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Abstract

Error-quantified, synoptic-scale relationships between chlorophyll-a (Chla) and phyto-
plankton pigment groups at the sea surface are presented. A total of nine pigment
groups were considered to represent nine phytoplankton functional types (PFTs) in-
cluding microplankton, nanoplankton, picoplankton, diatoms, dinoflagellates, green al-5

gae, picoeukaryotes, prokaryotes and Prochlorococcus sp. The observed relation-
ships between Chla and pigment groups were well-defined at the global scale to
show that Chla can be used as an index of not only phytoplankton abundance but
also community structure; large (micro) phytoplankton monotonically increase as Chla
increases, whereas the small (pico) phytoplankton community generally decreases.10

Within these relationships, we also found non-monotonic variations with Chla for cer-
tain pico-plankton (pico-eukaryotes, Prokaryotes and Prochlorococcus sp.) and for
Green Algae and nano-sized phytoplankton. The relationships were quantified with a
least-square fitting approach in order to estimate the PFTs from Chla alone. The esti-
mated uncertainty of the relationships quantified depends on both phytoplankton types15

and Chla concentration. Maximum uncertainty over all groups (34.7% Chla) was found
from diatom at approximately Chla=1.07 mg m−3. However, the mean uncertainty of
the relationships over all groups was 5.8 [% Chla] over the entire Chla range observed
(0.02<Chla<6.84 mg m−3). The relationships were applied to SeaWiFS satellite Chla
data from 1998 to 2009 to show the global climatological fields of the surface distri-20

bution of PFTs. Results show that microplankton are present in the mid and high lati-
tudes, constituting ∼9.0 [% Chla] of the phytoplankton community at the global surface,
in which diatoms explain ∼6.0 [% Chla]. Nanoplankton are ubiquious throught much of
the global surface oceans except subtropical gyres, acting as a background population,
constituting ∼44.2 [% Chla]. Picoplankton are mostly limited in subtropical gyres, con-25

stituting ∼46.8 [% Chla] globally, in which prokaryotes are the major species explaining
32.3 [% Chla] (prochlorococcus sp. explaining 21.5 [% Chla]), while pico-eukaryotes are
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notably abundant in the Southern Pacific explaining ∼14.5 [% Chla]. These results may
be used to constrain or validate global marine ecosystem models.

1 Introduction

Phytoplankton play numerous roles in ocean biogeochemical cycling: CO2 is utilised
to form organic matters such as carbohydrates in photosynthetic processes and is5

then released through respiration; macro- and micronutrients are assimilated by phy-
toplankton for their metabolisms. While these examples are common to all phytoplank-
ton, some species require specific chemical compounds for their distinct physiological
processes, thereby fulfilling a range of different functional roles in the ocean biogeo-
chemical cycles: Si is utilised by diatoms, Ca by coccolithophores and N2 by some10

cyanobacteria (e.g. Trichodesmium). Some phytoplankton (e.g. dinoflagellates, prym-
nesiophytes) appear responsible for enhanced DMSp production in the ocean, con-
tributing to an exchange of S between the ocean and atmosphere (see Nair et al.,
2008 for review). These functional differences have led to phytoplankton being classed
according to their functional types.15

In order to quantify the contributions of these phytoplankton functional types (PFTs)
to biogeochemical cycling on a global scale, it is first important to understand their
spatiotemporal variability throughout the oceans. Ocean biogeochemistry and ecosys-
tem models, such as NEMURO (Kishi et al., 2007; Aita et al., 2007; Hashioka and
Yamanaka, 2007), ERSEM (Blackford et al., 2004; Petihakis et al., 2005), PlankTOM-520

and -10 (Le Quéré et al., 2005; Le Quéré and Pesant, 2009) and NOMB (e.g. Gregg
et al., 2003, 2007), can be used to investigate the processes responsible for spatial
and temporal variability of phytoplankton populations at large scales and provide some
potential for forecasting future ocean states. The populations within these models are
generally based on biogeochemical function (usually linked to size), rather than explicit25

taxonomy. Validation of these models is essential, which is cumbersome when large
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spatial and temporal scales are concerned (Allen et al., 2010), so requires a glob-
ally consistent approach based on a functional classification of marine phytoplankton
groups.

In general, the agreement between functional- and taxonomic- or size-based classi-
fications, while far from universal, is adequate for comparisons to be undertaken with5

current model estimates. The close similarity between the functional classification of
Le Quéré et al. (2005) and size structure or taxonomic groupings is shown in Table 1.
On the other hand, direct estimation of phytoplankton community structure at basin to
global scales is non-trivial. Traditional microscopic observations, flow cytometry, pig-
ment and DNA analyses have all been used to classify phytoplankton community struc-10

ture in situ. Pigment analysis by High Performance Liquid Chromatography (HPLC) has
become increasingly popular in oceanography because of the relatively large number
of samples that can be collected and analysed rapidly, categorizing the phytoplank-
ton community (at least according to broad classes based on size or taxonomy) much
faster than with traditional microscopy. Even so, spatial and temporal coverage is in-15

evitably limited by the mismatch in scales between in situ observational capabilities
and the vast size of the oceans.

Since the launch of the ocean colour sensor, satellites have been able to provide
a continuous record of multi-spectral optical observations of the ocean surface, that
at certain wavelengths correspond strongly to concentrations of the ubiquitous pho-20

tosynthetic pigment, chlorophyll-a (Chla). From this proxy of phytoplankton biomass,
variations in oceanic phytoplankton populations and global marine primary produc-
tion have been investigated (e.g. Longhurst et al., 1995; Behrenfeld and Falkowski,
1997; Behrenfeld et al., 2006; Polovina et al., 2008). More recently, this technology
has revealed the capability for more in depth investigation of phytoplankton community25

structure by means of PFTs or size classes (e.g. Sathyendranath et al., 2004; Alvain
et al., 2005, 2008 ; Ciotti et al., 2002; Devered et al., 2006; Uitz et al., 2006; Aiken
et al., 2007, 2009; Hirata et al., 2008; Raitsos et al., 2008; Brewin et al., 2010), al-
lowing the extrapolation of in situ PFT descriptions to larger spatial scales with better
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temporal resolution, thus providing a method to more adequately constrain and validate
biogeochemical and ecosystem models.

The current suite of satellite PFT algorithms are derived from either (1) the “dom-
inance” of specific PFTs or size classes without estimation of their fractional contri-
butions to the overall phytoplankton community (Sathyendranath et al., 2004; Alvain5

et al., 2004, 2008; Hirata et al., 2008; Raitsos et al., 2008), or (2) a limited number
of phytoplankton size classes such as micro-, nano-, and picoplankton (Devred et al.,
2006; Uitz et al., 2006; Brewin et al., 2010), for which the fractional contribution is in
some cases estimated. Our scope in this paper is to bridge the gap between these
approaches by estimating the fractional contribution of an increased number of PFTs,10

partitioned within 3 size classes where appropriate. We use global relationships from
in situ data to derive climatological distributions of PFTs from satellite Chla measure-
ments. Relationships between phytoplankton Chla concentrations and the phytoplank-
ton functional types determined from their biomarker pigments are quantified from a
global in situ data, and uncertainty is presented on these relationships. The quanti-15

fied relationships are also applied to monthly 1 satellite observations of Chla fields to
estimate the synoptic distributions of PFTs in the world’s oceans.

2 Data

2.1 In situ pigment data

Phytoplankton pigments derived from High Performance Liquid Chromatography20

(HPLC) were obtained from various sources, including the Atlantic Meridional Tran-
sect programme (AMT) by the Natural Environmental Research Council (NERC, UK),
the BEAGLE cruise by Japan Agency for Marine-Earth Science and TEChnology (JAM-
STEC, Japan), the SeaWiFS Bio-optical archive and Storage System (SeaBASS) by
National Aeronautics and Space Administration (NASA, USA), the NASA bio-Optical25

Marine Algorithm Dataset (NOMAD), the SEEDS II experiment by the University of
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Tokyo (Japan), A-line stations by Fisheries Research Agency (FRA, Japan), and the
Oshoro-Maru cruise by Hokkaido University (HU, Japan) (Fig. 1). Only surface data
(<10 m) were used (N =5886), consistent with the application of this study to satel-
lite ocean colour observations. The data were quality controlled in the following way:
individual pigment data were visually checked and data of clear low-quality (e.g. con-5

tinuously repeated value over several stations within a cruise, typically low values, sus-
pected as outside the detection limits of an instrument) were removed. Further outliers
were determined from the regression of accessory pigments against Chla concentra-
tion, excluding values beyond the 95% confidence interval of the regression (Aiken et
al., 2009). The data were then sorted by numerical value of Chla and smoothed with a10

5 point running mean low-pass filter to improve the signal to noise ratio (Hirata et al.,
2008; Brewin et al., 2010). Among the quality controlled data, 70% of them were used
for algorithm development whereas 30% were reserved for validation. The validation
data were constructed in such a way that 30% of each sub-dataset (i.e. each cruise or
dataset mentioned earlier) was sub-sampled randomly and collected, using a random15

number generator, to ensure that each sub-dataset evenly contributes to the validation
dataset.

2.2 Satellite ocean colour data

SeaWiFS 9km Level-3 monthly composites of Chla data for the period 1998–2009 were
obtained from NASA Goddard Space Flight Centre using the latest 2009 reprocessing20

which has resulted in improved atmospheric and radiometric corrections, more com-
prehensive vicarious calibration and corrections to instrument calibration drift over the
time series. Validation results show substantially improved agreement with in situ mea-
surements in turbid and highly productive waters (see http://oceancolor.gsfc.nasa.gov/
REPROCESSING/R2009/ and linked forum topics for further details). In order to focus25

on oceanic waters, coastal and shelf waters (<200 m) were masked out in the Sea-
WiFS Chla data, using the ETOPO5 bathymetry obtained from National Geophysical
Data Centre.
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3 Methods

Diagnostic Pigment Analysis (DPA) is applied to classify phytoplankton types from
HPLC pigment data (Vidussi et al., 2001). DPA defines a suite of Diagnostic Pig-
ments (DP) for specific PFTs that can be quantified relative to the sum of all DP con-
centrations (i.e. DP/ΣDP) to estimate the relative abundance of a specific PFT (Table 1).5

The DPA procedure, originally proposed by Vidussi et al. (2001), was subsequently re-
fined by Uitz et al. (2006) to scale ΣDP to Chla, permitting the application of DPA-based
approaches to satellite-derived Chla. In addition, Hirata et al. (2008) used the refined
DPA to separate pico-eukaryotes from nano-eukaryotes, and Brewin et al. (2010) de-
veloped a method to quantify the relationship, which is used in the present work. Here,10

DPA is further refined to account for ambiguity of the fucoxanthin (Fuco) signal. Fuco
is defined as a DP for Diatoms by Vidussi et al. (2001). However, Fuco is also a pre-
cursor pigment of 19′-Hexanoyloxyfucoxanthin (Hex), the DP for prymnesiophytes, and
can co-occur in this group. Fuco is also contained in the other heterokonts (e.g. chrys-
ophytes, bolidophytes) and dinoflagellates (Wright and Jeffrey, 2006). Thus, diatoms15

could be overestimated in DPA. Hirata et al. (2008) found a non-negligible proportion
of Fuco within the oligotrophic gyres of the subtropical Atlantic, where small prokary-
otes (predominantly Prochlorococcus sp. and Synecococcus sp.) and pico-eukaryotes
(which can partly belong to the prymnesiophytes so may also contain Hex) usually
dominate the phytoplankton community (Zubukov et al., 1998; Tarran et al., 2006). In20

these oligotrophic waters, Chla is low (<0.25 mg m−3, Aiken et al., 2009), therefore, it
is more reasonable to assume that the background level of Fuco detected results from
smaller prymnesiophytes rather than diatoms which are more prevalent in eutrophic
waters. Therefore, we calculated the baseline of Fuco/Hex ratio, (Fuco/Hex)baseline,
using Fuco and Hex at Chla range less than 0.25 mg m−3 in the original data set (Fu-25

cooriginal and Hexoriginal, respectively). A proportion of Fuco as a diatom biomarker is
corrected so that Fucocorrected=Fuco− (Fuco/Hex)baseline×Hexoriginal. The Fuco
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conversion is only significant in the lower Chla range (<0.5 mg m−3) and is negligible
for higher Chla values.

4 Results and discussion

4.1 Synoptic relationships between Chla and phytoplankton functional types
(PFTs)5

Figure 2 shows the global relationships between Chla and the fraction of DP associated
with each PFT, derived from in situ HPLC. Well-defined, co-variability is found between
Chla and DP for each PFT. While Chla is known as an index of phytoplankton biomass,
the co-variability indicates that Chla is also an index of phytoplankton community struc-
ture. For microplankton, the fractional contribution to Chla (% Chla) monotonically in-10

creases with increasing Chla (Fig. 2a), whereas for picoplankton, this monotonically
decreases with increasing Chla (Fig. 2c). Micro- and picoplankton in our data fall in the
ranges of 0–87 and 6–90 [% Chla], respectively, showing a large variation in time or
space. The relationship between Chla and nanoplankton does not show the monotonic
variations found in micro- and picoplankton (Fig. 2b). Rather % Chla of nanoplankton15

increases as Chla increases up to approximately 0.2 mg m−3 but decreases as Chla fur-
ther increases, resulting in a broad maximum between 0.1–0.3 mg m−3 approximately.
Nanoplankton ranges from 7–72 [% Chla], showing a smaller range of variation than
that of micro- and picoplankton.

These size-class relationships (micro-, nano-, and picoplankton) are further decom-20

posed into a range of PFTs. Microplankton (Fig. 2a) is subdivided into diatoms and
dinoflagellates (Fig. 2d and g), and their abundance ratios vary against Chla with
a similar relationship to that of microplankton. Picoplankton is composed of pico-
eukaryotes and prokaryotes (Fig.2f and h), the latter of which include Prochlorococcus
sp. (Fig. 2i). Not all of the abundance ratios within the picoplankton community vary in a25

same fashion. The % Chla of prokaryotes and Prochlorococcus sp. non-monotonically
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decreases with Chla with a local maxima, which occurs at Chla=0.08−1.00 mg m3

(Fig. 2h and i). Pico-eukaryotes also show a non-monotonic variation with Chla but
shows a local minima; % Chla being higher for Chla <0.04 mg m−3, then decreasing up
to 0.09–0.10 mg m−3, increasing slightly up to 0.80 mg Chlam−3, then decreasing grad-
ually again above it. Pigment classification is unable to discriminate the size ranges of5

green algae (e.g. Suzuki et al., 2002) therefore it is not explicitly classified according
to a specific size class here. The % Chla of green algae shows a broad peak shifted to
Chla values between 0.5 and 0.9 mg m−3.

The relationships between Chla and % Chla shown above can be quantified using
the least square fit (thick solid lines in Fig. 2), enabling the estimation of % Chla of each10

PFT from Chla alone, hence from satellite-derived Chla fields (O’Reilly et al., 1998).
Table 2 summarizes the fitting formulae and associated coefficients to quantify the
relationship between Chla and % Chla for each PFT. While the relationships between
Chla and % Chla of Micro- and Picoplankton were represented using a classical logistic
equation, the relationships in the other PFTs were not expressed by the equation.15

Thus, the use of the logistic growth model was only applicable to a limited number of
phytoplankton (Micro, diatoms and Pico) in our data set.

Fitting functions other than those shown in Table 2, such as polynomials for example,
could be used for fitting. However, they tend to over- or underestimate at lower and
upper bounds of the Chla range observed, without introducing a significant statistical20

improvement (hence, results not shown). When polynomial fitting is used to extrapolate
outside the Chla range in Fig. 2, which would be necessary for satellite data processing,
they would introduce larger errors than those shown in Table 3. Hence, we did not
employ polynomial fitting.

To maintain “mass balance”, not all relationships are regressed. For example, % Chla25

of nanoplankton is derived from 100−% Chla (microplankton)−% Chla (picoplankton)
so that micro-, nano- and picoplankton sum up to 100%. The nanoplankton relationship
derived in this way (shown as a thin curve in Fig. 2b) still fits the observed data well,
reflecting strength in the micro- and picoplankton fits. This subtraction could equally
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have been undertaken between micro- and nano-phytoplankton derived from regres-
sion, or similarly between nanoand pico-phytoplankton. However, the best statistical fit
was found in our data set when % Chla (nanoplankton) was not regressed. The method
was also used to derive dinoflagellates within the micro-phytoplankton community and
pico-eukaryotes within the pico-phytoplankton community.5

Figure 3 shows the estimated uncertainties of the relationships between % Chla and
Chla, defined here as the residual between in situ data and the least-square fit. The
uncertainty varies according to both the PFT considered and the Chla level. Maximum
mean uncertainty (i.e. maximum Root Mean Square Error, RMSE), is 7.5 [% Chla] for
nanoplankton (Fig. 3h), while minimum is 2.3 [% Chla] for dinoflagellates (Fig. 3g). The10

overall mean uncertainty is 5.8 [% Chla] when all PFTs are considered (Table 3). The
uncertainty is variable even within a specific PFT considered. For example, the local
maximum of uncertainty is as high as 33.0 [% Chla] at Chla of 1.07 mg m−3 for mi-
croplankton (Fig. 3a; see also Table 3), and 34.7 [% Chla] at 1.07 mg m−3 for diatoms
(Fig. 3d). Thus the regressions obtained in Fig. 2 would represent synoptic relation-15

ships between Chla and % Chla of each PFT, and small scale variability of PFT, both
in time and space, may not be represented in our proposed formulations.

4.2 Validation of the relationships between Chla and PFTs

Figure 4 shows a graphical representation of validation results. The derived rela-
tionships generally perform well, which is confirmed by the statistical results shown20

in Table 4; the mean regression slopes are close to unity (0.951), the intercept
close to zero (−0.785), high coefficient of determination (r2 =0.601) and small error
(RMSE=5.99 [%]). Detailed statistics show that the algorithm performance varis ac-
cording to the the PFT of interest. While the picoplankton algorithm performed par-
ticularly well (r2 =0.835), the dinoflagellate algorithm did rather poorly (r2 =0.089)25

which resulted in the significant reduction of the mean r2 (=0.587) over all PFTs.
Careful examination of dinoflagellates (Fig. 4g), microplankton (Fig. 4a) and diatoms
(Fig. 4b) suggests that the estimation of large-cell phytoplankton are less accurate
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at <9 [% Chla] (Recall the uncertainties for these PFTs are 6.7, 6.6 and 2.3 % Chla).
Nanoplankton (Fig. 4b), Green Algae (Fig. 4e) and Prochlorococcus sp. (Fig. 4i) in-
dicate artificial cut-offs at the higher end of the estimated % Chla. This results from
the fact that (1) the relationships between Chla and % Chla of PFTs are formulated
by the least-square regression, so that a single value of Chla returns a single value5

of % Chla and (2) the functional forms of the relationships for these particular PFTs
show a local maxima which is also the maximum over the given range of Chla, thus
does not allow to return % Chla above the maximal value; for example, see Fig. 2b
where the regressed curve takes the unique maximal value of % Chla (=21.6) at Chla
of 0.67 [mg m−3], which is also the maximum value over the entire Chla range, while10

% Chla in the in situ data fluctuates at the same Chla value of 0.67 [mg m−3]. Such
a fluctuation of % Chla at a given Chla value would partly result from a temporal vari-
ation in phytoplankton community structure at a given geographical point, and partly
from geographical spread of data points where the community composition is not nec-
essarily the same. The mathematical representation within the ecological ambiguity is15

a limitation of the present approach. The data used to quantify the relationships, or
to develop the algorithms, should ideally include sampling during pre- to post bloom
periods for all ocean basins, providing a greater degree of confidence in the relation-
ships. Continuous accumulation of in situ data to build such a data set would also
enable a regular ongoing calibration of the relationships, improving detection of mid-20

and long-term variability in PFTs. Physiological changes in the phytoplankton due to
environmental changes may be reflected by the regular calibration of the relationships
over time.

4.3 Global distribution of PFTs

Figure 5 shows the global mean distributions of each PFT, derived from SeaWiFS25

Chla observed over 1998–2009. Dinoflagellates are not considered here due to a
poor result in the validation. Microplankton is relatively abundant at mid-high latitudes
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(Fig. 5a). Microplankton-dominated waters (i.e. % Chla>50%) are rather restricted
along some parts of the Arctic and Antarctic coasts and coastal upwelling regions
such as Benguela, Humbolt and Canary current regions, where Chla is relatively high
(Fig. 5i). Thus, microplankton, which is almost an entire reflection of the diatoms
at a synoptic scale (Fig. 5d), do not show a basin scale dominance in the mean5

field. Nanoplankton are ubiquitously distributed, and constitute approximately 35–
57 [% Chla], but less in the subtropical gyres (Fig. 5b). The results obtained in this
study are consistent with those of Liu et al. (2009) who found that prymesiophytes
(haptophytes) dominate the Chla-normalized phytoplankton stock in modern oceans.
The subtropical gyres are largely dominated by picoplankton (% Chla>65%, Fig. 5c),10

mostly by prokaryotes (Fig. 5g) which includes Prochlorococcus sp. (Fig. 5h). The
exception is the South Pacific gyre where pico-eukaryotes explain a significant por-
tion of picoplankton (>40 [% Chla]) (Fig. 5f), which may be supported by the in situ
data analysis of Ras et al. (2008) who postulate a possible significance of pico-sized
flagellates (i.e. pico-eukaryotes) in the South Pacific Ocean, especially at the surface.15

On average over the 1998–2009 period, Microplankton, Nanoplankton and Picoplank-
ton explain 9.2, 44.2 and 46.8 [% Chla] of global Chla, whereas diatoms, green algae,
pico-eukaryotes, prokaryotes and Prochlorococcus sp. explain approximately 6.0, 13.1,
14.5, 32.3 and 21.5 [% Chla], respectively.

Figure 6 shows the monthly time series of % Chla of each PFT for 7 major oceans20

and the global ocean. For the Arctic Ocean (Southern Ocean), only data from July
(January) are shown because of the maximum spatial coverage during summer at high
latitudes (Fig. 6a and b). Microplankton and nanoplankton show a weak inter-annual
variability in these high latitude oceans, but this may result from the aliasing due to the
sub-sampling of the summer data. In the other oceans (Fig. 6c–h), the global relation-25

ships applied to satellite observation reproduce clear seasonality of PFTs, although a
dynamic range (and an amplitude) of the temporal variability is subject to the popula-
tions in the continental shelf, which is not considered here due to a limitation of DPA.
In the North Pacific (Fig. 6e), a secondary bloom, which is weaker than the primary
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spring bloom, is also visible in microplankton and diatoms. In all ocean basins (ex-
cept the Arctic and Southern Ocean), microplankton and picoplankton are inversely
correlated (recall Fig. 2). Nanoplankton also co-varies with them, but accompanying a
phase difference. For example, nanoplankton is out of phase with picoplankton by a
few months in the North Atlantic and North Pacific (Fig. 6c and e), whereas it is com-5

pletely out of phase (approx. 6 months) in the South Pacific (Fig. 6f) and Indian Ocean
(Fig. 6g).

Figure 6 also shows that the wide-spread distribution of nanoplankton with a rela-
tively high spatial average value of % Chla shown in Fig. 5b is maintained in the time
series, implying that nanoplankton can be synoptically viewed as a background group10

in the total phytoplankton community. Although the mean % Chla of picoplankton is
also as high as that of nanoplankton over years, spatial distribution of picoplankton
(Fig. 5c) is relatively limited to subtropical oceans, thus picoplankton is less ubiquitous
than nanoplankton. Nonetheless, we note that picoplankton may also be viewed as
background community when absolute Chla (instead of % Chla), and/or a particular15

basin such as subtropical gyres rather than the entire globe, are focused. Microplank-
ton and diatoms have relatively sharp variation in time in comparison with nano- and
picoplankton in North Atlantic and Pacific (Fig. 6c and e), implying intensive blooms in
specific periods in a year. The dynamic range or amplitude of the bloom could be en-
hanced if continental shelves (white areas in Fig. 5), which are known as areas where20

a large microplankton blooms occur, were included in the analysis. Recalling that the
spatial distributions of microplankton and diatoms are limited to some parts of midhigh
latitude and coastal areas (Fig. 5a and d), microplankton and diatoms seem dominant
only at a localized scale, both spatially and temporally, rather than as a background
group in synoptic scale. However, a number of patches dominated by them, whether25

they are associated with turbulent flows such as eddies or not, could be found in the
open oceans during a “snap shot” ship observation. Supporting the global view of mi-
croplankton and diatom distributions, Obayashi et al. (2001) also suggested that, in
the subarctic North Pacific, a ubiquitous basic structure made up of diverse population
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is apparent, on which a flourishing diatom population, limited by area and season, is
superimposed sporadically.

The spatial distribution and temporal variation of PFTs captured by SeaWiFS are
based on the empirical relationships between Chla and % Chla obtained from in situ
data taken at various time of the year in the global surface oceans. While the derived5

relationships reasonably reproduced the PFT structure within the time span of the data
(1997–2008) as shown in (Fig. 4), an extrapolation of the relationships over the future
satellite observation may introduce an ambiguity between natural fluctuations of the
PFTs and a potential drift of the empirical relationships from reality. When the rela-
tionships are viewed as algorithms to estimate the PFTs, re-calibration of the algorithm10

may be required constantly over time to reduce the ambiguity. Such a calibration of the
algorithm has been conducted several times over, for example, the SeaWiFS mission
(the most recent re-calibration is 2009.1 reprocessing which we used in this work).

The results presented in this work are limited to the surface and synoptic applica-
tions. Caution must be taken when the relationships are applied to analysis for smaller15

scales, in space or time (i.e. within a narrower Chla range), because an increased
noise-to-signal ratio in the relationships is expected from Fig. 2: Fluctuations of % Chla
(or variability along y-axis in Fig. 2) at a fairly limited range of Chla can become signif-
icantly large relative to variability of Chla itself (or variability along x-axis), which may
result in a degraded or less-defined relationship between Chla and % Chla for each20

PFTs. Furthermore, in coastal waters, although they were excluded in our analysis,
the definition of biomarker pigments may be degraded due to an increased population
of dinoflagellates, which can contain Fuco (Wright and Jeffrey, 2006) and confuses in-
terpretation of the Fuco signal as a biomarker pigment of diatoms, requiring a further
correction to Fuco.25

The present approach uses only Chla to derive % Chla of the PFTs, although it was
able to capture a dominant ecological feature of the global distribution of PFTs. Uitz et
al. (2006) additionally uses mixed layer depths to take vertical structures of Chla, hence
PFTs, into account in order to better represent phytoplankton community. Although our
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focus was on the surface structure of PFTs, such multivariate approach using relevant
quantities may reduce uncertainty in the estimation of PFTs.
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Table 1. Diagnostic Pigments.

Size Classes/PFTs Diagnostic Pigments Estimation Formula

Microplankton Fucoxanthin (Fuco), Peridinin (Perid) 1.41 (Fuco+Perid) / ΣDP1

/Diatoms Fuco 1.41 Fuco/ΣDP1

/Dinoflagellates Perid 1.41 Perid/ΣDP1

Nanoplankton 19′-Hexanoyloxyfucoxanthin (Hex) (Xn ×1.27 Hex+1.01 Chlb
+0.35 But+0.60 Allo)/ΣDP2

Chlorophyll-b (Chlb)
Butanoyloxyfucoxanthin (But)
Alloxanthin (Allo)

Picoplankton Zeaxanthin (Zea), Hex, Chlb (0.86 Zea+ Yp 1.27 Hex)/ΣDP2

/Prokaryotes Zea 0.86 Zea/ΣDP1

/PicoEukaryotes Hex, Chlb
/Prochlorococcus sp. Divinyl Chlorophyll-a (DVChla) 0.86 DVChla/Chla

Green algae Chlb 1.01 Chlb/ΣDP1

1 ΣDP=1.41 Fuco+1.41 Perid+1.27 Hex+0.6 Allo+0.35 But+1.01 Chlb+0.86 Zea=Chla (Uitz et al., 2006)
2 Xn indicates a proportion of nanoplankton contribution in Hex, respectively. Similarly Yp indicates a proportion of

picoplankton in Hex, respectively (Brewin et al., 2010)
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Table 2. Equations to estimate PFT fractions [0.0–1.0]. Set PFT fraction to 1.0 if >1.0, and 0
if <0. To get % Chla, multiply 100 to the fractions derived.

SizeClass/PFTs Formula a0 a1 a2 a3 a4 a5 a6

Micro
[
a0 + exp (a1x + a2)

]−1
0.7756 −2.4271 0.6031 – – – –

/Diatoms
[
a0 + exp (a1x + a2)

]−1
1.3637 −3.2867 0.5013 – – – –

/Dinoflagellates (=Micro-diatoms) – – – – – – –
Nano (=1-Micro-Pico) – – – – – – –

/Green algae
(
a0/y

)
exp

[
a1 (x + a2)2

]
0.5379 −0.9623 −0.9982 – – – –

Pico −
[
a0 + exp (a1x + a2)

]−1
+ a3x + a4 0.1708 1.1453 −1.4202 −1.8037 2.7047 – –

/Prokaryotes
(
a0/a1/y

)
exp

[
a2 (x + a3)2/a2

1

]
+a4x

2 + a5x + a6 0.0043 0.4915 −5.5052 0.9182 0.1144 −0.1062 0.0683
/Pico-Eukaryotes (=Pico-Prokaryotes) – – – – – – –
/Prochlorococcus sp. (

a0/a1/y
)

exp
[
a3 (x + a4)2/a2

1

]
+a4x

2 +a5x+a6 0.0078 0.5564 −5.3204 0.95175 0.0136 −0.1650 0.0405

x= log10 (Chla); y =Chla
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Table 3. Statistical results of the reconstructed relationships between PFTs and Chla against
in situ data.∗

Size Class/ Observed Max. Chla at
PFT range of % Chla r2 p RMSE [%] Error [%] Max Error [mg m3]

Microplankton 0–87 0.76 <0.001 6.7 33.0 1.07
/Diatoms 0–84 0.72 <0.001 6.6 34.7 1.07
/Dinoflagellates 0–40 0.19 <0.001 2.3 27.4 2.14
Nanoplankton 7–72 0.66 <0.001 7.5 21.6 0.33
/Green algae 0–40 0.56 <0.001 4.6 21.3 1.45
Picoplankton 6–90 0.79 <0.001 6.6 26.4 1.45
/Prokaryotes 1—72 0.76 <0.001 7.1 25.5 0.14
/Pico-Eukaryotes 2–40 0.42 <0.001 4.9 20.9 1.45
/Prochlorococcus sp. 0–55 0.76 <0.001 6.1 20.1 0.11

Mean 0.62 <0.001 5.8 25.6 1.02

∗ Rounded values
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Table 4. Validation results.∗

Size Class/PFT slope intercept r2 p RMSE [%]

Microplankton 1.130 −0.024 0.742 <0.001 7.52
/Diatoms 1.228 −0.333 0.743 <0.001 7.46
/Dinoflagellates 0.311 2.396 0.089 0.080 1.78
Nanoplankon 1.168 −7.980 0.661 <0.001 7.52
/Green algae 0.782 2.636 0.483 <0.001 4.36
Picoplankton 1.103 −5.593 0.835 <0.001 6.42
/Prokaryotes 1.011 −0.699 0.752 <0.001 7.33
/Pico-Eukaryotes 0.734 4.007 0.330 <0.001 4.84
/Prochlorococcus sp. 1.111 −1.479 0.770 <0.001 6.68

Mean 0.951 −0.785 0.601 <0.001 5.99

∗ Rounded values
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Fig. 1. Distribution of phytoplankton pigment data used in this study; blue filled diamond: the
NERC AMT cruise (Aiken et al., 2009), black triangle: the JAMSTEC BEAGLE cruise (Barlow et
al., 2007), cyan open diamond: the NASA NOMAD (Werdell and Bailey, 2005), magenda cross:
the NASA SeaBASS, blue star: the SEEDS II cruise (Suzuki et al., 2005)+A-line stations
(Isada et al., 2009), green open square: the HU Oshoro-maru cruise.
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Nanoplankton, c) Picoplankton, d) Diatoms, e) Green algae, f) Pico-Eukaryotes, g) 

Prokaryotes, h) Prochlorococcus sp. The orange thick curves are the least-square fits to the 

original data (a, c, d, e, h, i), whereas the black thin curves are the fits indirectly derived from 

the least square fits (b,f,g; e.g. Nano = 100% - Microfit – Picofit, see Table 2). 
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Fig. 2. Global relationships between Chla and % Chla of each PFT; (a) Microplankton,
(b) Nanoplankton, (c) Picoplankton, (d) Diatoms, (e) Green algae, (f) Pico-Eukaryotes,
(g) Prokaryotes, (h) Prochlorococcus sp. The orange thick curves are the least-square fits
to the original data (a, c, d, e, h, i), whereas the black thin curves are the fits indirectly derived
from the least square fits (b, f, g; e.g. Nano=100% – Microfit – Picofit, see Table 2).
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Eukaryotes, (g) Prokaryotes, (h) Prochlorococcus sp.
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Fig. 4. Results of validation. (a) Microplankton, (b) Nanoplankton, (c) Picoplankton, (d) Di-
atoms, (e) Green Algae, (f) Pico-Eukaryotes, (g) Dinoflagellates, (h) Prokaryotes, (i) Prochloro-
coccus sp.

6702

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/6675/2010/bgd-7-6675-2010-print.pdf
http://www.biogeosciences-discuss.net/7/6675/2010/bgd-7-6675-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
7, 6675–6704, 2010

Relationships
between

Chlorophyll-a and
diagnostic pigments

T. Hirata et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1 

>70 
(a)�Micro (b)�Nano (c)�Pico 

P
FT

s 
[%

CC
hl

a]
 (a

 –
 h

 ) 60 

50 

40 

30 

20 
(d)(d) Diatoms �Diatoms (e) Green (e)�Green�Algae Algae (f) Pico Eukaryotes (f)�PicoͲEukaryotes 

10 

0 

>0.80 

0.70 

(g)�Prokaryotes (h)�Prochlorococcus sp.������������(i)�ChlorophyllͲa 

m
g 

m
-3

] (
i) 0.60 

0 40  0.40 

0.30 

0.20 

C
hl

a 
[m

 

0.10 

0.50 

0 

2 

3 

4 

5 

6 

7 

8 

Fig. 5. Synoptic distribution of surface PFTs [%Chla] and Chla [mg m-3] over 1998-2009 

derived from SeaWiFS. a) Microplankton (global average ~ 9.0%Chla), b) Nanoplankton 

(~44.2%Chla), c) Picoplankton (~46.8%Chla), d) Diatoms (~6.0%Chla), e) Green Algae 

(~13%Chla), f) Pico-Eukaryotes (~14.5%Chla), g) Prokaryotes (~32.3%Chla), h) 

Prochlorococcus sp. (~21.5%Chla), i) Total Chlorophyll-a for the entire phytoplankton 

community). White area shows a continental shelf mask defined by < 200 m. Use the upper 

colour scale for a) to h) and the lower colour scale for i). 
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Fig. 5. Synoptic distribution of surface PFTs [% Chla] and Chla [mg m−3] over 1998–2009
derived from SeaWiFS. (a) Microplankton, (b) Nanoplankton, (c) Picoplankton, (d) Diatoms,
(e) Green Algae, (f) Pico-Eukaryotes, (g) Prokaryotes, (h) Prochlorococcus sp., (i) Chlorophyll-
a. White area shows a continental shelf mask defined by <200 m
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2 Fig. 6. 12-year time series (1998-2009) of %Chla of each PFT derived from SeaWiFS satellite 

3 chla; a) Arctic Oceans : b) Southern Ocean : c) North Atlantic :d) South Atlantic :e) North 

4 Pacific :f) South Pacific :g) Indian Ocean :h) Global Oceans. For the Arctic and Southern 

5 Oceans, only June and Jan data are plotted to represent summer data since they give the 

6 maximum geographical coverage in the regions and the satellite Chla is not available for 

7 winter period. There are missing data in January to March and July in 2008 as well as May, 

8 September and October in 2009 due to technical problems on SeaWiFS. 
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Fig. 6. 12-year time series (1998–2009) of % Chla of each PFT derived from SeaWiFS satellite
chla; (a) Arctic Oceans; (b) Southern Ocean; (c) North Atlantic; (d) South Atlantic; (e) North
Pacific; (f) South Pacific; (g) Indian Ocean; (h) Global Oceans. For the Arctic and Southern
Oceans, only June and Jan data are plotted to represent summer data since they give the
maximum geographical coverage in the regions and the satellite Chla is not available for winter
period. There are missing data in January to March and July in 2008 as well as May, September
and October in 2009 due to technical troubles on SeaWiFS.
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