

Two-sample pooled *t*-test for difference of means

Why? To compare two unknown means, μ_1 and μ_2 .

When? The following conditions must be present for the test to be accurate and valid. All of the conditions may have to be *assumed* to proceed with the test.

- 1. σ_1 and σ_2 are unknown but **assumed to be equal**.
- 2. The samples are selected independently.
- 3. The samples are from normally distributed populations.

How:

Preliminary: • Select the level of significance, α (use 0.05 unless otherwise stated).

- Define μ_1 and μ_2 in the context of the problem.
- 1. State the null hypothesis:

*H*₀:
$$\mu_1 = \mu_2$$

- 2. Calculate the test statistic:
 - (1) First find the pooled standard deviation:

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

(2) Calculate the test statistic:

$$t_0 = \frac{\left(\overline{x}_1 - \overline{x}_2\right)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

- 3. Find the *P*-value (observed significance level): using a *t* distribution with $n_1 + n_2 2$ degrees of freedom.
- 4. Conclusion: Reject H_0 if the *P*-value is less than the level of significance; otherwise, do not reject H_0 .