Fluxes of CO₂, CH₄ and N₂O from soil of burned grassland of central Africa

S. Castaldi¹, A. de Grandcourt², A. Rasile¹, U. Skiba³, R. Valentini⁴.

¹Dipartimento di Scienze Ambientali, Seconda Università di Napoli, via Vivaldi 43, 81100 Caserta, Italy

²Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement

(CIRAD), Persyst, UPR80, TA B-80/D, 34398 Montpellier Cedex 5, France and Centre de recherche sur la durabilité et la productivité des plantations industrielles, BP 1291, Pointe Noire, Republic of Congo.

³Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian EH26 QB, UK

⁴Department of Forest Environment and Resources (DISAFRI), University of Tuscia, via S.

Camillo de Lellis, 01100 Viterbo, Italy.

Correspondence to: S. Castaldi (simona.castaldi@unina2.it)

1 Abstract

2 In the present study the impact of fire on post-burning soil fluxes of CO₂, CH₄ and N₂O was 3 investigated in a tropical grassland in Congo Brazzaville during two field campaigns. The first was 4 conducted in the middle of the dry season, one month after burning and the second eight months 5 after burning, at the end of the growing season. Gas fluxes and several soil parameters were 6 measured in each campaign from burned plots and from an area preserved from annual burning 7 (unburned). Rain events were simulated at each campaign to evaluate magnitude and length of the 8 generated GHG flux pulses. In laboratory experiments, soil samples from the two treatments were 9 analysed for microbial biomass, net N mineralization, net nitrification, N₂O, NO and CO₂ emissions 10 under different soil water and soil temperature regimes. Results showed that fire had only a 11 transient effect on CO₂ soil emissions and CH₄ fluxes. In fact, one month after burning CO₂ fluxes 12 were significantly lower in the burned plots and the average daily CH₄ flux shifted from net 13 emission in the unburned area to net consumption in the burned plots. After eight months from 14 burning, no significant difference of both average daily CO₂ and CH₄ fluxes was observed between 15 treatments. No significant effect of fire was observed in the field on N₂O fluxes. In fact, laboratory 16 data showed that such difference could be seen only above 70% of maximum soil water holding 17 capacity. This condition of soil water content would be hardly reached in the field even after the 18 rain simulation, due to the sandy texture of this soil. In the laboratory, a stimulating effect of fire on 19 NO soil emissions at low soil water content was observed. Increasing the incubation temperature 20 from 25°C to 37°C affected negatively microbial growth, mineralization and nitrification activities 21 but stimulated N₂O and CO₂ production. Overall, data indicate that fire would have a minor impact 22 on soil GHG emissions during the post-burning period in tropical grasslands having similar soil 23 characteristics (acidic, well drained, nutrient poor)..

In the African continent fire is a widespread phenomenon. Its occurrence varies from "natural" 1 2 events, based entirely on lightning as ignition source, to actively applied burning systems, based on 3 rangeland management (Bothma and Du, 1996; Trollope ,1990). African savannas, which represent 4 approximately half of the African land surface (Scholes and Walker, 2004), are mostly characterized by the co-dominance of trees and grasses (Sankaran et al., 2005), and are distributed 5 6 in areas characterized by a clear dry season, followed by a rainy season (Huntley and Walker, 1982; 7 Scholes and Hall, 1996). Mean annual precipitation, disturbance by fire and/or herbivory, duration 8 of dry season and soil fertility are the key factors which determine the density of grasses, trees and 9 shrubs (Sankaran et al., 2005; Bond, 2008). Above 650 mm of mean annual precipitation, the water 10 input to the ecosystem would be sufficient for woody canopy closure, and the co-existence of trees 11 and grasses is the result of burning or strong herbivory pressure (Sankaran et al., 2005). Pastoral 12 activity is always combined with burning.

13 Savanna fires also influence nutrient cycling patterns by modifying plant cover and biodiversity 14 (Menault, 1977; Swaine et al, 1992; Sankaran et al., 2005) and by changing the chemical, 15 biological and physical characteristics of soil (Menaut et al., 1993; Andersson et al., 2004a,b). 16 Enhanced rates of mineralization and nitrification have been reported in burned savannas at the onset of rain season (Adedejii, 1983; Singh et al, 1991). Soil NH4⁺ concentration was found to 17 18 increase in savanna and shrubland soils after burning (Christensen, 1973; Singh et al., 1994; 19 Castaldi and Aragosa, 2002), as result of organic matter combustion and temperature induced 20 release from organo-mineral soil complexes (Raison, 1979; Kovacic et al., 1986; Prieto-Fernandez et al., 2004). Andersson et al. (2004b) measured increased values of NH₄⁺, dissolved organic N and 21 22 C in savanna soil after burning, which supported higher rates of mineralization and nitrification 23 when soil water content allowed microbial activation. This generally coincides with rain events in 24 seasonally-dry ecosystems and is accompanied by pulses of NO_x, N₂O, CO₂ emissions (Davidson 25 et al., 1993; Breuer et al., 2000; Garcia-Montiel, 2003; Butterbach-Bahl et al., 2004; van Haren et 26 al., 2005), which have variable length and magnitude, depending on fire occurrence, plant cover, soil nutrient status and soil matrix potential (Pinto et al., 2002; Rees et al., 2006; Williams et al.,
 2009). They are generally enhanced by wetting-drying cycles (Davidson et al. 1993; Mills and Fey,
 2004; van Haren et al., 2005; Jenerette et al., 2008).

4 Fire may influence the rate of soil CO₂ efflux by changing the contribution of autotrophic 5 respiration to total soil CO₂ emissions and by modifying the amount of soil organic matter in the 6 top soil. Burning of grasslands often results in earlier growth of grass in the growing season, 7 increasing the length of the biomass growth period (Ojima et al., 1994). Fire management, by 8 maintaining the dominance of grasses over shrubs and trees, increases detritus in the upper soil 9 centimetres, having grasses a shallower rooting system, compared with shrubs and trees (Ansley et 10 al., 2002). On the other hand, frequent fires (yearly to once every three year) have been reported to 11 lead to a decline in soil C as a result of fire combustion of aboveground biomass, leaf litter and soil 12 organic matter in the upper few centimeters of the soil (Fynn et al., 2003; Knicker, 2007). Fire 13 might also influence gas diffusivity, by changing soil porosity and water balance (Snyman, 2003; 14 Knicker, 2007), which influences soil potential for CH₄ oxidation. Most of the available studies on 15 tropical seasonally-dry ecosystems indicate that fire increases the net consumption of CH4 (Castaldi 16 et al., 2006).

17 Savannas are generally regarded as modest carbon sinks (per surface unit area) (Bombelli et al. 2009), or, where fire frequency is high, they are considered to have an almost neutral carbon 18 19 balance (Saarnak, 2001, Bombelli et al. 2009). This value is quite uncertainty because it has not 20 been sufficiently investigated, particularly as regards the quantification of fluxes of N₂O and CH₄. 21 Data on post burning variations of soil greenhouse gas fluxes in savannas are relatively few and do 22 not give a clear and univocal answer. Few of these studies have been conducted in Africa (Levine et 23 al., 1996; Zepp et al., 1996; Andersson et al., 2004b; Michelsen et al., 2004), while most of them 24 refer to South American ecosystems (Castaldi et al., 2006).

The present work investigates the impact of fire on post-burning fluxes of CO_2 , CH_4 and N_2O from a grassland ecosystem of central-western Africa. Specific objectives were to verify (a) whether burning increases the availability of extractable N substrates and stimulates microbial growth, microbial activity, CO_2 , N_2O and NO production, (b) whether rain events induce gas pulses of CO_2 and N_2O , the length and magnitude of which is higher in burned areas, and (c) whether fire enhances the soil CH_4 sink.

For this purpose gas fluxes were measured in the field one and eight months after the fire event in burned and unburned plots. A rain simulation experiment was also carried on. Lab experiments were performed with soil, from burned and unburned plots, incubated at different soil water contents and temperatures. The study site was chosen in Congo Brazzaville because of the presence of extended grassland areas where fire is yearly induced.

10

11 2 Materials and methods

12 2.1 Study site

13 The research site is located in the littoral region of Congo, close to Tchizalamou (4° 17'20.61"13 S 14 and 11°39'22.78" E, Kouilou district, 82 m a.s.l.). The region is covered by a forest-savanna mosaic 15 situated between the coastline and the Mayombe forest (Favier et al., 2004). The present grass and 16 shrub savannas result from two interacting factors: seasonally-dry climate and expansion of 17 populations practising savanna burning. The climate of the Tchizalamou site is a two-season 18 transition equatorial type, characterized by a long dry and cloudy season from mid-May to mid-19 October, followed by a rainy season from mid-October to mid-May. An optional short dry season 20 may occur around mid-February to mid-March. The mean annual rainfall is about 1200 mm and the 21 annual temperature is about 25° C, with seasonal variations of ca. 5° C (Pointe Noire airport 22 meteorological station 1982–2001). The herbaceous layer in these grasslands is dominated by taller 23 Poaceae such as Loudetia simplex, Loudetia arundinacea, or Andropogon shirensis with some occurrence of short Poaceae, Joncaceae and Cyperaceae (e.g., Ctenium newtonii, Bulbostylis 24 25 laniceps). The Poaceae Loudetia simplex makes up more than 50% of the above ground biomass of this grassland, which reached about 3.8 Mg ha⁻¹ of dry matter at the end of the rainy season in 2008 26

1 (de Grandcourt et al., submitted). Some shrubs of 1-2 m height are present, in particular Annona arenaria (less than 5 ha⁻¹). The soils are Ferralic Arenosols (FAO classification), homogeneous in 2 3 the landscape in terms of colour (greyish in upper soil layers to ochre in deep layers), texture (the sand content is > 85%), structure (always distinctive), chemical composition (CEC < 0.5 cmol_c kg⁻¹ 4 whatever the soil layer). At site, soil presents a bulk density of 1.43 g.cm⁻³ and a water holding 5 6 capacity of 20%. The soils in this area have a low clay content, are poor in nutrients and therefore 7 unsuitable for agricultural purposes. Similar soil characteristics are found in most of the coastal 8 region of central Africa (Kouilou region in Republic of Congo, coastal Gabon). The studied area is 9 subjected to wide fire events every year, between mid-June and mid-July, but other fires may occur 10 during the short dry season in February. Fires are generally very rapid and of low intensity. No 11 agriculture or cattle grazing are conducted in the grassland. The only human activity is the 12 mushrooms harvest, occurring at the beginning of the wet season.

13

14 2.2 Experimental design

Two intensive experimental campaigns were organized, one starting two weeks after the day of 15 burning (11th June 2007), during the dry season, and the other eight months after burning, in 16 17 February 2008. This latter period corresponded to a particularly severe "short dry season", 18 extending from mid-January to mid-April, within the period generally regarded as "wet season". As 19 the area is subjected every year to large fires, to create "unburned treatment", a grassland area of about 1/2 hectare was isolated from fire by burning preventively a perimeter of vegetation around it. 20 To simulate dry-wet cycle events, a 20 m^2 area was rain-sheltered with a transparent plastic tent, 21 22 mounted at a height of two meters (to limit sun shading and temperature increase) in each treatment 23 (unburned and burned). The tent was supposed to limit partially the input of rain on the plots in the 24 15 days before the beginning of the gas sampling. Rain simulation was performed with 30 mm of 25 rain. This amount of water corresponds to typical large rain event, based on the analysis of rain events occurring at the station in the two previous years. Each rain-sheltered area, was divided into 26

4 plots (2 m x 2.5 m), three of which were watered in different moments before the starting of gas
sampling (15, 7, 1 day prior gas sampling). One subplot in each treatment under the tent was left
unwatered. In order to verify the influence of the tent on gas fluxes and on some key soil
characteristics (water content and temperature), another subplot outside the tent was left unwatered.

5

6 2.3 Field GHG flux sampling and measurements

7 CO₂, N₂O and CH₄ fluxes were measured from each plot on 4 replicates. In order to measure N₂O 8 and CH_4 fluxes we used closed static chambers (Hutchinson and Mosier, 1981; Smith et al., 1995). 9 They were made of PVC collars (7 cm high with a diameter of 15 cm), inserted in the soil to about 5 10 cm depth in a slot previously dug by a metal cutting ring, and chamber lids (20 cm high with a 11 diameter of 15 cm), provided with a 2 way stopcock sampling port. To determine N₂O and CH₄ 12 fluxes, gas (20 ml) was sampled using gas-tight syringes from the chamber headspace at 0, 20 and 13 60 minutes after closure, stored in pre-evacuated gas-tight vials, which were then sealed with 14 thermal glue and shipped at the end of the campaign to the DSA-SUN (ITALY) for gas 15 chromatographic analysis, which occurred within a month from gas sampling. Soil temperature 16 (HI93510 thermometer, Hanna Instruments Canada Inc., Laval, Quebec) and soil water content 17 (ThetaProbe ML2, Delta-T Device Ltd, Cambridge, UK) were measured in correspondence of each 18 chamber, 5 centimeters from the chamber edge, at each sampling date.

19 Soil respiration (Rs) was measured using the Li 8100 soil respiration infrared gas analyzer system 20 with a 8 cm-diameter chamber (LiCor Inc, Lincoln, NE, USA) which was placed on collars (7 cm 21 high, 4 collars per each plot) inserted in the soil to a depth of 5 cm inside the PVC collars used for 22 N₂O and CH₄ fluxes measurements. The increase of the CO₂ concentration was measured over an 23 interval of 2 minutes (including a dead band of 30 seconds) starting at the ambient CO₂ 24 concentration. Soil temperature at 0-40 cm depth was monitored simultaneously with soil CO₂ 25 efflux using a copper/constantan thermocouple penetration probe (Li6000-09 TC, LiCor Inc) in the 26 vicinity of the soil respiration chamber. This temperature was used to normalize soil respiration 1 values at 25°C, using the temperature function: $R_{(T)} = R_{(25^\circ)} Q_{10}^{(T-25)}$, with a Q₁₀ value equal to 2.9, 2 as determined by Epron et al. (2004). This normalization was used to compare the effect of wetting 3 treatments independently from temperature effectson soil respiration. In fact, soil respiration was 4 measured in different hours of the day depending on the daily experimental load with a variation of 5 soil temperature in a range of 4.2°C in the first campaign and 2.7°C in the second campaign. The 6 volumetric soil water content in the topsoil layer (0–6 cm) was monitored just after respiration 7 measurements at 5 centimeters from chamber edge.

Gas fluxes were measured at least five times within two weeks in all plots (unburned and burned;
unwatered, and watered 1, 7 and 15 days before starting).

10

11 2.4 Soil sampling

12 Soil was sampled at 0-10 cm depth at the end of the two campaign periods from unburned and 13 burned control plots (unwatered) by taking 4 soil cores from each plot. Soil was immediately sieved 14 (2 mm mesh), air dried (2 day max required) and shipped to the department of environmental 15 sciences (DSA-SUN, Italy) and CEH UK for subsequent analyses.

16

17 2.5 Laboratory incubations

Two laboratory experiments were set up. In the first (at DSA-SUN, Italy), soil samples from the two treatments were analysed for microbial biomass, net N mineralization, net nitrification, N₂O, NO and CO₂ emissions under different soil water and soil temperature regimes. For this purpose, 50 g of sieved soil samples were repacked into columns (10 cm height, 5.5 cm inner diameter, volume occupied by the soil was about 50 cm³,) which were incubated in half litre flasks (on triplicate). Soils were incubated for 15 days at 0, 25%, 50%, 100% of maximum water holding capacity, WHC_{max}, (WHC_{max} 33% for burned and 37% for unburned soil measured on repacked sieved soil 1 columns) and at two temperatures (25°C and 37°C). In order to observe the pulse effect of water 2 addition on dry soil no pre-incubation was made. The flasks were kept open and losses of water 3 were corrected every day by gravimetrical determination. Gas fluxes were measured on days 0, 1, 3, 4 10 and 15, by closing the flask with air tight lid and sampling gas at t_0 and after 24 hours. At the 5 beginning and at the end of the incubation (15 days) soil mineral N was determined to quantify 6 mineralization and nitrification net rates, soil microbial biomass was quantified at the end of the 7 experiment.

8 For the second incubation experiment (at Centre for Ecology and Hydrology, Edinburgh), sieved 9 soil samples (100 g on triplicate) repacked into clear Perspex columns (20 cm height, 5.5 cm inner diameter, volume occupied by soil was around 100 cm³) were incubated at 25°C at 10% and 50% of 10 11 WHC_{max}. NO emissions were measured one hour, 5 days and 7 days after water addition, using a 12 gas flow-trough system described in details by Dick et al. (2001). NO was analysed by 13 chemiluminescence (42C model, Thermo-Environmental Instrument) and O₃ by UV absorption 14 (427 model, Thermo-Environmental Instrument). N₂O fluxes were determined in the same day (30 15 minutes after NO flux determination) closing the columns for 30 minutes and sampling 20 ml of gas 16 from the column headspace at t_0 and t_{30} min. N₂O concentration in the samples was determined by 17 gas chromatography. Soil cores were left uncapped in between gas sampling events and losses of 18 water were corrected everyday by gravimetrical determination

19

20 2.6 Analytical technique

Soil mineral N was extracted with 0.5 M K₂SO₄ (1:4 soil extractant v/v) and filtered with Whatman filter n°42. NH₄⁺and NO₃⁻ were then determined on extracts by potentiometric analysis using specific electrodes for NH₄⁺ (Model Orion 9512) and NO₃⁻ (Model Orion 9707). Soil total carbon and nitrogen content were determined on homogenized soil sample by flash combustion-gas chromatography on a NCS-soil Thermo FlashEA 1112. Net N mineralization and net nitrification rates, over 15 days, were calculated as the difference between the mineral N (NH₄⁺ + NO₃⁻) or the

1 sole NO₃, respectively, measured after 15 days of incubation and that measured at time zero. 2 Spectrophotometric ninhydrin method, developed by Moore and Stein (1954), was used to quantify the α -amino-N present in soil extracts (soil: extract 1:5) using 0.5 M K₂SO₄. These techniques 3 allow to quantify soluble proteins, aminoacids and groups containing α -amino-group. To estimate 4 5 soil microbial biomass N a fumigation-extraction method was used. Soil (5g) was fumigated for 24 6 h with chloroform. The fraction of the cell constituents made available by the fumigation was extracted by shaking the soil with 20 ml of 0.5 M K_2SO_4 for 1 hour and filtering the suspension 7 8 with paper filter (Whatman n°42). The ninhydrin-N deriving from the biomass was calculated as µg ninhydrin-N g⁻¹ dry soil of the fumigated samples minus the µg ninhydrin-N g⁻¹ dry soil of the 9 unfumigated samples. From the value obtained it is possible to calculate the μg biomass N g⁻¹ using 10 11 a conversion factor of 62 (Ocio and Brookes, 1990).

12 CH₄, N₂O and CO₂ determinations on field and laboratory gas samples carried on at DSA-SUN were made using a gas chromatograph (Fison series 800) equipped with an electron capture detector 13 14 (ECD) maintained at 280 °C and a flame ionization detector (FID) set up to analyse the three gases 15 on the same sample, using as well a frontflush and a backflush system (Castaldi et al 2004). Column 16 and precolumn were stainless steel packed with Porapak Q, both maintained at 60°C. N2 was used as carrier gas (flow rate 40 cm³ min⁻¹). The injection port was provided with a 2 ml loop. N₂O 17 analysis at CEH were done using a gas chromatograph (Hewlett Packard, 5890) equipped with an 18 19 electron capture detector kept a 320°C, columns were stainless steel packed with Porapak Q (oven 60°C) and Ar/CH₄ was used as carrier at a flow rate of 40 ml min⁻¹. Standards were injected every 20 21 20 samples to allow for GC drift.

22

23 2.7 Statistical analyses

As the same sites were sampled over consecutive days, a two-way "repeated measurements" analysis of variance (ANOVA) was used to determine differences of gas fluxes, considering treatment and 1 season as sources of variation of gas fluxes. When the difference was significant (P<0.05) an "all pairwise" comparison was carried out using the "Student Newman-Keul test". When normality test 2 3 failed a Kruskal-Wallis ANOVA on ranks was performed. Simple linear regressions, multiple linear 4 regression and non-linear regression analysis were performed to find the relationship between 5 independent and dependent variables (Sigma Stat, Jandel Scientific). To test for significant difference 6 between slopes and intercepts of two different linear regressions an analysis of covariance 7 (ANCOVA) by the GLM procedure was performed using SAS/STAT 9.00 (SAS Institute Inc, Cary, 8 NC, USA). Significant differences were at the P<0.05 level.

- 9
- 10 3 Results
- 11 3.1 Soil parameters

12 The analysed soil was characterized by a quite acidic pH, slightly higher in the burned plots, and 13 low content of total C and N (Table 1). Total C increased in both treatments after eight months but 14 no significant difference was observed between burned and unburned plots. Total N was 15 significantly higher after 8 months in burned plots, while one month after burning it was equally low in both treatments (Table 1). NH₄⁺-N was the dominant form of soil mineral N in both sampling 16 17 campaigns (Table 1), and it was slightly higher in burned plots (Table 1). The soil content of 18 extractable organic N, measured as α -amino-N (aminoacids, peptides, proteins, etc), was much 19 higher than mineral N in both sampling periods, and it was significantly higher in burned plots 20 (Table 1). Soil water content (average of five sampling days over 2 weeks of campaign) measured in unwatered plots was extremely low during both campaigns and, as also observed for soil 21 22 temperature, it did not change significantly between treatments (Table 1, Fig. 1). The rain-sheltering 23 tent did not seem to influence significantly soil water content and temperature in both campaigns, as 24 pointed out by the comparison of values in the unwatered plots outside and inside the tent (P>0.0525 two-way ANOVA).

When the rain event was simulated, the maximum soil water filled pore space (WFPS), measured in the top 5 soil centimetres, was about 42.8 % during the first campaign and 51% during the second campaign (Fig. 1). Soil WFPS decreased rapidly after water addition, going back to values comparable to the control plots within 10 days in the first campaign and 7 days in the second campaign (Fig. 1), with no significant difference between burned and unburned treatments (Fig 1).

6

7 3.2 Soil respiration

8 As no difference between CO₂ effluxes measured from unwatered controls outside and under the 9 tent was found, average daily fluxes of soil respiration were calculated using all the replicates from unwatered plots. The average daily soil respiration was 7.7 ± 0.3 mg of CO₂ m⁻² day⁻¹ (unburned) 10 and 5.5 \pm 0.1 (burned) mg of CO₂ m⁻² day⁻¹ (calculated from 12 days of measurements) one month 11 after burning. Eight months after burning it was 11.8 ± 0.9 mg of CO₂ m⁻² day⁻¹ (unburned) and 12 12.76 \pm 1.7 (burned) mg of CO₂ m⁻² day⁻¹ (calculated from 6 days of measurements). The increase 13 14 of soil respiration observed in the second campaign for both treatments was statistically significant 15 (P<0.05 using a two-way ANOVA). Only one month after burning (first campaign) the difference 16 between treatments was statistically significant (P<0.05 using a two-way ANOVA). Watering induced a pulse of CO₂ emission, which peaked in the first day after water addition and decreased 17 thereafter, getting back to control (unwatered) level within 10 days and 7 days in the 1^{st} and 2^{nd} 18 19 campaign, respectively, similarly to what observed for soil WFPS (Fig, 1 and 2). On a daily base CO₂ emissions from unburned watered plots were usually significantly higher than emissions from 20 21 burned watered plots one month after burning (Fig. 2 A). The maximum soil respiration values 22 induced by watering were just slightly higher eight months after burning, for both treatments.

The normalized soil respiration increased linearly with the increase of soil water filled pores space (WFPS) in both campaigns (Fig 3). The slope of the regression lines which fitted data from burned and unburned plots (equations reported in the Fig. 3) was not significantly different (P>0.05, ANCOVA) in both campaigns, whereas the y-axis intercept was significantly higher in the unburned plots compared with the burned plots (P<0.0001, ANCOVA) in both campaign. No
significant difference was observed between the frequency distribution of soil respiration values for
unburned and burned treatments in both campaigns, and data were normally distributed
(Kolmogorov-Smirnov test)

5

6 3.3 Methane fluxes

CH₄ flux in unwatered plots (the average of data from outside and under the tent) resulted in a net 7 emission in the unburned plots $(0.70 \pm 0.62 \text{ mg CH}_4 \text{ m}^{-2} \text{ day}^{-1})$ and in a net, although weak, sink in 8 the burned plots (-0.34 \pm 0.27 mg CH₄ m⁻² day⁻¹) one month after burning (1st campaign). The 9 difference was statistically significant (P<0.05). Eight months after burning (second campaign) the 10 site acted as a weak net CH₄ sink in both unburned (-0.40 \pm 0.57 mg CH₄ m⁻² day⁻¹) and burned (-11 0.75 ± 0.75 mg CH₄ m⁻² day⁻¹) plots, having here no significant difference between treatments. CH₄ 12 13 fluxes were quite variable, as shown by the flux distribution of Fig. 4. A significant difference in the 14 distribution of CH₄ fluxes among flux size classes was observed for the two treatments one month after burning (Fig. 4). In fact, a clear reduction in the frequency of fluxes above 0.80 mg $CH_4 m^{-2}$ 15 day⁻¹, and an increase of fluxes below 0 mg CH₄ m⁻² day⁻¹ was observed in burned plots (Fig. 4). 16 17 Eight months after burning the frequency distributions in the two treatments were similar (Fig. 4). 18 Analysing the relationship between soil water filled pore space and CH₄ fluxes, obtained including 19 the watered plots (Fig. 5), we can observe that in the first month after burning most of the fluxes were positive (net emission) in unburned plots and negative (net consumption) in burned plots for 20 21 values of WFPS below 15%. Above this threshold most of the measured fluxes were positive in 22 both treatments. Eight months after burning there was no clear difference between fluxes measured in the two treatments. The increase of soil WFPS did not induce a clear shift from net CH4 source 23 to net CH4 sink, as observed in the previous campaign, although above 10% of WFPS the 24 25 frequency of net CH4 emissions increased (Fig. 5).

1 3.4 Nitrous oxide fluxes

2 Nitrous oxide fluxes were quite low, and in the second campaign many of the analyzed fluxes were below the detection limit of the used technique (0.7 μ g of N₂O m⁻² h⁻¹ for single flux measurement), 3 4 which were hence assigned a value of zero. The daily average N₂O flux, calculated from 5 days of measurements in both campaigns, was 0.02 ± 0.13 mg of N₂O m⁻² day⁻¹ in unburned plots (range -5 0.7 to 0.6) and 0.02 \pm 0.10 mg of N₂O m⁻² day⁻¹ in burned plots (range -0.4 to 0.5) one month after 6 burning and -0.03 \pm 0.11 mg of $N_2O~m^{-2}~day^{-1}$ in unburned plots (range -0.6 to 0.0) and 0.0 \pm 0.4 7 mg of $N_2O \text{ m}^{-2} \text{ day}^{-1}$ in burned plots (range -0.1 to 0.2) eight months after burning. A slight shift of 8 9 flux frequency distribution toward more positive (emission) fluxes was observed in burned plots, 10 compared with unburned ones (Fig 6). The average flux in the two treatments, however, was not 11 significantly different (Table 2). Water addition did not produce any detectable increase of N₂O 12 emissions (data not shown) neither in unburned or in burned plots.

13

14 3.5 Laboratory incubations

15 In the first incubation experiment 92% of N₂O production occurred within the first day after water 16 addition, thereafter fluxes decreased exponentially within 2 days (data not shown). N₂O emission 17 was significantly stimulated in the soil sampled in burned plots but the difference with soil from unburned plots could be evidenced only above 50% of WHCmax (Fig. 7). N2O fluxes rose 18 19 exponentially with increasing water content, faster in the soil from burned plots (Fig. 7, insert). No 20 significant effect of rising temperature from 25 °C to 37°C on N₂O emissions was instead observed even at 100% of WHC_{max}. The pulse of CO₂ peaked the first day after water addition. This peak 21 22 accounted for about 50% of the total cumulative CO₂ emitted over about 15 days. At the end of the 23 incubation (day 15), CO₂ emissions from watered soil (25, 50 and 100% of WHC_{max}) were still 24 significantly higher than CO₂ emissions from unwatered soil (0% WHC_{max}) (data not shown). Fig. 7, reporting the cumulative CO_2 measured at day 1, 2, 3, 4, 5, 7 and 15 of incubation, shows that 25 respiration was significantly stimulated by water addition at 25% of WHC_{max} and further water 26

1 addition did not change significantly the rate of CO₂ production. The increase of incubation 2 temperature from 25°C to 37°C stimulated significantly CO₂ production and respiration was 3 significantly higher in the watered soil from burned plots (Fig. 7). Microbial biomass N, net N 4 mineralization and net nitrification were lower at 37°C than at 25°C (Fig. 8). Net nitrification was 5 close to zero at all tested soil water contents at 37°C. At 25°C both nitrification and microbial 6 biomass showed a maximum between 25 and 50% of WHC_{max}, whereas at 100% of WHC_{max} 7 biomass growth was significantly reduced and no net nitrification was observed. Net N 8 mineralization increased, with increasing soil water content up to 100% of WHC_{max} (Fig 7, Fig.8), 9 similarly to N₂O production. The effect of burning was in most cases not significant, although 10 values of microbial biomass N were slightly higher in burned plots. Soil from burned plots showed 11 higher NO emission than soil from unburned plots and NO fluxes were significantly higher at 10% 12 of WHC_{max} compared with 50% WHC_{max}, for both treatments (Fig 9). The NO pulse induced by 13 water addition (zero flux at time zero, 1 hour before watering, data not shown) reduced 14 significantly after 5 days of incubation. At 10% WHC_{max} no N₂O production was detected whereas at 50% of WHC_{max} N₂O emissions never exceeded 0.10 ng N $g^{-1} h^{-1}$. 15

16

17 4 Discussion

18 4.1 Soil respiration

Data indicate that fire had only transient effects on soil respiration. Burned plots emitted significantly less CO_2 than unburned plots during the first campaign (one month after burning, dry season) but this difference was no longer detectable eight months after burning (growing season). A first possible explanation for the observed difference in CO_2 emissions one month after burning is that fire destroyed the above-ground vegetation, which had still about 20% of green biomass at the moment of fire occurrence, contributing to the maintenance activity of roots of these perennial grass species. Hence, fire might have reduced the autotrophic component of the soil respiration in burned

1 plots during the first campaign. Fire also consumed most of the litter, which in these grasslands 2 typically dries out as standing litter before falling on the ground. This litter represents a source of C 3 for microbial respiration during the decomposition process. One season of fire exclusion was not 4 sufficient to vary significantly the soil content of total C in unburned plots. On the contrary, a higher content of extractable α-amino-N was found in burned soil one month after fire. Andersson 5 6 et al. (2004) reported an increase of dissolved organic C in savanna soils immediately after burning, 7 which he suggested might in part include low molecular weight compounds released from the 8 microbial biomass killed by heating, generally including also peptides and proteins. Laboratory 9 analyses showed that in very dry soils (unwater soil treatment) microbial biomass still persisted 10 after more than a month from sampling, but its activity was limited. However, the addition of water 11 quickly stimulated microbial growth, activity and CO₂ production. A similar recovering capacity of 12 microbes is expected also in the field. The similar rate of increase of CO₂ emissions in function of 13 increasing soil water content observed in the burned and unburned plots (field data), despite the 14 very different condition of plant cover (20% of active plant standing tissue still present in unburned 15 plots), suggests that soil microbial activity might be the main contributor to the enhanced CO₂ 16 efflux observed after water addition. The extra CO₂ flux occurring in the unburned plots at all water 17 contents (higher intercept with y-axis) might be due to root respiration. However, our experimental 18 design did not allow a conclusive partitioning of the CO₂ flux between autotrophic and 19 heterotrophic sources. Both laboratory and field data showed that no less than 10 days were 20 necessary to extinguish the CO₂ pulse generated by water addition in the dry season and that the 21 maximum emission occurred within a day after water addition. Several authors reported quick 22 response of the ecosystem respiration to rain pulses in dry conditions (Jenerette et al 2008, Xu and 23 Baldocchi 2004, Williams et al 2009), but pulses generally came to an end from one to three days. 24 Eight months after burning the pulse peak of CO₂ was comparable to the pulse obtained in the first 25 campaign, but its lifetime was shorter (7 days) and the background (unwatered) rate of soil 26 respiration was higher. In this period both treatments presented similar plant cover density and

1 grass height, and the soil showed a higher content total C and α -amino N, probably reflecting the 2 higher C and N inputs in the soil associated to roots growth, turnover and exudation. These 3 conditions might have stimulated microbial growth and activity resulting in higher rates of soil 4 respiration but also a faster consuming of substrates made available by water addition to the dry soil 5 (shorter pulse lifetime).

6 Previous studies in Nigeria, Venezuela and South Africa showed no difference of soil CO₂ 7 emissions between burned and unburned savannas (Adedeji, 1983; Hao et al., 1988; Zepp et al., 8 1996). Aslight stimulating effect of fire on soil respiration was found in Brazilian cerrado, but only 9 after wetting the soil (Poth et al., 1995). Michelsen et al. (2004) found higher soil respiration in 10 forest and woodland subject to sporadic burning compared with frequently burnt grasslands. 11 Similarly to the results found in the present study, lower soil respiration rates were found in burned 12 grassland savannah areas in Ethiopia compared with unburned areas (Andersson et al., 2004).

13

14 4.2 Methane fluxes

15 The very low water content of the soil at the time of measurements, and its loose structure, mainly 16 dominated by sand, is expected to create favourable conditions for significant methanotrophic 17 activity (Striegl et al., 1992; Potter et al., 1996; Castaldi and Fierro, 2005; Castaldi et al., 2006). 18 However, data showed that the unburned grassland plots were a CH_4 source rather than a good sink. 19 Similar results were previously reported for some tropical ecosystems (Hao et al., 1988; Poth et al., 20 1995; Scharffe et al., 1990; Sanhueza et al., 1994; Zepp et al., 1996: Castaldi et al., 2004; Brümmer 21 et al., 2009). We observed net CH₄ emissions even at 7% of WFPS, hence at very dry conditions, 22 which makes quite unlikely for CH₄ source to derive from anaerobic hotspots of microbial activity, 23 as hypothesised in other studies (Castaldi et al., 2004; Verchot et al., 2000). A more probable source 24 of CH₄ might be termite activity, also considering that site presented a very high abundance of 25 termite nests. Care was taken at the moment of sampling to keep distant from termite nests,

1 however termite activity can occur several meters far from the nest, and the pattern of this source 2 cannot be easily predicted. Fire reduced significantly the frequency of net CH₄ emissions, and this 3 was particularly evident one month after burning. We could hypothesise that fire temporarily 4 reduced termite activity outside the nest. Indeed even CH₄ production inside the termite nests was significantly reduced in the first months after burning (Castaldi and de Grandcourt, in preparation). 5 6 Other authors have evidenced that clearance of savanna soil surface (grasses and litter) by burning 7 produces a significant reduction of the methane emission from the soil-grass system (Poth et al., 8 1995; Zepp et al., 1996). Indeed, with the destruction of most of the litter, burning reduces that 9 amount of palatable substrate that termites can use, either directly as litter or as soil organic matter. 10 Soil-feeding termites, as those belonging to the genus Cubitermes or those feeding on litter such as 11 Nasutitermes, both found at the site, may be affected by substrate reduction as a consequence of 12 fire. As observed for CO₂ fluxes, the effect of fire on CH₄ fluxes was transient. In fact eight months 13 after burning the frequency distribution of CH₄ fluxes in the two treatments was not different.

14 4.3 Nitrous oxide emissions

15 The analysed grassland ecosystem showed extremely low N₂O fluxes, as also found in previous 16 studies in savannas characterized by acidic and nutrient poor soils (Scholes et al., 1997; Andersson 17 et al. 2004a,b: Castaldi et al., 2006). In general, the range of fluxes measured in undisturbed savanna ecosystems is quite narrow, going from small uptake values to few mg N₂O-N m⁻² day⁻¹ 18 19 (Castaldi et al., 2006), except if soil receives significant amount of fertilizer (Brümmer et al., 2008). 20 Higher N₂O fluxes in undisturbed savannas characterized by nutrient poor soil were found only in 21 isolated patches of nutrient rich soil (Otter and Scholes, 2000) or in savannas located in valleys 22 characterized by higher soil water retention and accumulation of organic matter (Sanhueza et al., 1990). Higher N₂O fluxes in seasonally dry tropical environments are reported only for forests 23 24 (Sanhueza et al., 1990; Verchot et al., 1999, Castaldi et al., 2006). A combination of environmental factors contribute to keep N₂O fluxes low: good soil drainage, low pH and low nutrient status 25

1 (Castaldi et al., 2006), as reported in the present study. During the dry season the low soil water 2 content represents a strong controlling factor, which limits the possibility of development of 3 anaerobic microsites, where N₂O production could take place (Firestone and Davidson, 1989; 4 Smith, 1990). In the studied site, the water filled pore space (WFPS %) was always below 51%, 5 even immediately after a big rain event simulation. The very good drainage and sandy texture of the soil would probably not allow much higher WFPS even in case of more frequent rain events (onset 6 7 of rain season), thus keeping the WFPS value below the level at which O₂ diffusion is sufficiently 8 reduced to allow a sharp increase of N₂O production (Davidson, 1991). In fact, N₂O production by 9 denitrification generally increases exponentially between 60% and 90% of WFPS, but also N₂O 10 production by nitrifiers improves as soil water content increases and aeration becomes restricted, 11 with optimum values around 60% of WFPS (Davidson, 1991). Coherently with these results, the 12 rain simulation at our site did not induce a significant increase of N₂O emissions. Laboratory 13 incubations showed that only above 75% of WHC_{max} the increase of N₂O production was sharper. 14 This water content was much higher than the content required to stimulate significantly CO₂ 15 production. A second limiting factor for N₂O production in this ecosystem is represented by the low 16 content of soil C and N, in particular N in the form of mineral N. During the dry season, 17 mineralization and nitrification activity might produce low amounts of mineral N, as demonstrated 18 by laboratory data. At the onset of the rain season, the increase of soil water content might 19 significantly stimulate mineralization activity leading to an increase of mineral N availability. This 20 would favour the occurrence of pulses of NO and N2O, although the resprouting of shrubs and 21 growth of herbaceous plants may lead to competition for mineral N between plants and microbes 22 (Bate, 1981). The manipulation rain experiments proposed in this and other studies are probably 23 not sufficient to simulate the conditions occurring at the onset of the rain season and hence lower 24 rates of N₂O emissions should be expected compared with those that could be measured when rain 25 season starts. Laboratory data showed one small rain event was sufficient to treble NO emission in burned plots, although the pulse was quite short-lived. Similar results were shown in Brasilian 26

1 cerrado by Poth et al. (1995) who measured NO fluxes in watered burned sites (fire 1 day or 1 2 month before) up to three times higher than fluxes from unburned sites. As previously reported by Levine et al. (1996) and Johansson et al. (1988) data suggest that N gaseous emissions in burned 3 4 savannas and tropical grassland might be dominated by NO and that N₂O might represent only a minor fraction. Fast spreading fires, such as those occurring in grassland savannas, do not seem to 5 6 affect microbial biomass and activities involved in N transformations. Higher N₂O emissions 7 following burning might be expected only in soils with high clay content and poor drainage during 8 the rain season.

9

10 5 Conclusions

11 Laboratory and field observations showed that fire increases soil availability of extractable N, both 12 as mineral N and organic compounds, and significantly stimulate NO production even at low soil 13 water content. On the contrary, only at very high soil water content (above 70% of WHCmax) we 14 observed significant N₂O fluxes, which resulted higher in the burned area soil. Hence, isolated rain 15 events in the field may not be sufficient to support significant N₂O losses from both unburned and 16 burned areas. On the contrary, even small rain pulse seem to stimulate CO₂ emissions. However, no 17 enhancement of soil respiration was observed in the burned plots in the two field campaigns. The 18 studied soil was not a CH₄ sink as expected on the base of soil and climatic characteristics, and 19 during at least part of the year, it was a slight CH₄ source, even in very dry conditions. However, 20 fire shifted the CH₄ source/sink towards more negative values (consumption). Although data 21 showed that fire did not increase post-burning soil GHG emissions these findings would need a 22 more extended spatial replication and repeated temporal observations to be generalized.

23

Acknowledgements. Financial support for this scientific research came from the European Commission, which has been funding the project "CarboAfrica" (GOCE, 037132) under the VI Framework Programme (FP6).

- 1
- 2 References
- Andersson, M., Michelsen, A., Jensen, M., Kjoller, A.: Tropical savannah woodland: effects of
 experimental fire on soil microorganisms and soil emissions of carbon dioxide, Soil Biol. Biochem.,
 36, 849–858, 2004a.
- Andersson, M., Michelsen, A., Jensen, M., Kjoller, A., Gashew, M.: Carbon stock, soil respiration
 and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems, Soil Biol.
 Biochem., 36,1707–1717, 2004b.
- 9 Ansley, R.J., Dugas, W.A., Heuer, M.L., Kramp, B.A.: Bowen ratio/energy balance and scaled leaf
- 10 measurements of CO_2 flux over burned Prosopsis savanna, Ecol. Appl., 12, 948 961, 2002.
- 11 Bate, G.C.: Nitrogen cycling in savanna ecosystems, edited by Clark, F.E., Rosswall, T., Terrestrial
- 12 Nitrogen Cycles, Ecological Bulletin (Stockholm), 33, 463-475, 1981.
- 13 Bombelli, A. Henry, M., Castaldi, S., Adu-Bredu, S., Arneth, A., de Grandcourt, A., Grieco E.,
- Kutsch, W.L., Lehsten, V., Rasile, A., Reichstein, M., Tansey, K., Weber, U., Valentini, R.: The
 Sub-Saharan Africa carbon balance, an overview, Biogeoscience, 6, 2193-2205, 2009.
- Bond, W.J.: What Limits Trees in C4 Grasslands and Savannas? Annu. Rev. Ecol. Evol. S, 39, 641659, 2008.
- Bothma, J., Du, P.: Game counts, editd by Du, P., Bothma, J. Game Ranch Management, National
 Book Printers, Western Cape, 1996.
- 20 Breuer, L., Papen, H., Butterbach-Bahl, K.: N₂O emission from tropical forest soils of Australia, J.
- 21 Geophys. Res., 105, 26,353–26,367, 2000.
- 22 Brümmer, C., Brüggemann, N., Butterbach-Bahl, K., Falk, U., Szarzynski, J., Vielhauer, K.,
- 23 Wassmann, R., Papen, H.: Soil-Atmosphere Exchange of N₂O and NO in Near-Natural Savanna and
- Agricultural Land in Burkina Faso (W. Africa), Ecosystems, 11, 582–600, 2008.

- Brümmer, C., Papen, H., Wassmann, R., Brüggemann, N.: Fluxes of CH₄ and CO₂ from soil and
 termite mounds in south Sudanian savanna of Burkina Faso (West Africa), Global Biogeochem.
 Cy., 23, GB1001, doi:10.1029/2008GB003237, 2009.
- 4 Butterbach-bahl, K., Kock, M., Willibald, G. Hewett, B., Buhagiar, S., Papen, H. Kiese, R.:
- 5 Temporal variations of fluxes of NO, NO₂, N₂O, CO₂, and CH₄ in a tropical rain forest ecosystem,
- 6 Global Biogeochem. Cy., 18, GB3012, 10.1029/2004GB002243, 2004.
- Castaldi, S., Ermice, A., Strumia, S.: Fluxes of N₂O and CH₄ from soils of savannas and seasonallydry ecosystems, J. Biogeogr., 33, 401-415, 2006.
- 9 Castaldi, S., Fierro, A.: Soil atmosphere methane exchange in undisturbed and burned Mediterranean
- 10 shrubland of Southern Italy, Ecosystems, 8(2), 182-190, 2005.
- 11 Castaldi, S., De Pascale, R.A., Grace, J., Montes, R., SanJosé, J. : Nitrous oxide and Methane fluxes
- 12 from soil of Orinoco savanna under different land use, Global Change Biol., 10, 1947-1960. 2004.
- Castaldi, S., Aragosta, D.: Factors influencing nitrification and denitrification variability in a natural
 and fire disturbed Mediterranean shrubland, Soil Biol. Fertil., 36, 418-425, 2002.
- 15 Castaldi, S., de Grandcourt A.: CH_4 fluxes from termite activity in African grassland savanna and 16 its influence on the CH_4 flux budget at site. in preparation.
- 17 Christensen, N.L.: Fire and the nitrogen cycle in California chaparral, Science, 181, 66–68, 1973.
- 18 Davidson, E.A.: Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems, edited by
- 19 Rogers, J.E., Whitman, W.B, Microbial production and consumption of greenhouse gases: Methane,
- 20 nitrogen oxides and halomethanes, pp. 219-235. American Society for Microbiology, Washington,
- 21 D.C., 1991.
- 22 Davidson, E.A., Matson, P.A., Vitousek, P.M., Riley, R., Dunkin, K., Garcia-Mendez, G., Maass,
- 23 J.M.: Processes regulating soil emission of NO and N₂O in a seasonally dry tropical forest, Ecology,
- 24 74, 130–139, 1993.

- 1 de Grandcourt, A., Thongo Mbou, A., Kinana, A., Ngoyi, S., Minzele, C., Caquet, B., Nouvellon,
- Y., Saint-André, L.: Vegetation dynamics, aboveground and belowground productions in tropical
 grassland in Congo (in prep)
- 4 Dick, J., Skiba, U., Wilson, J.: The effect of rainfall on NO and N₂O emissions from Ugandan
 5 agroforest soils, Phyton –Ann. Rei. Bota. A, 41, 73 80, 2001.
- Epron, D., Ngao, J., and Granier, A.: Interannual variation of soil respiration in a beech forest
 ecosystem over a six-year study, Ann. For. Sci., 61, 499–505, 2004.
- 8 Favier, C., de Namur, C., Dubois, M.A.: Forest progression modes in littoral Congo, Central
 9 Atlantic Africa, J. Biogeogr., 31, 1445-1461, 2004.
- 10 Firestone, M.K., Davidson, E.A.: Microbiological basis of NO and N₂O production and
- 11 consumption in soil, edited by Andreae, M.O., Schimel, D.S. Exchange of trace gases between
- 12 terrestrial ecosystems and the atmosphere, pp.7-21, John Wiley & Sons, New York, USA, 1989.
- Fynn, R.W.S., Haynes, R.J., O'Connor, T.G.: Burning causes long-term changes in soil organic
 matter content of a South African grassland. Soil Biol. Biochem., 35, 677-687, 2003.
- 15 Garcia-Montiel, D.C., Steudler, P.A., Piccolo, M., Neill, C., Melillo, J.M., Cerri, C.C.: Nitrogen
- 16 oxide emissions following wetting of dry soils in forest and pastures in Rondonia, Brazil,
- 17 Biogeochemistry, 64, 319–336, 2003.
- Hao, W.M., Scharffe, D., Crutzen, P.J., Sanhueza, E.: Production of N₂O, CH₄ and CO₂ from soils
 in the tropical savannah during the dry season, J. Atmos. Chem., 7, 93-105, 1988.
- Hutchinson, G.L., Mosier, A.R.: Improved soil cover method for field measurements of nitrous
 oxide fluxes, Soil Sci. Soc. Am. J., 45, 311-316, 1981.
- 22 Huntley, B.J., Walker, B. H.: Ecology of tropical savannas. Berlin: Springer-Verlag, 1982.
- 23 Jenerette, G.D., Scott, R.L., Huxman, T.E.: Whole ecosystem metabolic pulses following
- 24 precipitation events, Funct. Ecol., 22, 924–930, 2008.
- 25 Johansson, C., Rodhe, H., Sanhueza, E.: Emissions of NO in tropical savanna and a cloud forest
- during the dry season, J. Geophys. Res.-Atmos, 93, 7180-7192, 1988.

- Knicker, H.: How does fire affect the nature and stability of soil organic nitrogen and carbon? A
 review. Biogeochemistry, 85, 91–118, 2007.
- Kovacic, D.A.D., Swift, M., Ellis, J.E., Hakonson, T.E.: Immediate effects of prescribed burning on
 mineral soil nitrogen in ponderosa pine of New Mexico, Soil Science, 141, 71–76, 1986
- 5 Levine, J. S., Winstead, E. L., Parsons, D. A. B., Scholes, M. C., Scholes, R. J., Cofer, W. R.,
- 6 Cahoon, D. R., Sebacher D. I.: Biogenic soil emissions of nitric oxide (NO) and nitrous oxide
- 7 (N₂O) from savannas in South Africa: The impact of wetting and burning, J. Geophys. Res.-Atmos,
 8 101(D19), 23,689–23,697, 1996.
- 9 Menault, J.C.: Evolution of plots protected from fire since 13 years in a guinea savanna of Ivory
- 10 Coast, 4th Symp. Tropical Ecology, Panama, 1977.
- 11 Michelsen, A., Andersson, M., Jensen, M., Kjøller, A., Gashew, M.: Carbon stocks, soil respiration
- 12 and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems, Soil Biol.
- 13 Biochem., 36, 1707–1717, 2004.
- Mills, A. J., Fey, M.V.: Frequent fires intensify soil crusting: Physico-chemical feedback in the
 pedoderm of long-term burn experiments in South Africa, Geoderma, 121, 45–64, 2004.
- 16 Moore, S., Stein, W. H.: A modified ninhydrin reagent for the photometric determination of amino
- 17 acids and related compounds, J. Biol. Chem., 211, 907-913, 1954.
- Ojima, D., Schimel, D.S., Parton, W.J., Owensby, C.E.: Long and short-term effects of fire on
 nitrogen cycling in tallgrass prairie, Biogeochemistry, 24, 67–84, 1994.
- Otter, L.B., Scholes, M.C.: Methane sources and sinks in a periodically flooded South African
 savanna, Global Biogeochem. Cy., 14, 97-111, 2000.
- 22 Pinto, A.S., Bustamante, M.M.C, Kisselle, K., Burke, R., Zepp, R., Viana, L.T., Varella, R.F.,
- 23 Molina, M.: Soil emissions of N₂O, NO, and CO₂ in Brazilian savannas: Effects of vegetation type,
- seasonality, and prescribed fires, J. Geophys. Res., 107 (D20), 8089, doi:10.1029/2001JD000342,
- 25 2002.

- 1 Poth., M., Anderson, I.C., Miranda, H.S., Miranda, A.C., Riggan, P.G.: The magnitude and
- 2 persistence of soil NO, N₂O, CH₄ and CO₂ fluxes from burned tropical savanna in Brasil, Global
- 3 Biogeochem. Cy., 9, 503-513, 1995.
- 4 Potter, C.S., Davidson, E.A., Verchot, L.V.: Estimation of global biogeochemical controls and
 5 seasonality in soil methane consumption, Chemosphere, 32, 2219–46, 1996.
- 6 Prieto-Fernandez, A., Carballas, M., Carballas, T.: Inorganic and organic N pools in soils burned or
 7 heated: immediate alteration and evolution after forest wildfires, Geoderma, 121, 291–306, 2004.
- Raison, R.J.: Modification of the soil environment by vegetation fires, with particular reference to
 nitrogen transformations: a review, Plant and Soil 51, 73–108, 1979.
- Rees, R.M., Wuta, M., Furley, P.A., Li, C.: Nitrous oxide fluxes from savanna (miombo)
 woodlands in Zimbabwe, J. Biogeogr., 33, 424-437, 2006.
- Saarnak, C. F.: A shift from natural to human-driven fire regime: implications for trace-gas
 emissions, Holocene, 11, 373–375, 2001
- 14 Sanhueza, E., Hao, W.M., Scharffe, D., Donoso, L., Crutzen, P.J.: N₂O and NO emissions from
- soils of the Northern Part of the Guayana Shield, Venezuela, J. Geophys. Res., 95, 22,481-22,488,
 16 1990.
- 17 Sankaran, M., Hanan, N.P., Scholes, R.J., Ratnam, J., Augustine, D.J., Cade, B.S., Gignoux, J.,
- 18 Higgins, S.I., Le Roux, X., Ludwig, F., Ardo, J., Banyikwa, F., Bronn, A., Bucini, G., Caylor, K.K.,
- 19 Coughenour, M.B., Diouf, A., Ekaya, W., Feral, C.J., February, E.C., Frost, P.G.H., Hiernaux, P.,
- 20 Hrabar, H., Metzger, K.L., Prins, H.H.T., Ringrose, S., Sea, W., Tews, J., Worden, J., Zambatis,
- 21 N.: Determinants of woody cover in African savannas, Nature, 438, 846-849, 2005.
- 22 Scholes, M.C., Martin, R., Scholes, R.J., Parsons, D., Winstead, E.: NO and N₂O emissions from
- 23 savanna soils following the first simulated rains of the season, Nutr. Cycl. Agroecosys., 48, 115–
- 24 122, 1997.

- 1 Scholes, R.J., Hall, D.O.: The carbon budget of tropicals savannas, woodlands and grasslands,
- 2 edited by Breymeyer, A.I., Hall, D.O., Melillo, J.M., Agren, G.I. Global Change: Effects on
- 3 Coniferous Forest and Grasslands, SCOPE, 56, 69-100, 1996.
- 4 Scholes, R.J., Walker, B.H.: An African Savanna: Synthesis of the Nylsvley Study. Cambridge
- 5 Studies in Applied Ecology and Resources Management, Cambridge University Press, pp.300 2004.
- 6 Schwartz, D., Deschamps, R., Elenga, H., Lanfanchri, R., Mariotti, A., Vincens, A. : Les savanes du
- 7 Congo: une végétation spécifique de l'holocène supérieur, 2nd Symposium on African Palynology,
- 8 Pub. Occas, CIFEG, 1995/31, Orléans, pp. 99–108, 1995.
- 9 Singh, R.S., Raghubanshi, A.S., Singh, J.S.: Nitrogen-mineralization in dry tropical savanna: effects
 10 of burning and grazing, Soil Biol. Biochem., 23, 269–273, 1991.
- Singh, R.S.: Changes in soil nutrients following burning of dry tropical savanna, Int. J. Wildland
 Fire, 4, 187–194, 1994.
- Smith, K.A.: Anaerobic zones and denitrification in soil: modelling and measurements, edited by
 Revsboech, N.P., Sørensen, J., Denitrification in Soil and Sediment, Plenum Press, New York, pp.
 228-240, 1990.
- Smith, K.A., Clayton, H., McTaggart, I.P., Thomson, P.E., Arah, J.R.M., Scott, A.: The
 measurement of nitrous oxide emissions from soil by using chambers. Phil. Trans. R. Soc. Lond.
 351, 327-338, 1995.
- Snyman, H.A.: Short-term response of rangeland following an unplanned fire in terms of soil
 characteristics in a semi-arid climate of South Africa, J. Arid. Environ., 55, 160-180, 2003.
- Striegl, R.G., McConnaughey, T.A., Thorstenson, D.C., Weeks, E.P., Woodward, J.C.:
 Consumption of atmospheric methane by desert soils, Nature, 357:145–147, 1992.
- Swaine, M.D., Hawthorne, W.D., Orgle, T.K.: The effects of fire exclusion on savanna vegetation
 at Kpong, Ghana, Biotropica, 24, 166–172, 1992.
- 25 Trollope, W.S.W.: Veld management with specific reference to game ranching in the grassland and
- 26 savanna areas of South Africa, Koedoe, 33, 77-86, 1990.

- 1 van Haren, J.L.M., Handley, L.L., Biel, K.Y., Kudeyarov, V.N., McLain, J.E.T., Martens, D.A.,
- 2 Colodner, D.C.: Drought-induced nitrous oxide flux dynamics in an enclosed tropical forest, Glob.
- 3 Change Biol., 11, 1247–1257, 2005.
- Verchot, L.V., Davidson, E.A., Cattânio, J.H., Ackerman, I.L.: Land use change and
 biogeochemical controls of methane fluxes in soils of Eastern Amazonia, Ecosystems, 3, 41-56,
 2000.
- Verchot, L.V., Davidson, E.A., Cattânio, J.H., Ackerman, I.L., Erickson, H.E., Keller, M.: Land use
 change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia,
- 9 Global Biogeochem. Cy., 13, 31-46, 1999.
- Williams, C.A., Hanan, N., Scholes, R.J., Kutsch, W.: Complexity in water and carbon dioxide
 fluxes following rain pulses in an Africa savanna, Oecologia, 161, 469-480, 2009.
- Xu, L.K., Baldocchi, D.D.: Seasonal variation in carbon dioxide exchange over a Mediterranean
 annual grassland in California, Agric. For. Meteorol., 123, 79–96, 2004.
- 14 Zepp, R. G., W. L. Miller, R. A. Burke, A. Dirk, B. Parsons, Scholes, M. C.: Effects of moisture
- 15 and burning on soil-atmosphere exchange of trace carbon gases in a southern African savanna, J.
- 16 Geophys. Res., 101, 23,699–23,706, 1996.

- Table 1 – Some soil chemical characteristics of the unburned and burned plots soils measured
- during the first (one month after burning) and second field campaign (eight months after burning)
- for the top 10 cm of soil. Different superscript letters indicate significant differences (two-Way

1 st campaign		2 nd campaign	
Unburned	Burned	Unburned	Burned
$3.65^{a} \pm 0.03$	$3.73^{a} \pm 0.01$		
$0.95^{a}\pm0.07$	$1.17^{ab}\pm0.99$	$1.53^{\text{b}} \pm 0.22$	$2.03^{b} \pm 0.30^{b}$
$0.06^b\pm0.01$	$0.08^{b}\pm0.01$	$0.02^a\pm0.03$	$0.26^{c} \pm 0.11$
$2.72^b \pm 0.01$	$3.44^b \pm 0.70$	$0.14^{a}\pm0.19$	$5.41^{c} \pm 0.23$
$0.34^{ab}\pm0.07$	$0.38^{bc}\pm0.04$	$0.18^{a} \pm 0.10$	$0.58^{\circ} \pm 0.16$
$13.50^{a}\pm5.92$	$26.42^{c} \pm 1.64$	$21.71^b \pm 0.28$	$27.68^{c} \pm 0.9$
$3.6^{ab}\pm0.2$	$3.9^{b}\pm0.2$	$3.8^{ab} \pm 0.1$	$2.8^{a}\pm0.2$
$26.7^{a} \pm 1.2$	26.5 ^a ± 1.2	$26.7^{a} \pm 1.2$	$26.9^{a} \pm 0.6$
	Unburned $3.65^{a} \pm 0.03$ $0.95^{a} \pm 0.07$ $0.06^{b} \pm 0.01$ $2.72^{b} \pm 0.01$ $0.34^{ab} \pm 0.07$ $13.50^{a} \pm 5.92$ $3.6^{ab} \pm 0.2$ $26.7^{a} \pm 1.2$	UnburnedBurned $3.65^a \pm 0.03$ $3.73^a \pm 0.01$ $0.95^a \pm 0.07$ $1.17^{ab} \pm 0.99$ $0.06^b \pm 0.01$ $0.08^b \pm 0.01$ $2.72^b \pm 0.01$ $3.44^b \pm 0.70$ $0.34^{ab} \pm 0.07$ $0.38^{bc} \pm 0.04$ $13.50^a \pm 5.92$ $26.42^c \pm 1.64$ $3.6^{ab} \pm 0.2$ $3.9^b \pm 0.2$ $26.7^a \pm 1.2$ $26.5^a \pm 1.2$	UnburnedBurnedUnburned $3.65^a \pm 0.03$ $3.73^a \pm 0.01$ $0.95^a \pm 0.07$ $1.17^{ab} \pm 0.99$ $1.53^b \pm 0.22$ $0.06^b \pm 0.01$ $0.08^b \pm 0.01$ $0.02^a \pm 0.03$ $2.72^b \pm 0.01$ $3.44^b \pm 0.70$ $0.14^a \pm 0.19$ $0.34^{ab} \pm 0.07$ $0.38^{bc} \pm 0.04$ $0.18^a \pm 0.10$ $13.50^a \pm 5.92$ $26.42^c \pm 1.64$ $21.71^b \pm 0.28$ $3.6^{ab} \pm 0.2$ $3.9^b \pm 0.2$ $3.8^{ab} \pm 0.1$ $26.7^a \pm 1.2$ $26.5^a \pm 1.2$ $26.7^a \pm 1.2$

ANOVA, P<0,005) among values in the same row.

1

2 Figure captions

Figure 1- Soil water filled pore space (%) (0-10 cm soil depth) in function of time after watering
(days) during the 1st campaign (A) one month after burning and the 2nd campaign (B) eight months
after burning. The vertical bars correspond to one standard error (n=3 to 12).

6

Figure 2 - Soil respiration normalized at 25°C (g CO₂ m⁻² d⁻¹) in function of time after watering
during the 1st campaign (A) one month after burning and the 2nd campaign (B) eight months after
burning. The vertical bars correspond to one standard error (n=3 to 9).

10

Figure 3 - Soil respiration normalized at 25° C (g CO₂ m⁻² d⁻¹) in function of water filled pores space (%) during the 1st campaign (A) one month after burning and the 2nd campaign (B) eight months after burning. One point is one single-chamber measurement. Lines (continuous unburned, dotted burned) represent linear regressions indicated by the correspondent equations.

15

Figure 4 - The frequency distribution of single-chamber estimates of CH_4 fluxes (mg CH_4 m⁻² d⁻¹) measured in unburned and burned plots (no water treatment) during the 1st campaign (A) one month after burning (n=32) and the 2nd campaign (B) eight months after burning (n=30). The range of each size class interval is 0.2 mg CH_4 m⁻² d⁻¹.

20

Figure 5 – Single chamber CH₄ fluxes (mg CH₄ m⁻² d⁻¹) plotted versus soil water filled pore space (%) reported for the 1st campaign (A) one month after burning and the 2nd campaign (B) eight months after burning. In graph A line represents the fit of data from burned plots ($y_0 = -0.53$; a = 0.008; b = 1.54; $R^2 = 0.76$).

Figure 6 - The frequency distribution of single-chambers estimates of N₂O fluxes (mg N₂O-N m⁻² d⁻¹) measured in unburned and burned plots (no water treatment) during the 1st campaign (A) one month after burning (n=32) and the 2nd campaign (B) eight months after burning (n=30). The range of each size class interval is 0.2 mg N₂O-N m⁻² d⁻¹.

5

Figure 7 – (A) Emissions of N₂O (ng N₂O g⁻¹ soil dry weight h⁻¹) measured during the day of maximal N₂O production after water addition (day 1) and (B) cumulative CO₂ emissions (mg CO₂ g⁻¹ soil dry weight) over 15 days from soil of burned and unburned plots incubated at 0, 25, 50 and 100 % of water saturation (WS) and at two temperatures (25°C or 37°C). In the small insert is plotted N₂O emissions (ng N₂O g⁻¹ soil dry weight h⁻¹) vs. % of WHCmax. Bars are one standard deviation.

12

Figure 8 – Microbial biomass N (μ g N g⁻¹ soil dry weight) and rates of net N mineralization (μ g N g⁻¹ soil dry weight) and net nitrification (μ g N g⁻¹ soil dry weight) measured after 2 weeks of incubation in soil from burned and unburned plots incubated at 0, 25, 50 and 100 % of WHCmax and at two temperatures (25°C or 37°C).

17

Figure 9 - Emissions of NO (ng NO-N d⁻¹ soil dry weight h⁻¹) measured from soil of burned and
unburned plots incubated at 10% and 50% of WHCmax.

- 20
- 21