

1 **Modelling and quantifying the effect of heterogeneity**
2 **in soil physical conditions on fungal growth.**

3

4 **Radoslaw Pajor, Ruth Falconer, Simona Hapca and Wilfred Otten**

5 The SIMBIOS Centre, University of Abertay Dundee, Kydd Building, Dundee, DD1
6 1HG, UK.

7 Correspondence to: W Otten (w.otten@abertay.ac.uk)

8

9 **Abstract**

10 Despite the importance of fungi in soil ecosystem services, a theoretical framework
11 that links soil management strategies with fungal ecology is still lacking. One of the
12 key challenges is to understand how the complex geometrical shape of pores in soil
13 affects fungal spread and species interaction. Progress in this area has long been
14 hampered by a lack of experimental techniques for quantification. In this paper we use
15 X-ray computed tomography to quantify and characterize the pore geometry at
16 microscopic scales (30 μm) that are relevant for fungal spread in soil. We analysed
17 the pore geometry for replicated samples with bulk-densities ranging from 1.2-1.6
18 g/cm^3 . The bulk-density of soils significantly affected the total volume, mean pore
19 diameter and connectivity of the pore volume. A previously described fungal growth
20 model comprising a minimal set of physiological processes required to produce a
21 range of phenotypic responses was used to analyse the effect of these geometric
22 descriptors on fungal invasion, and we showed that the degree and rate of fungal
23 invasion was affected mainly by pore volume and pore connectivity. The presented
24 experimental and theoretical framework is significant first step towards understanding
25 how environmental change and soil management impact on fungal diversity in soils.

26

27 **1 Introduction**

28 The pivotal role of fungi in ecosystem functioning is now widely accepted, and soil
29 management strategies that support fungal diversity are to be encouraged. Fungi are
30 ubiquitous microorganisms in soil (0.8 – 16 km of hyphae per 1g of soil (Young *et al.*
31 2008; Finlay, 2006)) and they have a significant influence on aggregation and
32 stabilisation of soil particles (Bossuyt *et al.*, 2001; Tisdall, 1991), nutrient and carbon
33 dynamics (Taylor *et al.*, 2009), and many soil-borne diseases (Otten *et al.*, 2004).

1 Their unique mycelial form of growth makes them particularly suited for exploration
2 of very heterogeneous environments such as soil (Boswell 2007, Otten 1999). Unlike
3 for bacteria, colonisation of soil by fungi is not limited to water-filled volumes, and
4 they can readily overcome locally less suitable growth conditions and patchy nutrient
5 distributions. However, very little work has looked at how fungi colonize soil and
6 how microscopic heterogeneity affects the colony morphology, and a theoretical
7 framework of species interaction in a 3D heterogeneous soil environment is still
8 lacking.

9 One of the challenges in studying species interactions in soil is that soils are
10 heterogeneous at spatial scales ranging from the micrometer (reflecting the pores
11 within which microbial interactions take place) to kilometres. Whereas the
12 heterogeneity of soils at larger scales has received considerable attention (Lark, 2005),
13 the microscopic heterogeneity has been largely ignored. The size of bacterial cells is
14 less than 10 μm , fungal diameters range roughly from 1-50 μm and fungal colonies
15 are of the order of cm, hence even at the scales of micro-organisms we already bridge
16 10^3 orders of magnitude (Finlay, 2006). The heterogeneity of soil structure at the
17 micro scale (pore scale) controls the flow of water, the availability of nutrients, and
18 the diffusion of oxygen to micro-organisms (Young and Crawford, 2004). At those
19 scales, soil structure creates spatially separate niches for various microorganisms (Or
20 et al., 2007), and preferential pathways through which they can move either
21 autonomously or via convective transport with water.

22 The opacity of soils and a lack of non-invasive quantitative techniques to
23 study growth dynamics of fungi *in situ* make it difficult to understand how the
24 microscopic heterogeneity of soils affects fungal dynamics and contributes to
25 biodiversity. Conventional soil physical techniques to characterise soil structure have
26 concentrated on bulk physical parameters where we quantify for example aggregate
27 size distributions (after we exerted physical forces upon the soil) or bulk-density.
28 While we can derive overall porosity values from these measures, they tell us very
29 little about the geometry and connectivity of the pore space. Other methods for
30 analysis of the pore space are based on destructive sampling such as thin sectioning
31 (Harris et al., 2003; Nunan et al., 2001), or on information of pore size distribution
32 derived from water retention curves (Dane et al., 2002). Neither of these methods
33 accurately account for the 3-D structure and connectivity of the pore space. Only
34 recently, the development of techniques such as X-ray micro-tomography allow for

1 quantification and visualisation of the internal soil structure without destroying the
2 sample. A soil sampling ring with 4 cm diameter can be readily scanned within 60
3 minutes at a resolution of approximately 30 μm . For smaller samples resolutions of
4 $<1\mu\text{m}$ can be obtained. However, current capabilities of X-ray micro-tomography
5 systems still do not allow us to visualise and quantify the dynamics of fungi in soils.
6 Neither are there currently other techniques that can quantify the spatial distribution
7 of fungi within a 3-D heterogeneous structure at microscopic scales.

8 The use of mathematical modelling offers a way forward. With models we can
9 study precisely the effect of the pore geometry on fungal growth, as conditions that
10 are correlated in experimental systems can be controlled separately. There are a
11 number of fungal growth models which consider fungal growth dynamics at different
12 spatial scales: the colony (cm's) or the hyphal scale (μm). The most recent models
13 merge both scales which is important to predict colony dynamics from interactions
14 between hyphae and the environment. Most models are based on earlier work by
15 (Edelstein, 1982) and (Edelstein and Segel, 1983) who considered fungal spread at
16 colony scales. Bosswel et al. (Boswell et al., 2002) extended these models by
17 including directional growth and bidirectional translocation mechanisms. Stacey et al.
18 (Stacey et al., 2001) developed a model to scale-up from hyphae to the colony level.
19 This work was used to investigate transmission rates of plant pathogens. Vectorial-
20 based models (Meskauskas et al., 2004) moved analysis from 2-D to 3-D with the
21 possibility to model fruiting bodies. An ecologically important characteristic of fungi
22 is that they can spread via hyphal growth and translocate nutrients over several cm's
23 within a colony, making them particularly adapt for heterogeneous environments such
24 as soil. Under nutrient pore conditions, biomass can be relocated within a colony and
25 support further fungal growth. However most of these models do not include the
26 ability of fungi to reuse their own biomass (hereafter referred to as recycling) hence
27 they are less suitable for heterogeneous environments. The model we used in this
28 work is a fungal growth model developed by Falconer (Falconer et al., 2005), and
29 described below. Uniquely, this model can model fungal spread in 3-D, and can be
30 combined with the X-ray CT data that describe the pore geometry. This is the first
31 time that this model will be applied to a range of pore geometries that result from
32 different bulk-densities.

33 The main aim of this work is to quantify and visualise the effect of the internal
34 structure of soil on fungal growth dynamics and colonization efficiency in 3-D. First

1 we will investigate how the pore geometry of microcosms prepared at a range of soil
2 densities is affected at microscopic scales, and then we will use theoretical modelling
3 to test which of these descriptors of the pore geometry affect fungal colonization. We
4 first conduct the simulations with a high C content in the soil sample to ensure fungal
5 growth is not constrained, and then test if the same response of fungal spread to pore
6 geometry is found in C-limited conditions.

7

8 **2 Materials and methods**

9 **2.1 Preparation of soil microcosms**

10 We used a sandy loam soil (organic matter 2.6%; sand, 71%; silt, 19%; clay, 10%; pH
11 6.2) sampled from an experimental site (Bullion field) of SCRI (Scottish Crop
12 Research Institute UK). The soil was air-dried and sieved to obtain aggregates sized
13 1-2 mm. The soil was sterilized by double autoclaving (1h cycles with 48h intervals)
14 prior to packing. Soil was packed into the PVC rings at densities of 1.2 g/cm³ (n=3),
15 1.3 g/cm³ (n=2), 1.4 g/cm³ (n=3), 1.5 g/cm³ (n=4) and 1.6g/cm³ (n=2). These soils
16 were used in a previous study where the invasion of fungi into soil was investigated in
17 thin sections from these samples (Harris et al., 2003), for which the samples were
18 resin impregnated. The aim was to produce samples that differ in physical
19 characteristics of pore-space to test its effect on fungal colonization.

20

21 **2.2 Quantification of soil structure**

22 A Metris X-Tek X-ray micro-tomography system was used for quantification and
23 visualisation of the inner pore space of the soil microcosms. All soil microcosms were
24 scanned at 160 kV, 201 μ A and 3003 angular projection, 4 frames per second and a
25 0.1 mm Al filter. Radiographs were reconstructed into a 3D volume using CT-Pro
26 (Nikon), imported into VGStudiomax (<http://www.volumegraphics.com/>), and
27 converted into 8-bit binary TIFF image stacks with voxel-thick slices. All soil
28 samples were scanned and reconstructed into 3D volumes at a resolution of 30 μ m
29 (voxel size). The reconstructed volumes were cropped to obtain equally sized volumes
30 for all samples of 300 x 300 x 300 voxels (9 mm x 9 mm x 9 mm). Because the
31 scanned, large volumes were not uniform these samples were not cropped around a
32 fixed midpoint but cropped to avoid areas with ring artefacts and noise related to
33 scanning, and predominantly occurring around the edges of each sample. A single
34 global threshold value was set for each of these samples. Binary data sets were created

1 by thresholding the greyscale image stacks in ImageJ. The choice of threshold value
2 was based on the histogram region corresponding with the pore-solid interface, taking
3 into account variation of grey scale values in pores of different shapes and sizes, and
4 averaging over 5 randomly selected slices per sample using Image J (ImageJ,
5 <http://rsb.info.nih.gov/ij/>). In a study comparing different thresholding methods it was
6 shown that this methodology predicted porosity close to the mean value of all tested
7 methods and agreed well with the overall porosity of the bulk soil sample (Baveye et
8 al., 2010). To allow for analysis of the effect of pore geometry on fungal growth, the
9 thresholded (binary) datasets were further divided in a consistent way into eight
10 subsamples (pseudo replicates) with dimensions of 128 x 128 x 128 voxels (see
11 Fig.1.). This division was necessary due to computational limitations of the fungal
12 growth model in a 3-D space (see below). In this work replicates of each treatment
13 (density, n=2-4) will be referred to as the samples, and datasets sized 128^3 will be
14 called subsamples.

15 We quantified the following physical properties of the subsamples (Deurer et al.,
16 2009):

- 17 - porosity – the total number of voxels defined as pores divided by total volume
18 of the sample. This represents the maximum volume in a soil sample within
19 which fungi can potentially spread,
- 20 - pore space connectivity – A voxel is considered to belong to the same cluster
21 if one of the six directly neighbouring voxels was identified as pore space. We
22 quantified the number of separate pore clusters and the percentage of the pore
23 volume belonging to each of those clusters. For our analysis we focus on the
24 percentage of the pore volume belonging to the largest cluster, as this was the
25 only connected pore volume large enough to spread over the entire width of
26 the soil sample.
- 27 - pore sizes distribution – We calculated the distribution of pore radii by
28 simulating a growing sphere at every voxel of pore space till it reached a voxel
29 with solid phase and we plotted the distribution of the radii of the spheres.

30

31 **2.3 Fungal growth model**

32 Fungal growth was modeled using the framework developed by Falconer et al. (2005).
33 This model is parsimonious in construction and reduces the biological complexity
34 capturing the minimal set of physiological processes required to reproduce observed

ranges in phenotypic responses (Falconer et al., 2005). It was shown that the model can capture fungal growth dynamics in homogeneous as well as in nutritionally heterogeneous environments (Falconer et al., 2007). The model is based on five physiological processes: uptake, redistribution of biomass, remobilisation of biomass, inhibitor production, and growth. Spread of biomass in the model is effectively described by a diffusive process. All of physiological processes are known to be important for vegetative growth of fungi but have not been collectively included in any other modelling framework. For a detailed explanation of the model the reader is referred to Falconer et al. (2005). The model can simulate growth in a 3-D pore space. As the objective of this study is to analyse the effect of pore geometry, we used parameters for one single fungal species only. In previous work the fungal trait set for effective invasion of heterogeneous environments was identified (Falconer et al., 2008). Simplified assumptions were made with respect to the nutritional heterogeneity of the soil environment: we assumed Carbon to be homogeneously distributed throughout the pore volume. We analysed the effect of a high (100, C units per voxel) and low (10, C units per voxel) carbon content on fungal growth dynamics to test if our results were dominated by the availability of resources. At the start of the simulation, fungal biomass was placed only in a unit-thick voxel vertical plane (Fig.1.). Fungal spread was initiated from this plane and followed throughout the sample. The simulations were terminated when a threshold value of total biomass (10^6) reached the opposite edge of the subvolume (break through time).

22

23 **2.4 Interpretation of output from the model**

24 To enable for comparison of fungal invasion among treatments we captured the
25 dynamics and spatial distribution of fungal invasion by dividing each subsample into
26 segments that were perpendicular to the direction of fungal growth, and parallel to the
27 plane of inoculation (Fig.1.). Following our analysis for the physical properties, we
28 quantified the following characteristics:

29 - Biomass per segment: this quantifies at each time step the *amount of biomass* per
30 segment at specified distances from the site of inoculation, as a measure of the ability
31 of fungi to invade the soil structure.
32 - Fraction of pore volume occupied by fungal biomass – here we combine the data on
33 the porosity within each segment with the biomass per segment to calculate for each

1 time-step the fraction of pores that are filled with biomass. This measure enables
2 characterization of the efficiency at which the pore volume is colonised by fungi.

3

4 **2.5 Statistical Analysis**

5 To test for the effect of the bulk density on soil porosity, medium pore size and
6 measures of connectivity, a nested ANOVA model was used with bulk density as
7 fixed factor (with levels 1.2, 1.3, 1.4, 1.5, 1.6) and the samples as nested factors
8 within the different bulk density levels. Bonferroni post-hoc pairwise comparison tests
9 were carried out to determine significant differences among means.

10 We used a Generalized Estimation Equations (GEEs) model with normal
11 errors and first order autoregressive correlation structure to test for an effect of bulk-
12 density and distance from the site of inoculation on fungal biomass densities within
13 each subsample. The variables bulk density (with five levels), distance (with nine
14 levels, (segments) corresponding to the distance from the inoculation point), and sub-
15 samples that were nested with the different bulk density levels were used as
16 explanatory variables in the model. More specifically, bulk density was introduced as
17 a between subjects factor, while distance was treated either as within subject covariate
18 or as a factor, as indicated by the Quasi Likelihood under Independence model
19 selection criterion (QIC). An interaction term between factors bulk density and
20 distance was also accommodated in the model and Bonferroni post-hoc pairwise
21 comparison tests were carried out to determine significant differences among means
22 of the different factor levels at a significant level of 0.05. All the statistical analyses
23 were carried out in SPSS v.17 (Hardin and Hilbe, 2003).

24

25 **3 Results**

26 **3.1 Effect of density on physical properties**

27 The 3-D geometry of the pore space was substantially affected by the density at which
28 the samples were packed (Fig.2.). Visual examination of the pore volumes in 3-D
29 showed that the total pore space was less in the more densely packed soil. Whereas in
30 the 2D transects pores within the pore volume appeared to be disconnected, this was
31 no longer the case when the pore volume was examined in 3D. In 3-D the majority of
32 the pores was connected and belonged to a single large cluster. In addition, for soil
33 packed at higher densities the pore volume appeared to be connected via smaller
34 valleys. As can be seen from Fig.2. (k-o) the largest connected cluster was in contact

1 with all sides which in principle will allow for spread of fungi through the soil
2 sample.

3 Porosity, which is the volume through which fungal growth was modelled,
4 was calculated for each of the subsamples. In addition, porosity was also calculated
5 for segments within the subsamples (see also Fig 1); the segments represent the
6 smaller scale heterogeneity within each sample. No significant interaction between the
7 different treatment densities and segments was found ($p=0.269$). The mean porosity
8 was very strongly affected by the density ($p < 0.001$) ranging from 0.38 for density
9 1.3 g/cm³ to 0.21 for samples at 1.6 g/cm³ density (Table 1), while the differences
10 between slices within each subsample (Fig.3.) were not significant ($p=0.15$).

11 There was a decline in the median pore size with bulk density (Table 1) but
12 only the median pore diameter at a density of 1.6 was significantly different from
13 those at 1.2 and 1.3 ($p < 0.04$). The changes in porosity and pore diameter show that
14 when soils were packed at higher densities the overall pore volume declined and
15 mainly the larger pores were reduced. However, for all samples the mean pore
16 diameter remained an order of magnitude larger than a typical fungal diameter of 1-50
17 μm (Finlay, 2006). No significant differences were found for porosity and median
18 pore diameter between replicated samples at this scale.

19 All subsamples had highly connected pore volumes with a minimum of 90%
20 of the pore volume connected to a single large cluster for all densities. Fig.2. shows
21 how the connected largest clusters and the remaining pore-space that did not belong to
22 this cluster, is distributed throughout the soil sample. There were significant
23 differences in connectivity between replicates at all densities ($p<0.001$) indicating a
24 greater variability of this parameter at this scale. In particular, the connectivity was
25 significantly lower for the samples at higher densities (95% for 1.5 ($p<0.015$) and
26 90% for 1.6, ($p<0.001$) as compared to lower densities (97% for 1.2, 1.3 and 1.4 soil
27 bulk density).

28

29 **3.2 Effect of the physical characteristics on fungal invasion**

30 Due to the high connectivity of the pore space, the amount of biomass following
31 fungal invasion displayed trends similar to those found for the porosity, with
32 significant differences between treatments ($p<0.001$) (Fig. 3B). As expected, biomass
33 content decreased as porosity decreased, with the sample with the highest porosity
34 also having the highest biomass after fungal invasion. The soil with the lowest

1 porosity had an average biomass after fungal invasion of only 54% of that of the
2 sample with the highest porosity (Fig 3B, 4.13E5 for density 1.6 and 7.65E5 for
3 density 1.3). This difference is comparable with the difference in the porosity which
4 demonstrates the overriding importance of the total pore volume for fungal invasion.
5 There was a noticeable drop ($p < 0.001$) in biomass content at distances further than
6 approximately 2.5 mm from the site of inoculation (fig 3B). The drop in biomass
7 content characterized the front of colony growth.

8 The amount of biomass per sample did not inform us about the spatial
9 distribution of the biomass. To obtain a quantitative measure of the spatial
10 colonization, we quantified the fraction of the pore space that became colonized. With
11 increasing distance from the site of inoculation, the fraction of pores occupied by
12 biomass declined steeply (Fig.4.). At distance <2.5 mm, nearly all of the pore space
13 was occupied by fungal biomass. This reflects the high connectivity of the pore space
14 for all samples. The drop in biomass at larger distances coincided with a drop in the
15 fraction of pores that were occupied (Fig.4.). Soil packed at a density of 1.6 g/cm³ (the
16 most densely packed material) showed an earlier decline in the fraction of pores
17 colonized with distance (Fig.4., $p < 0.001$). As the porosity did not change with
18 distance for these samples (Fig.3A) it is most likely a consequence of the lower
19 connectivity for this sample (Table.1.). As a fungal colony spread into a soil sample,
20 the larger pores **were** colonized first (as they were typically well connected, Fig.5a)
21 and this was followed by colonization of the smaller pores (Fig.5b), and the invasion
22 typically followed a sharp colony front (Fig.5d and e).

23

24 **3.3 Carbon level and dynamics of fungal invasion.**

25 Differences in the dynamics of fungal invasion are shown in Fig.6., which shows how
26 in the middle of the sample the biomass increased with time. All treatments had a
27 similar characteristic shape for the dynamics. Initially, for $t < 8$, the biomass was
28 absent **until** the edge of a fungal colony had progressed sufficiently far into the soil
29 sample. Once the edge of a colony reached a specified distance from the site of
30 inoculation (here shown for 2.5 mm in Fig.6.) then the pore volume at that distance
31 became rapidly colonized for all densities. However, the rate of colonization differed
32 per treatment with the highest rates (sharpest increase) for the lower density samples.
33 As expected, in a better connected sample (lower density soil) fungal biomass moved
34 through the volume rapidly, almost as a steep front over time filling all available pore

1 space. For the more densely packed soil, fungal invasion progressed slower (shown by
2 the lower rate of increase) and the final level of fungal biomass was lower (Fig.6.).
3 The dynamics of fungal invasion were also determined by the availability of Carbon
4 in the soil (Fig.6B). Although the trends for fungal invasion were qualitatively similar
5 for both resource levels, the limitation of carbon radically affected biomass content
6 reducing the final level of biomass following invasion to 1%. As expected, this
7 reduction reflects the lower amount of C available for fungal growth. Limitation of C
8 level also affected the rate of invasion. With unlimited resources colonization at a
9 distance of 2.5 mm from the site of inoculation started at $t = 7$, but the starting point
10 for microcosms with limited resources was delayed to $t = 10$. Overall it also took
11 longer for soils with a lower resource level for the fungal colony to spread through the
12 entire soil volume. At high resource levels this took on average (17 time units),
13 whereas at lower resource levels this increased to 22 time units.

14

15 4 Discussion

16 One of the difficulties in studying fungal invasion is the lack of suitable
17 quantitative techniques that enable monitoring of fungal spread through soil over
18 time. Techniques used so far include plating out of aggregates to obtain colony
19 forming units, ergosterol essay (Feeney et al., 2006), MAb-ELISA – for specific
20 species (Otten et al., 1997) or quantification by PCR (Lopez-Mondejar et al. 2009).
21 These techniques however only enable a single snap shot in time, and, perhaps more
22 importantly, require the destruction of the physical environment which contributed to
23 the growth dynamics. Hence we obtain quantitative information of fungal biomass in
24 bulk-soil samples, but no information about the spatial location of the fungi within the
25 soil environment at the microscopic scales where interactions and processes occur. To
26 date, the only way by which quantitative information about the spatial distribution of
27 fungal mycelium in undisturbed soil samples can be obtained, is in biological thin
28 sections (Tippkotter and Ritz, 1996), but even there the information is essentially
29 constrained to a 2-D plane from the 3-D soil environment. It is therefore important to
30 develop a novel method for analysis and visualisation of the effect of the
31 heterogeneity of the pore volume on microbial processes in 3-D.

32 The simulations showed that for all soil samples a large percentage of the pore
33 space was colonized by fungi. This is an inherent property of the model, which
34 describes the fungal invasion as a diffusive process, as a result of which all connected

1 pore space would be expected to be colonized eventually. As a result, for a well
2 connected pore volume, the total porosity is the key **determinant** of the density of
3 fungal biomass following invasion. Close to the site of inoculation, nearly all pore
4 space became colonized for all treatments (Fig. 4). However, if the connectivity is less
5 than 1 (e.g. with increasing bulk density), then progressively less pore space becomes
6 colonized at distances further away from the site of inoculation as biomass spreads
7 only through a connected network. In that case the connectivity of the pore space
8 becomes an increasingly important factor.

9 In accordance with experimental data for the invasive spread of *R. solani* in
10 the same soil samples (Harris *et al.*, 2003) pore volumes with a larger diameter
11 became colonized first. Behind the progressing colony front in the larger pores, the
12 fungi subsequently colonize the pore volumes with smaller diameters. However, the
13 model does appear to overestimate the colonization of smaller pores as experimental
14 data showed that there was a greater preference for larger connected pores (Otten *et*
15 *al.*, 2004). This could be the result of a more heterogeneous distribution of Carbon in
16 the soil compared to the simulations, or a result of blockage of pores by water, which
17 means that the connectivity of the pore volume in the simulations is overestimated as
18 we assume all pores to be filled with air. Future work may need to address this in
19 more detail where we can consider extending the modelling approach by including
20 mechanisms that enhance spread through larger pores.

21 On nutrient rich agar plates, fungi typically form circular colonies, with a step
22 change in biomass density at the advancing colony edge. In nutrient poor systems,
23 colony spread is often more heterogeneous as fungi switch from an exploitative to an
24 explorative mode (Boddy *et al.*, 2009). In soil, we similarly expect this colony shape
25 to be mediated by the heterogeneity of the pore volume with the advancing edge of a
26 colony less clearly defined as the colony needs to negotiate a tortuous pathway of
27 connected pores, resulting in a more gradual change in biomass density towards the
28 growing edge of the colony. For all treatments, we observed nevertheless steep
29 declines in biomass density and in the percentage of colonized pores at the colony
30 growing front. For loosely packed soil the change in density at the front was steeper,
31 characteristic of faster more homogeneous growth (Fig.3, 4). Fungi spreading though
32 soil packed at higher densities had a smoother decay in density at the growing front.
33 At these densities soil had a smaller amount of available pore space, which was less
34 connected and had smaller median pore size (Table.1.). This trend in the effect of pore

1 geometry on fungal colony development is in agreement with experimental results
2 reported by Harris (Harris et al., 2004) and Ritz (Ritz and Young, 2004) where it was
3 shown that fungi spread faster through large pores with a high percentage of air-filled
4 spaces. Fungi in volumes with small, poorly connected pores grow slower but
5 colonies tend to have denser biomass (Harris 2003, Ritz 2004). While the differences
6 may appear to be small, it should be noted that such small differences can have a
7 significant impact on larger scale invasive spread of fungi and can make a fungal
8 species switch from invasive to non-invasive spread (Bailey et al., 2000; Kleczkowski
9 et al., 1997).

10 Current CT tomography systems have a number of limitations. One of the
11 biggest challenges is the ratio between sample size and resolution (voxel size), with a
12 smaller resolution for larger sample sizes. With our system, the maximum size of the
13 sample which can be scanned is 25 x 20 cm, at a resolution of approximately 150 μm .
14 The disadvantage of a lower resolution is that we loose information about micro-
15 pores, and as a result can loose the connectivity in the pore network. Whereas with
16 our system we could obtain resolutions (5 μm) smaller than typical fungal diameters,
17 this would have required us to restrict the sample sizes to be too small to be
18 meaningful for fungal colonies and the length scales at which heterogeneity in
19 physical conditions is observed in these samples. The sample size we used in this
20 paper is still small compared to sizes that ordinarily would be assumed representative
21 for a field. However, the small sizes were representative for the relatively
22 homogeneous samples used in this study, as they were obtained by repacking sieved
23 soil. In our statistical analysis of the quantification of pore space, we allowed for
24 variability within treatments (between sub-samples), as well as between treatments,
25 and we showed that the difference between sub-samples within a treatment was not
26 significant, but that difference between sub-samples from different treatments was
27 significant. It is however not possible to extrapolate this result to soil samples from
28 natural fields, and no extrapolation can be made towards the effect of management on
29 fungal growth from these small samples. Young and Ritz (1999) reviewed the impact
30 of tillage on colonies of microbes and argued that typical soil disturbance may not be
31 significant for fungal colonies at small scales. The results in this study should be seen
32 as a first step towards understanding the effect of soil management on fungal growth.
33 Although the resolution of approximately 30 μm in the scans used in this paper is
34 larger than a typical hyphal diameter, it is smaller than typical internodes' length, and

1 appropriate for fungal colonization which is typically determined by the ability of
2 fungal hyphae to branch within a confined space (Otten and Gilligan, 1998). In
3 addition, the resolution is identical to the approximate resolutions of thin sections, the
4 only technique currently available to visualize fungi in soil, enabling a qualitative
5 comparison with experimental data.

6 Another bias in the results can be caused by thresholding, which is one of the
7 most crucial steps in image processing where an operator differentiates between solid
8 material and pore-space. A single threshold value as used in this paper is known to
9 overestimate large pores and underestimate small pores and thin valleys. However, it
10 was also shown that for the type of samples in this study, a reasonable agreement with
11 the overall porosity was found (Baveye et al 2010). Tarquis et al (2008; 2009) showed
12 the impact of thresholding on various geometrical descriptors of pore geometry, but
13 the consequences for soil functioning is still largely unknown, which can be explored
14 with the modelling framework presented in this paper.

15

16 **5. Conclusions**

17 In this paper we showed how a combination of X-ray tomography (to characterise
18 the soil structure) and mathematical modelling (to model fungal invasion in 3-D
19 structural heterogeneous environments) can be used to identify the effect of pore
20 geometry on fungal spread. Such a analysis is an essential first step towards a
21 theoretical basis for management decision taking that would aim to maintain or
22 support biodiversity in soils, which is currently lacking. The theoretical approach
23 enables separation of nutritional and structural effects on fungal growth, which is
24 difficult to achieve by other means. We showed that both the dynamics and the degree
25 of colonization are not just affected by the porosity, but also depend on the
26 connectivity of the pore volume. Further work is now required to identify how
27 colonization efficacy relates to fungal traits and heterogeneity in the availability of
28 carbon.

29

30 **Acknowledgements**

31 The authors wish to acknowledge support for this study from the University of
32 Abertay Dundee and from the Scottish Alliance for Geosciences, Environment and
33 Society (SAGES). The University of Abertay Dundee is a charity registered in

1 Scotland, no: SC016040. We also thank Dr Grinev for discussions on the use of X-ray
2 CT for quantifying soil structure.

3

4 **References**

5

6 Bailey, D. J., Otten, W., and Gilligan, C. A.: Saprotophobic invasion by the soil-borne
7 fungal plant pathogen *Rhizoctonia solani* and percolation thresholds, *New
8 Phytologist*, 146, 535-544, 2000.

9 Baveye, P. C., Laba, M., Otten, W., Bouckaert, L., Sterpaio, P. D., Goswami, R. R.,
10 Grinev, D., Houston, A., Hu, Y., Liu, J., Mooney, S., Pajor, R., Sleutel, S., Tarquis,
11 A., Wang, W., Wei, Q., and Sezgin, M.: Observer - dependent variability o f the
12 thresholding step in the quantitative analysis of soil images and X-ray
13 microtomography data, *Geoderma*, 157, 51-63, 2010.

14 Boddy, L., Hynes, J., Bebber, D. P., and Fricker, M. D.: Saprotophobic cord systems:
15 dispersal mechanisms in space and time, *Mycoscience*, 50, 9-19, 10.1007/s10267-
16 008-0450-4, 2009.

17 Bossuyt, H., Denef, K., Six, J., Frey, S. D., Merckx, R., and Paustian, K.: Influence of
18 microbial populations and residue quality on aggregate stability, *Applied Soil
19 Ecology*, 16, 195-208, 2001.

20 Boswell, G. P., Jacobs, H., Davidson, F. A., Gadd, G. M., and Ritz, K.: Functional
21 consequences of nutrient translocation in mycelial fungi, *Journal of Theoretical
22 Biology*, 217, 459-477, 10.1006/yjtb.3048, 2002.

23 Dane, J. H., Hopmans, J. W., Romano, N., Nimmo, J., and Winfield, K. A.: Soil water
24 retention and storage - Introduction., in: *Methods of Soil Analysis. Part 4. Physical
25 Methods.*, edited by: Dane, J. H., Soil Science Society of America, 2002.

26 Deurer, M., Grinev, D., Young, I., Clothier, B. E., and Mueller, K.: The impact of soil
27 carbon management on soil macropore structure: a comparison of two apple orchard
28 systems in New Zealand, *European Journal of Soil Science*, 60, 945-955,
29 :10.1111/j.1365-2389.2009.01164.x, 2009.

30 Edelstein, L.: The Propagation of Fungal Colonies - a Model for Tissue-Growth,
31 *Journal of Theoretical Biology*, 98, 679-701, 1982.

32 Edelstein, L., and Segel, L. A.: Growth and Metabolism in Mycelial Fungi, *Journal of
33 Theoretical Biology*, 104, 187-210, 1983.

1 Falconer, R. E., Bown, J. L., White, N. A., and Crawford, J. W.: Biomass recycling
2 and the origin of phenotype in fungal mycelia, Proceedings of the Royal Society B-
3 Biological Sciences, 272, 1727-1734, 10.1098/rspb.2005.3150, 2005.

4 Falconer, R. E., Bown, J. L., White, N. A., and Crawford, J. W.: Biomass recycling: a
5 key to efficient foraging., Oikos, 9, 2007.

6 Falconer, R. E., Bown, J. L., White, N. A., and Crawford, J. W.: Fungal Interactions
7 in Fungi, The Royal Society Interface, 5, 2008.

8 Feeney, D. S., Bengough, A. G., Hallett, P. D., Rodger, S., White, N., and Young, I.
9 M.: Assessing the impact of biological exudates associated with soil water repellency,
10 Soil Management for Sustainability, 38, 475-483, 2006.

11 Finlay, R. D.: The fungi in Soil, in: Modern soil microbiology., edited by: Van Elsas,
12 J., Jansson, J. K., and Trevors, J. T., CRC Press, 2006.

13 Hardin, J. W., and Hilbe, J. M.: Generalized Estimating Equations, Stata Corporation,
14 2003.

15 Harris, K., Young, I. M., Gilligan, C. A., Otten, W., and Ritz, K.: Effect of bulk
16 density on the spatial organisation of the fungus *Rhizoctonia solani* in soil, FEMS
17 Microbiology Ecology, 44, 45-56, 2003.

18 Kleczkowski, A., Gilligan, C. A., and Bailey, D. J.: Scaling and spatial dynamics in
19 plant-pathogen systems: From individuals to populations, Proceedings of the Royal
20 Society of London Series B-Biological Sciences, 264, 979-984, 1997.

21 Lark, R. M.: Exploring scale-dependent correlation of soil properties by nested
22 sampling, European Journal of Soil Science, 56, 307-317, 10.1111/j.1365-
23 2389.2004.00672.x, 2005.

24 Lopez-Mondejar, R., Anton, A., Raidl, S., Ros, M., and Pascual, J. A.: Quantification
25 of the biocontrol agent *Trichoderma harzianum* with real-time TaqMan PCR and its
26 potential extrapolation to the hyphal biomass, Bioresource Technology, 101, 2888-
27 2891, 2009.

28 Meskauskas, A., Fricker, M. D., and Moore, D.: Simulating colonial growth of fungi
29 with the Neighbour-Sensing model of hyphal growth, Mycological Research, 108,
30 1241-1256, 10.1017/s0953756204001261, 2004.

31 Nunan, N., Ritz, K., Crabb, D., Harris, K., Wu, K. J., Crawford, J. W., and Young, I.
32 M.: Quantification of the in situ distribution of soil bacteria by large-scale imaging of
33 thin sections of undisturbed soil, Fems Microbiology Ecology, 37, 67-77, 2001.

1 Or, D., Smets, B. F., Wraith, J. M., Dechesne, A., and Friedman, S. P.: Physical
2 constraints affecting microbial habitats and activity in unsaturated porous media - A
3 review., *Advances in Water Resources*, 30, 2007.

4 Otten, W., and Gilligan, C. A.: Effect of physical conditions on the spatial and
5 temporal dynamics of the soil-borne fungal pathogen *Rhizoctonia solani*, *New*
6 *Phytologist*, 138, 629-637, 1998

7 Otten, W., Gilligan, C.A., and Thornton, C.R. Quantification of fungal antigens in soil
8 with a monoclonal antibody-based ELISA: analysis and reduction of soil-specific
9 bias. *Phytopathology*, 730-736, 1997

10 Otten, W., Harris, K., Young, I. M., Ritz, K., and Gilligan, C. A.: Preferential spread
11 of the pathogenic fungus *Rhizoctonia solani* through structured soil, *Soil Biology &*
12 *Biochemistry*, 36, 203-210, 2004.

13 Ritz, K., and Young, I. M.: Interactions between soil structure and fungi, *Mycologist*,
14 18, 52-59, 2004.

15 Stacey, A. J., Truscott, J. E., and Gilligan, C. A.: Soil-borne fungal pathogens:
16 scaling-up from hyphal to colony behaviour and the probability of disease
17 transmission, *New Phytologist*, 150, 169-177, 2001.

18 Tarquis, A.M., Heck, R.J., Andina, D., Alvarez, A., and Anton, J.M. Pore network
19 complexity and thresholding of 3D soil images. *Ecological complexity* 6, 230-239,
20 2009.

21 Tarquis, A.M., Heck, R.J., Grau, J.B., Fabregat, J., Sanchez, M.E., and Anton, J.M.
22 Influence of thresholding in mass and entropy dimension of 3-D soil images.
23 *Nonlinear Processes in geophysics*, 15, 881-891, 2008.

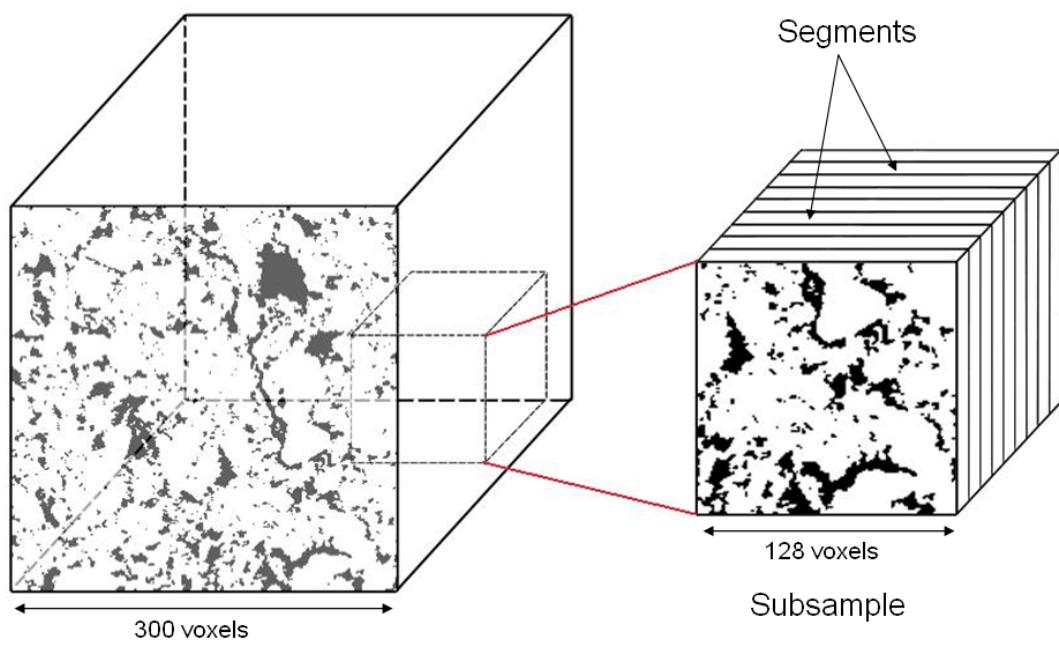
24 Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., and Beerling, D. J.:
25 Biological weathering and the long-term carbon cycle: integrating mycorrhizal
26 evolution and function into the current paradigm, *Geobiology*, 7, 171-191,
27 10.1111/j.1472-4669.2009.00194.x, 2009.

28 Tippkotter, R., and Ritz, K.: Evaluation of polyester, epoxy and acrylic resins for
29 suitability in preparation of soil thin sections for in situ biological studies, *Geoderma*,
30 69, 31-57, 1996.

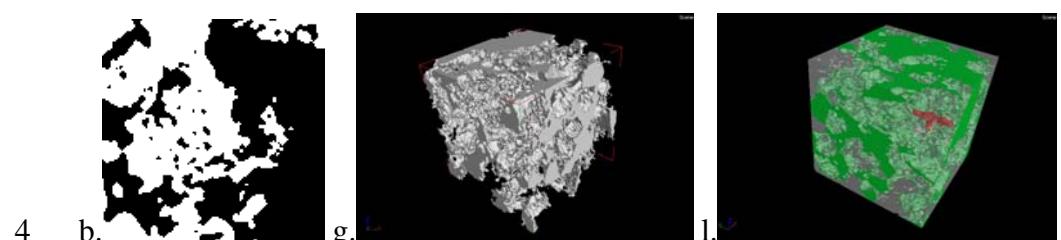
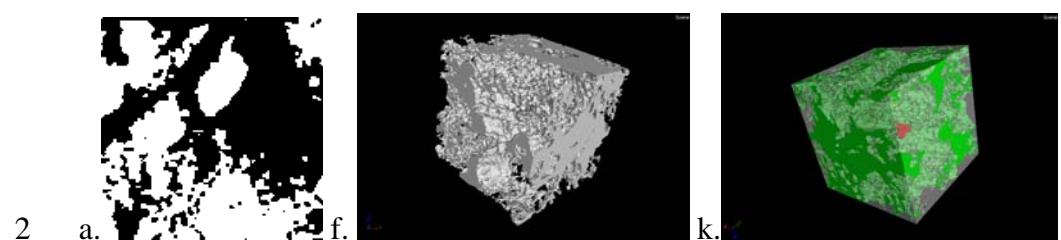
31 Tisdall, J. M.: Fungal Hyphae and Structural Stability of Soil, *Australian Journal of*
32 *Soil Research*, 29, 729-743, 1991.

33 Young, I. M., and Crawford, J. W.: Interactions and self-organization in the soil-
34 microbe complex, *Science*, 304, 1634-1637, 2004

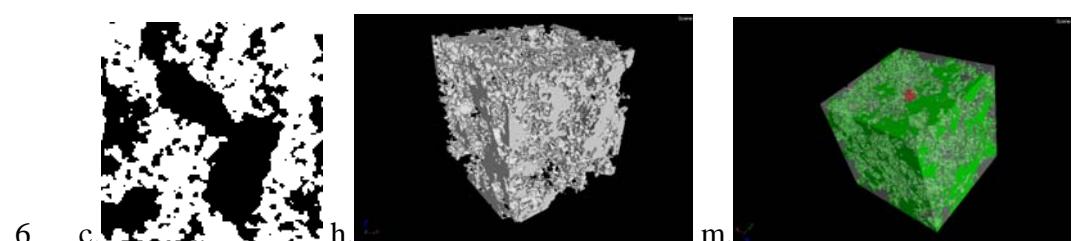
- 1 Young, I. M., and Ritz, K.: Tillage, habitat space and function of soil microbes,
- 2 Soil&Tillage Research, 53, 201-213, 2000.

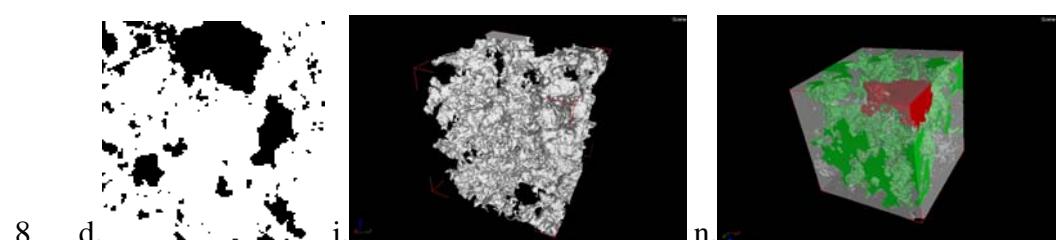

1

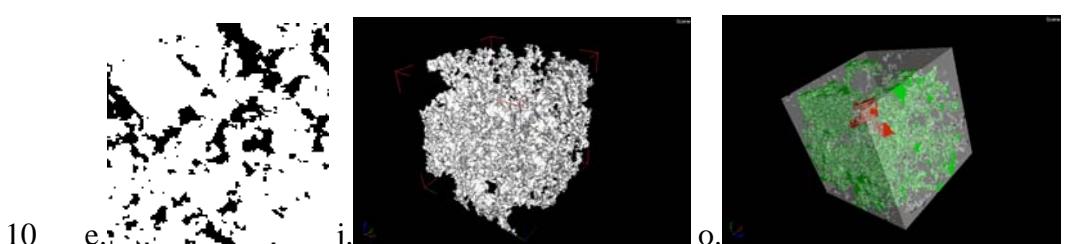
Sample density [g/cm ³]	Mean porosity	Standard error	Mean connectivity [%]	Standard error	Median of pore size	Standard error
1.2	0.34	0.02	96.5	0.5	370	23
1.3	0.38	0.02	97.0	0.3	375	24
1.4	0.31	0.01	97.0	0.4	348	23
1.5	0.26	0.01	95.1	0.2	334	11
1.6	0.21	0.01	90.0	0.6	309	13



2

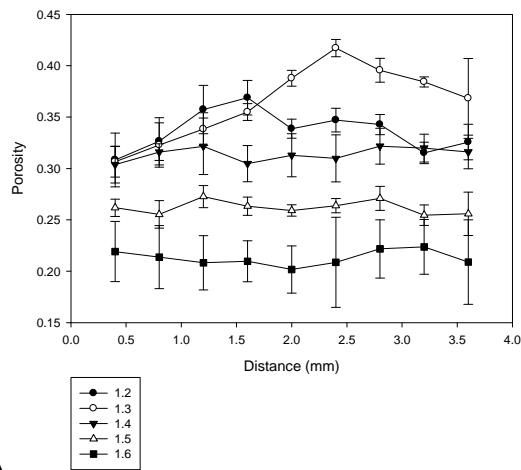
3 Table.1. Mean and standard error estimates of bulk physical characteristics for soil
4 microcosms used as the environment for fungal growth model.


5

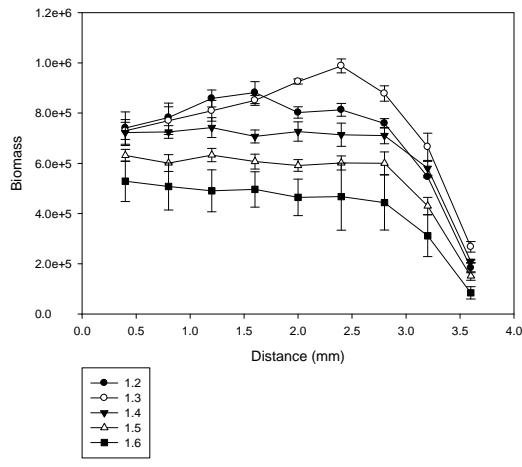

1 1.2 g/cm³


5 1.4 g/cm³

7 1.5 g/cm³


9 1.6 g/cm³

11


12 Fig 2. Pore space visualisation – a-e: thresholded 2-D slices of subsamples (white-solid, black-pore), f-j: whole pore space in 3-D as visualized with X-ray CT, k-o) 3-D
13 view of subsample with the largest connected pore (green), the second largest
14 connected pore (red) and the remaining pore space (bright gray). One representative
15 examples is shown for each of the density treatments (1.2 – 1.6).

1

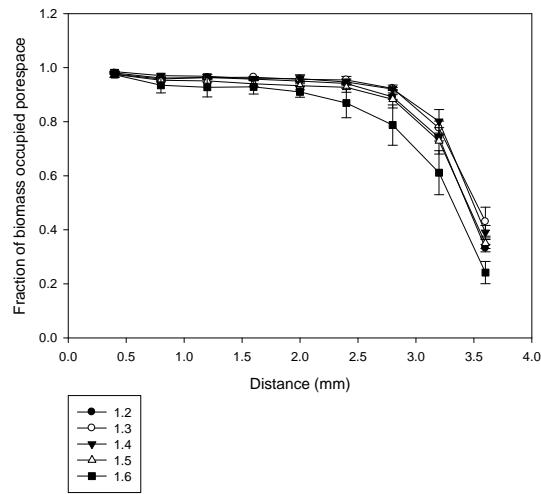
2 A

B

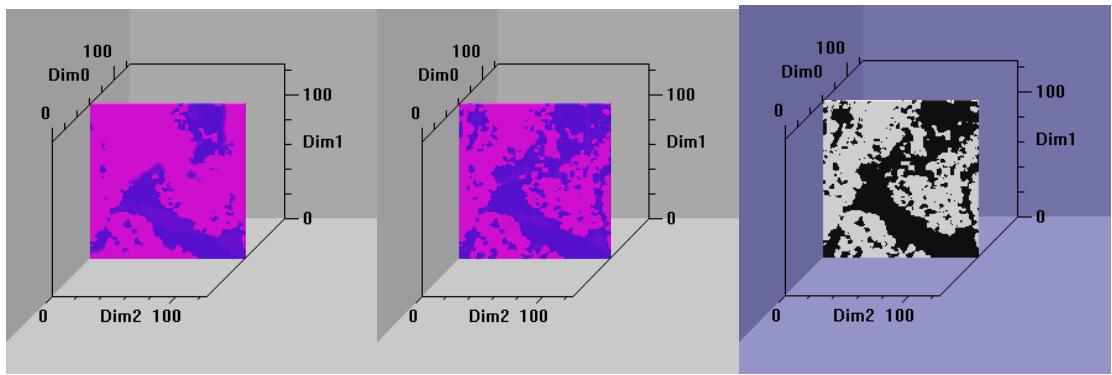
3

4

5 Fig.3. Mean changes of porosity with distance from the site of inoculation (A), and
6 the simulated biomass distribution in each segment (B), for soils at bulk-densities of
7 1.2, 1.3, 1.4, 1.5, and 1.6 g/cm³.


8

9


10

11

1
2
3
4

5
6
7 Fig.4. Mean changes in the fraction of pore space occupied by biomass in each
8 segment from the site of inoculation, for soils at bulk-densities of 1.2,
9 1.3, 1.4, 1.5, and 1.6 g/cm³.
10
11
12

1

2 (a)

(b)

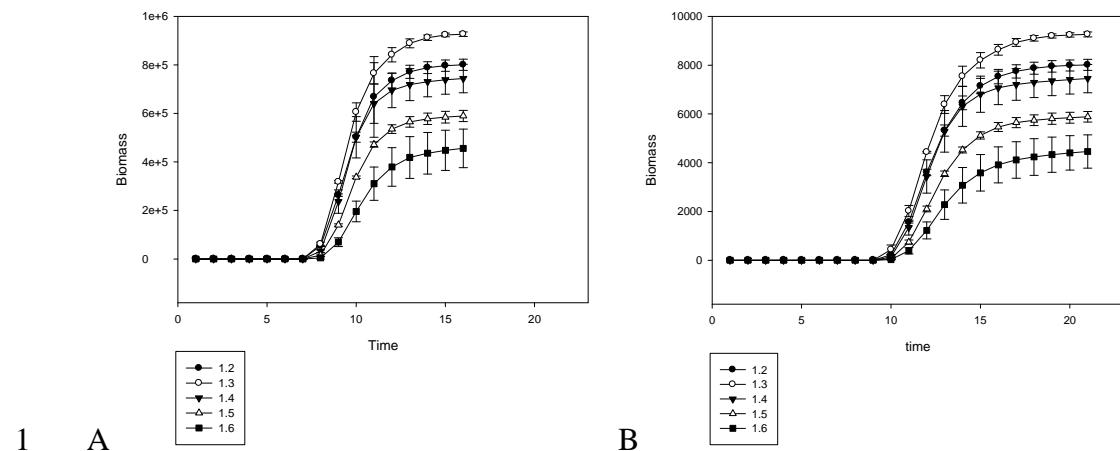
(c)

3

4

5

6 (d)


(e)

(f)

7

8 Fig.5. 2-D slices through the z axis (a-c, perpendicular to the direction of spread) and
9 x axis (d-f, in the direction of spread) showing biomass occupancy at t=8 (a,d),
10 halfway the time required to spread through the entire volume), t=12 (b,e, at the time
11 the colony had spread to the opposite side of the subsample), and corresponding pore
12 space (c,f) where solid –brown, pore space – gray for a sample at a bulk density of 1.6
13 g/cm³.

14

1 A

2 B

3 Fig.6. Mean dynamics of biomass at the middle of each subsample (5th segment) with
4 'unlimited' (A) and limited (B) resource, for soils at bulk-densities of 1.2, 1.3, 1.4,
5 1.5, and 1.6 g/cm³. Note that the scales for the amount of biomass differ for both
6 resource levels.

7

8

9