 1993.

Randerson, J. T., Thompson, M. V., Conway, T. J., Fung, I. Y., and Field, C. B.: The contribution
of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide,30

Global Biogeochem. Cy., 11, 535–560, 1997.
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Table 1. Driving parameters and major ecosystem processes included in examined biospheric
models.

CASA CASA GFEDv2 SiB 3.0

Reference Potter et al. (1993);
Randerson et al. (1997)

Van Der Werf et al. (2004; 2006) Sellers et al. (1986; 1996a, b);
Baker et al. (2003; 2008)

Temporal Resolution monthly monthly hourly

Vegetation Distribution Dorman and Sellers (1989) Dorman and Sellers (1989) Fixed; IGBP

Soil Properties FAO/UNESCO (1971) FAO/UNESCO (1971) IGBP-DIS

Disturbance cultivation cultivation; fire –

Driving variables Solar Radiation, Temp, Precip, NDVI See CASA Temp, Vapor Pressure, Wind Speed,
Solar Radiation, Precip

Photosynthesis Simple light-use efficiency model,
where the optimal light use efficiency
is modified by temperature and soil
moisture, as well as litter substrate
quality (e.g., N content), soil texture
and land use.

See CASA At leaf level: enzyme kinetics model
based on Farquhar et al. (1980) and
modified by Collatz et al. (1991). In-
tegrated over canopy by multiplying
the performance of the upper most
leaves by a PAR-use parameter.

Respiration Autotrophic respiration is an as-
sumed constant fraction of GPP. Soil
respiration is treated uniformly as an
exponential (Q10) response, with Q10
set equal to 2. Soil respiration is
scaled by the same soil moisture
submodel that regulates NPP.

See CASA Autotrophic respiration is an as-
sumed instantaneous fraction of
GPP. Heterotrophic respiration calcu-
lated using a zero-order model based
on the temperature and moisture in
each modeled soil layer.

Water Stress The water stress factor used to aug-
ment photosynthesis is a function
of CASA’s soil moisture submodel,
which calculates soil moisture con-
tent in each grid cell using monthly
Temp and Precip, along with soil tex-
ture and moisture holding capacity
data.

See CASA Water stress inhibits photosynthe-
sis and is calculated on a column-
mean basis for intermediate water
fraction between field capacity (when
no stress exists) and wilt point (when
stress is complete). Following Baker
et al. (2008) root fraction is separated
from the water stress calculation.

Carbon Pools Casa simulates the flow of carbon
between 13 carbon biogeochemical
pools. The value of carbon in each
pool depends on the flow of carbon
between pools. New NPP is allo-
cated evenly between the leaf, root,
and wood pools.

Accounts for the effects (direct and
indirect) of fire on the amount of car-
bon in aboveground biomass and lit-
ter stocks in CASA. Burned area is
derived from active fire and MODIS
datasets

No prediction of biomass; assumes
long-term carbon balance.
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Table 2. Environmental variables considered in variable selection.

Environmental Variable Units Source

Enhanced vegetation index (EVI) unitless MODIS1

Normalized difference vegetation index (NDVI) unitless
Fraction absorbed photosynthetically active radiation (fAPAR) unitless
Leaf area index (LAI) unitless
Downward short-wave radiation W m−2 NARR2

Evapotranspiration kg m−2

Monthly average precipitation kg m−2

Near surface air temperature ◦C
Soil moisture kg m−2

Specific humidity kg m−2

Q10(Q10(t)=1.5((T2m/10) unitless calculated3

Downward short-wave radiation×fAPAR W m−2 calculated
Percent crop land % IGBP4

Percent evergreen needleleaf %
Percent grassland %
Percent mixed deciduous & broadleaf forests %
Percent shrubland %

1 MODIS for NACP, gap-filled and smoothed collection 5 data (http://accweb.nascom.nasa.gov/).
2 North American Regional Reanalysis (NARR) provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA from their
Web site at (http://www.esrl.noaa.gov/psd/).
3 Olsen and Randerson (2004); T2m=temperature at 2 m above ground surface.
4 International Geosphere Biosphere Program (IGBP) Land Cover Classifications from MODIS (http://www-modis.bu.
edu/landcover/userguidelc/index.html).
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Table 3. Selected variables and their associated drift coefficients (β̂, µmol m−2 s−1) as esti-
mated from geostatistical regression for the summer months of June, July, and August. The
values inside the parentheses indicate the uncertainty in drift coefficients (Vβ̂). Values of β̂ and

Vβ̂ are based on normalized variables∗. The variance explained (R2) by the trends is provided
for each model. Dashes indicate environmental variables that were not selected for a particular
model. Note that component fluxes were only available for SiB 3.0 and CASA GFEDv2.

Environmental Variables Net Ecosystem Exchange (NEE) Gross Primary Production (GPP) Ecosystem Respiration (RE)
CASA SiB 3.0 CASA GFEDv2 SiB 3.0 CASA GFEDv2 SiB 3.0 CASA GFEDv2

Enhanced vegetation index −0.31 – – −0.67 (0.08) −0.56 (0.05) 0.41 (0.05) 0.47 (0.04)
Normalized difference vegetation index 0.19 (0.03) – – 0.44 (0.07) 0.29 (0.05) −0.29 (0.04) −0.23 (0.04)
Fraction absorbed photosynthetically active radiation (fPAR) – −0.06 (0.02) – – – −0.11 (0.02) –
Leaf area index – 0.16 (0.02) – – −0.11 (0.02) 0.22 (0.03) 0.31 (0.03)
Downward short-wave radiation 0.12 (0.03) 0.32 (0.04) – – 0.50 (0.06) – −0.35 (0.04)
Downward short-wave radiation× fPAR – – – – – – −0.18 (0.02)
Evapotranspiration −0.21 (0.01) −0.21 (0.02) −0.22 (0.01) −0.42 (0.04) −0.91 (0.03) 0.20 (0.02) 0.67 (0.02)
Precipitation 0.08 (0.01) – 0.05 (0.01) – – – –
Near surface air temperature – – −0.31 (0.04) −0.28 (0.04) – 0.19 (0.03) 0.81 (0.07)
Soil moisture – 0.06 (0.01) – 0.15 (0.02) – −0.08 (0.01) –
Specific humidity – – – – 0.36 (0.06) – −0.38 (0.05)
Q10 – −0.11 (0.02) 0.32 (0.04) – −0.21 (0.04) – −0.58 (0.07)
Percent crop land −0.08 (0.01) – −0.26 (0.01) −0.31 (0.04) −0.85 (0.03) 0.16 (0.02) 0.62 (0.02)
Percent evergreen needleleaf – – −0.20 (0.01) −0.24 (0.03) −0.90 (0.02) 0.08 (0.02) 0.69 (0.02)
Percent grassland – – −0.10 (0.01) −0.15 (0.03) −0.38 (0.02) – 0.27 (0.02)
Percent mixed deciduous and broadleaf forests −0.13 (0.01) −0.09 (0.01) −0.25 (0.01) −0.28 (0.03) −1.25 (0.02) 0.12 (0.02) 0.99 (0.02)
Percent shrubland – – −0.09 (0.01) – −0.33 (0.02) – 0.24 (0.02)

R2 0.27 0.04 0.49 0.36 0.72 0.41 0.70

∗ Variables are normalized by subtracting the mean and dividing by the standard deviation, making the normalized variable unitless. Therefore, the units on

the drift coefficients become µmol m−2 s−1 to correspond with flux.
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Fig. 1. Mean 2002 winter (December–February), spring (March–May), summer (June–August),
and fall (September–November) net ecosystem exchange (NEE) for examined models.
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Fig. 2. Covariance parameters (correlation length and semivariance) evaluated monthly for
2002 NEE for each model.
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Fig. 3. Seasonal cycle of the h0 parameter for the examined models. γmax value of 0.05
(µmol m−2 s−1)2.
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Fig. 4. 2002 summer (June–August) average experimental variograms for net ecosystem ex-
change (NEE), gross primary production (GPP), and ecosystem respiration (RE). Component
fluxes were not available for CASA. Note the different range on the y-axes.
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Fig. 5. 2002 summer (June–August) average experimental variograms for net ecosystem ex-
change (NEE) of original fluxes as provided by the biospheric models (solid-line), as well as
for the residual (unexplained portion of NEE) using only those variables commonly selected
across models (dashed-line); and all of variables selected that best explained predicted NEE
for a specific biospheric model (dotted-line).
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Fig. 6. 2002 summer (June–August) average experimental variograms for gross primary pro-
duction (GPP) and ecosystem respiration (RE) of original fluxes as provided by the biospheric
models (solid-line), as well as for the residual (unexplained portion of flux) using only those
variables commonly selected across models (dashed-line); and all of variables selected that
best explained predicted flux for a specific biospheric model (dotted-line). Component fluxes
were not available for CASA.
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