

Two-sample pooled t-test for difference of means

Why? To compare two unknown means, μ_{1} and μ_{2}.
When? The following conditions must be present for the test to be accurate and valid. All of the conditions may have to be assumed to proceed with the test.

1. σ_{1} and σ_{2} are unknown but assumed to be equal.
2. The samples are selected independently.
3. The samples are from normally distributed populations.

How:
Preliminary: • Select the level of significance, α (use 0.05 unless otherwise stated).

- Define μ_{1} and μ_{2} in the context of the problem.

1. State the null hypothesis:

$$
H_{0}: \mu_{1}=\mu_{2}
$$

2. Calculate the test statistic:
(1) First find the pooled standard deviation:

$$
s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}
$$

(2) Calculate the test statistic:

$$
t_{0}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{s_{p} \sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

3. Find the P-value (observed significance level): using a t distribution with $n_{1}+n_{2}-2$ degrees of freedom.
4. Conclusion: Reject H_{0} if the P-value is less than the level of significance; otherwise, do not reject H_{0}.
