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Abstract This contribution presents an approach to
model individual tree height—diameter relationships for
Scots pine (Pinus sylvestris) in multi-size and mixed-
species stands in Estonia using the Estonian Permanent
Forest Research Plot Network. The dataset includes 22,347
trees. The main focus of the study was to use an approach
that is spatially explicit allowing for high accuracy pre-
diction from a minimum set of predictor variables that can
be easily derived. Consequently, the height—diameter
relationship is modeled as a function of only the stand
quadratic mean diameter (dg) and the plot geographical
coordinates. A specific generalized additive model gam is
employed that allows for the integration of a varying
coefficient term and 2-dimensional surface estimators
representing a spatial trend and a spatially varying coeffi-
cient term. The high flexibility of the model is needed due
to the very few predictor variables that subsume a variety
of potential influential factors. Subsequently, a linear
mixed model is used that quantifies the random variation
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between plots and between measurement occasions within
plots, respectively. Hence, our model is based on the theory
of structured additive regression models (Fahrmeir et al.
2007) and separates a structured (correlated) spatial effect
from an unstructured (uncorrelated) spatial effect. Addi-
tionally, the linear mixed model allows for calibration of
the model using height measurements as pre-information.
Model bias is small, despite the somewhat irregular dis-
tribution of experimental areas within the country. The
overall model shows some similarity with earlier applica-
tions in Finland. However, there are important differences
involving the model form, the predictors and the method of
parameter estimation.

Keywords Estonia - Scots pine - Height—diameter
model - Generalized additive model - Varying coefficient
model VCM - Mixed model - Structured additive
regression model STAR

Introduction

Measurements of tree heights and diameters are essential in
forest assessment and modeling. Tree heights are used for
estimating timber volume, site index and other important
variables related to forest growth and yield, succession and
carbon budget models (Peng 2001). Considering that the
diameter at breast height (dbh) can be more accurately
obtained, and at lower cost than total tree height, only a
subsample of heights is usually measured in the field.
Height—-diameter equations are then used to predict the
heights of the remaining trees, thus reducing the cost of
data acquisition. For these reasons, developing suitable
height—diameter models may be considered one of the most
important elements in forest design and monitoring.
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The height-diameter relationship varies from stand to
stand, and even within the same stand this relation is not
constant over time (Curtis 1967). Therefore, a single
height—diameter function without further predictor vari-
ables is not able to correctly describe all the possible rela-
tionships that may be found within a given forest. To reduce
the level of variance, some basic relationships can be
improved by taking into account stand variables that
account for the dynamics of each stand. A generalized
height—diameter function estimates the specific relationship
between individual tree heights and diameters using stand
variables such as basal area per hectare and quadratic mean
diameter (see for example, Larsen and Hann 1987; Lopez
Sanchez et al. 2003; Temesgen and von Gadow 2004). The
reason for using this approach is to avoid having to establish
individual height—diameter relationships for every stand. In
contrast in Germany so-called Einheitshohenkurven have
been routinely used for many decades (Lang 1938; Kramer
1964; von Laer 1964; Kennel 1972; Nagel 1991). In this
approach, a height-diameter pair of a mean or dominant
tree is used as predictor for the general height—diameter
relationship. Hence, generalized height—diameter functions
are used to estimate individual height—diameter relation-
ships using additional predictor variables, while “Ein-
heitshohenkurven” are employed by applying additional
measurements of a representative height—diameter pair.

In forest field inventories, height and diameter data are
generally taken from trees growing in plots that are located
in different stands. Often these plots are permanently
marked, and the same trees are remeasured over time. Such
clustered and longitudinal data are characterized by a lack
of independence between observations, since data coming
from the same sampling cluster and measurement occasion
tend to resemble each other more than the average (Fox
et al. 2001). This type of data can be also characterized as
having a unit, cluster and occasion-specific heterogeneity
(Brezger and Lang 2006), whereas in forest management a
unit may refer to an ecoregion or forest district, and a cluster
may refer to a sample plot. The lack of independence
between observations results in biased estimates of the
confidence intervals of the parameters if ordinary least
squares regression techniques are used (Searle et al. 1992).
To deal with this problem, the extension of ordinary
regression to mixed model theory has been proposed in
forest research (Gregoire 1987; Lappi 1991; Calama and
Montero 2004; Mehtitalo 2004; Nothdurft et al. 2006). In
mixed models, both fixed and random parameters are esti-
mated simultaneously, providing consistent estimates of the
fixed parameters and their standard errors. Furthermore, the
inclusion of random parameters allows to model the vari-
ability detected for a given phenomenon among different
locations, clusters and measurement occasions within a
given population, after defining a common fixed functional
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structure (Castedo-Dorado et al. 2006). Mixed models also
improve the predictive ability if it is possible to predict the
value of the random parameters for a location and mea-
surement occasion, which is not part of the dataset by using
additional measurements as pre-information (Lappi 1997;
Mehtitalo 2004). This particular method of predicting
random effects by BLUPS (best linear unbiased predictors)
is usually described as model calibration (Lappi 1997).
Hence, applying mixed model methodology to generalized
height—diameter functions allows for a prediction using
both information in sync: predictors as mean quadratic
diameter and additionally measured diameter—height pairs.
The use of an arbitrary number of diameter—height pairs for
calibration is an additional advantage. These measurements
need not be from representative mean or dominant trees.

However, in many applications a theoretical problem
remains since the random effects are usually assumed to be
independently distributed. This assumption is violated if
the data originating, for example, from large-scale inven-
tories show spatial correlation patterns. Up to now, this
topic has been rarely discussed in a forestry context
(Brezger and Lang 2006; Augustin et al. 2009). An
approach to model the spatial correlation of the random
effects related to only one parameter of a height—diameter
model via a geostatistical approach is presented by Nanos
et al. (2004).

Spatial effects are usually a surrogate of the effects of
other unobserved influential factors. But in many applica-
tions, the spatial effect is not only the result of factors that
exist only locally, i.e. on cluster level but also the result of
factors that show a strong spatial structure. Hence, the
overall spatial trend can be separated into a spatially cor-
related (structured) and an uncorrelated (unstructured)
effect (Brezger and Lang 2006). Subsequently, only the
unstructured effect is modeled by (uncorrelated) random
effects on cluster level. For the structured effect, two main
approaches may be distinguished: (I) the structured spatial
effect is modeled in the framework of so-called geoadditive
models via a Gaussian Markov random field, i.e. spatially
correlated random effects are estimated for the spatial units
of the observations (Kammann and Wand 2003). (II) the
structured spatial effect is modeled via 2-dimensional
surface fitting by applying specific generalized additive
models based on e.g. penalized regression splines with thin
plate basis (Wahba 1990; Wood 2006). The second
approach is particularly suited if the data locations are
described by exact coordinates. The first approach can also
be employed if the observations are assigned to adjacent
geographic units like forest districts. Both approaches can
be combined with the estimation of (uncorrelated) random
effects to account for the unstructured spatial effect
simultaneously. The resulting model types are still called
either geoadditive models concerning approach I or
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generalized additive mixed models gamm concerning
approach II (Lin and Zhang 1999; Fahrmeir and Lang
2001). However, the separation of both (structured and
unstructured) spatial effects might easily lead to numerical
problems using approach II, especially if the model for the
2-dimensional surface is rather complex (Wood 20006). If
not only cross sectional but also longitudinal data should be
modeled, the theory could be extended by modeling addi-
tionally a (nonlinear) time trend or even 3-dimensional
space—time trends (Wood 2006; Augustin et al. 2009).

Further extensions are the implementation of nonlinear
effects for additional covariates leading to the well-known
generalized additive models gam (Hastie and Tibshirani
1990). If not only main effects but also interactions
between nonlinear effects and categorical or continuous
covariates are to be modeled, this specific type of a gam
is called a varying coefficient model VCM (Hastie and
Tibshirani 1993). In this model type the nonlinear effects
are effect modifiers of the categorical or continuous
covariates. If the interaction covariate is categorical, then
this results in separate nonlinear effects for each level of
the covariate. If the covariate is continuous, a special case
of an interaction is modeled because one of the covariates
enters the model still linearly. The natural extension to
allow for an interaction term that is nonlinear with respect
to several covariates is again based on 2- or multi-dimen-
sional surface fitting (Wood 2006). In contrast to 2-
dimensional surface fitting for describing structured spatial
effects, usually tensor product splines are employed that
allow for different degrees of smoothing (anisotropy) for
the different dimensions (Wood 2006).

Both approaches (I) and (II) for describing structured
spatial effects could be also combined with continuous or
categorical covariates. In this case, a special type of a VCM
with a spatially varying effect modifier results (Fother-
ingham et al. 2002). Hence, in this case not only the
intercept is allowed to vary in space but also the coeffi-
cients of one or more covariates. All listed model classes
are subsumed by Fahrmeir et al. (2007) under the class of
structured additive regression models STAR.

The main objective of this paper is to predict tree height
for a certain dbh with high accuracy using only a minimum
set of information, i.e. only mean quadratic diameter and
geographic coordinates that can be easily derived. No
additional information should be used to allow for a very
simple practical application, and no predictors should be
used that are themselves resulting from extensive modeling
processes and that include a prediction error. Hence, the
main objective is prediction rather than quantification of
stand and site effects. The effect of dg that changes with
age and as a result of silviculture should account for the
longitudinal development of the height—diameter relation-
ship. The effect of the geographic coordinates subsumes

the effects of all potential factors that are spatially corre-
lated. This structured spatial effect can be employed in
predictions even if no additional measurements are avail-
able. Finally, uncorrelated random effects subsume the
effects of all spatially uncorrelated factors that appear only
locally on plot level.

For this purpose, the well-known Néslund height—
diameter function is parameterized within the generalized
additive regression gam frame work (Hastie and Tibshirani
1990) applying the specific methodology of Wood (2006).
A high flexibility of the model is needed, because only few
predictor variables are used. The approach should addi-
tionally allow for a calibration of a mean population model
if additional height—-dbh measurements are available. As a
result, we present a height—diameter model approach that
is parameterized in the framework of methodologi-
cally well-founded STAR models (Fahrmeir et al. 2007)
employing several of the initially stated model
components.

Materials and methods

This section introduces the Estonian Permanent Forest
Research Network that provides an extensive dataset for
the study and explains the methods which were applied.

The Estonian Permanent Forest Research Network

During the past two decades, a permanent Forest Research
Network database has been established in Estonia includ-
ing measurements from different original data sources. The
database was developed with the understanding that a long-
term series of re-measured plots would provide a useful
basis for forest growth modeling. All basic forest types,
stand ages and stand densities should be represented. Tree
coordinates should be assessed, and plot areas should be
large enough to characterize stand structures (Kiviste et al.
2007).

Trees have been measured since 1999 on the 16 X
16 km grid of the European ICP FORESTS Level 1
monitoring system, using circular plots with a radius of 15,
20 or 25 m to include at least 100 upper storey trees.
Smaller trees (second storey and understorey trees) were
measured in an inner circle with a radius of 8 or 10 m. For
each tree, the coordinates, diameter at breast height (dbh)
and possible faults were recorded. For a subset of “sample
trees” (every Sth tree, biggest trees or rare species), the
total tree height, height to crown base and the height to
lowest dead branch were assessed. The Estonian Permanent
Forest Research Network database currently includes a
total of 680 field plots and measurements of close to
200,000 trees (Fig. 1). The field work has been carried out
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Fig. 1 Map of the Estonian Permanent Forest Research Network that
currently includes a total of 680 field plots, some circles represent
clusters of 3-9 plots. Black dots are plots where Scots pine is the
dominant species

by the Department of Forest Management of the Estonian
University of Life Sciences.

The map in Fig. 1 shows four concentrations of plots
that represent previous research areas where traditional
methods of assessment were used. The eastern-central
cluster was established in a productive herb-rich forest
region. Another more southerly cluster is represented by
pure pine stands on fertile sandy soils. A third bigger group
of plots is situated in northern Estonia on poor sandy soils,
and a fourth group of plots was established on the island
Hiiumaa. Altogether, 71,506 trees in 492 permanent sam-
ple plots have been re-measured once, and 12,841 trees in
97 plots were re-measured twice. A total of 198,909
measurement records of all tree species (including records
of dead trees) is available. In this study, height-diameter
measurements of 22,347 Scots pine trees were used
(Fig. 2); 6,234 Pine trees from 90 plots have been re-
measured twice, 13,900 Pine trees from 208 plots have
been re-measured once, and 2,213 Pine trees from 104
plots have been measured only once. The country borders

have been taken from polygones published by the Estonian
Land Board.

Choice of model

Underlining their importance in forest assessment and
planning, a large number of stand-specific height—diameter
equations have been published. According to Lei and
Parresol (2001), the height—diameter relationship should be
monotonically increasing and have a functional inflection
point and an asymptote. A parameter-parsimonious model
that meets these requirements is a widely used model
which is known in Germany as the “Petterson function”
(see for example, Kramer and Akca 1995) and in Scandi-
navia as the “Nislund function” (see for example, Kangas
and Maltamo 2002):

di '
hip = (—Z—) +1.3 1
i <OC + ﬁdijk> ( )

where ;5 and d;j. are the total height (m) and breast height
diameter (cm) of the kth tree on the ith plot at the jth
measurement occasion, respectively; o, f and y are empirical
parameters. If mixed model approaches are applied, models
are often linearized (Lappi 1997; Mehtitalo 2004; Kinnunen
etal. 2007) as linear mixed model instead of nonlinear mixed
model theory could be used. Additionally, in our application
we need to linearize the model since we use generalized
additive models where we have to specify a linear
combination of (nonlinear) predictor effects. The Néslund
function can be linearized by setting the exponent y constant
(in our case y = 3, see Kramer and Akg¢a 1995):

d ijk
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In general terms, a basic linear mixed model can be
written as (Lappi 1997):
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Fig. 2 Marginal and bivariate distributions of available diameter and height observations for Scots pine
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where the vector y of length n (number of observations)
contains the measured values (in our case transformed), a is
the vector of fixed population parameters of length p; the
model matrix X of dimension n x p describes how
y depends on a and contains the independent continuous
variables and ones for the intercept and dummy variables
for (potential) categorical variables; b is the vector of
random parameters of length ¢; matrix Z of dimension
n x g describes how y depends on b and e is the vector of
random error terms.

In our case, we fit a two-level mixed model with random
effects on stand and measurement occasion level for the
quantification of the between-plot variability and the
measurement occasion variability within plots, respec-
tively. Therefore, Eq. 2 can be specified as a mixed model,
as follows:

Yije = o+ B + ai + bidy + ai + bydyk + e

(2a)

where « is the fixed intercept, f is the fixed coefficient of
dbh, both these terms provide an estimate of the (condi-
tional) expectation value, i.e. the conditional population
mean for a predefined dbh. g; is the random stand effect,
i.e. the random standwise deviation of the intercept, b; is
the random standwise deviation of the coefficient of dbh,
a;; is the random measurement occasion effect within stand,
i.e. the random intercept deviation of the measurement
occasion within stand, b; is the random measurement
occasion deviation of the coefficient of dbh, and ¢ is the
random tree variation within stand and measurement
occasion (residual error). It is assumed that the vectors of
random effects on stand b; and measurement occasion level
b; are normally distributed with b;~N(0, D,) and
b;~N(0, D,) where D; and D, denote the variance—
covariance matrices of the random effects on stand and
measurement occasion level, respectively. For the vector of
random error terms, it is assumed that it is normally dis-
tributed with e ~ N(0, R), where R denotes the variance—
covariance matrix where the diagonal elements are equal to
the variance of the residual error ¢, and the nondiagonal
elements are zero, if no within-group covariance and var-
iance functions are modeled.

A generalized height—diameter model includes stand
and/or site variables, such as the quadratic mean diameter
(dg) to describe the original regression parameters as a
function of those variables (Mehtidtalo 2004). Our study
attempts to relate the coefficients of Eq. 2 not only to the
quadratic mean diameter but also to the plot geographic
coordinates x and y. We solve the problem of spatially
correlated random effects via the implementation of a
structured spatial effect. The structured component of the
overall spatial trend is quantified applying the specific
methodology of Wood (2006) for 2-dimensional surface

fitting. Additionally, the main effect of dg is modeled by a
nonlinear effect using a penalized cubic regression spline
(Eq. 2b). Standard software for parameterization of exactly
this type of model is available within the statistic language
and environment R (R Development Core Team 2007)
employing the R-library mgcv (Wood 2006). A particular
feature distinguishing the R-library mgcv from other
methods for adapting generalized additive regression
models (e.g. Hastie and Tibshirani 1990) is the imple-
mentation of multi-dimensional penalized regression
splines for identifying and describing nonlinear multi-
dimensional model effects. We fit the 2-dimensional sur-
face via a penalized thin plate basis regression spline that is
recommended by Wood (2006) for describing spatial
trends. The main effect of dg and the 2-dimensional surface
operate as modifier of the intercept o (Eq. 2). During
model selection, we get further improvement when inte-
grating varying coefficient terms that operate as modifier of
the slope f3, i.e. as modifier of the effect of the tree diameter
(djr). We integrated a 1-dimensional nonlinear modifier as
a function of dg: f5(dg;) and a 2-dimensional surface:
fa(north;,east;) that results in a spatially varying effect of
tree diameter (Eq. 2b). The 1-dimensional effect was
modeled as penalized cubic regression spline, and the
2-dimensional surface was modeled as penalized thin plate
basis regression spline again. The extension of model 2a
into a generalized additive mixed model gamm instead of a
generalized linear mixed model glmm was necessary since
the nonlinear model variants proved to be superior to their
linear variants in the model selection processes. Models
were compared using the Bayes information criterion
(BIC) (Burnham and Anderson 2004; Schwarz 1978).
Now, the model is defined as a generalized additive mixed
model (Eq. 2b) including a 1-dimensional nonlinear effect
of dg, a 2-dimensional surface for the structured spatial
effect on the intercept o (Eq. 2), a varying coefficient term
as a function of dg that modifies the effect of tree diameter
dj and a 2-dimensional surface that operates as a spatially
varying modifier of the effect of tree diameter d.
Unstructured (uncorrelated) spatial effects are modeled via
(uncorrelated) random effects on plot and measurement
occasion level (Eq. 2b).

yie = o+ fi(dg;) + fa(north;, east;) + Bdi
+ f3(dg;;)dijk + fa(north;, east;)di + a;

+ bidi + aij + bydi + e (2b)

However, during the model building process it became
evident that the proposed model structure could not be
fitted directly due to numerical problems. Hence, the model
was fitted in two steps. First, the fixed part of the model
was fitted as a generalized additive model gam:
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Vi = o+ f1(dg;) + fa(north;, east;) + B

+ f3(dg;;)dijx + fa(north;, east;)dj + e (2b1)

The estimated conditional expectation value y;; was
then integrated as ‘a priori information’ in a linear mixed
model /me in a second step:

Yijk = toYijk + ai + bidi + aij + bydii + e (2b2)

where Var(ej) = o2|oopil*

For ensuring centered random effects, a coefficient oy
was also estimated. Hence, the estimated conditional
expectation value y;; enters the model as a predictor not
just as an offset. To take heteroscedasticity into account,
the variance can be modeled through a function involving
either the predicted value or some explanatory variables
(Davidian and Giltinan 1995; Pinheiro and Bates 2000).
We used the power-of-the-mean function which is a well-
known example of a variance function based on predicted
values, where o2 is the residual variance, and 6 is a
parameter to be estimated (Eq. 2b2). The linear mixed
model (Eq. 2b2) was parameterized employing the
R-library nlme (Pinheiro et al. 2000).

Calibration

The linear mixed model, which is fitted in the second step,
allows for a model calibration using prior information as in
the case of Lappi and Methitalo. Different kinds of
information of the predictors in the fixed part combined
with additional local height measurements can be used to
improve the prediction accuracy. Thus, the approach of a
generalized height—diameter relationship that is fitted as a
linear mixed model is superior to both approaches men-
tioned in the introduction: (a) generalized height curves
that are not specified as mixed models and (b) “Ein-
heitshohenkurven”. In (a), no pre-information (height
measurements) can be used to improve the prediction. In
(b), no predictor variables can be used to improve the
prediction and the estimation of the mean stand height and
diameter from few measurements are assumed to be the
“true” values. In our mixed model approach, the calibra-
tion of the height—diameter curve for a specific plot i, i.e.
the prediction of random effects via BLUPS, is calculated
by simple matrix algebra, using

by = DZ"(zDZ" + R)™" (i — ;)

where 15,- is a column vector of random effects to be esti-
mated for plot i. In our case, it has 2 + 2 m; rows where m;
denotes the number of measurement occasions of the i-th
plot. D denotes the variance—covariance matrix for the
random effects. It is a block diagonal matrix, where the
upper first block consists of Dy, and the following m; blocks
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are filled with D, (Table 2); hence, it has dimension
2+ 2m) x 2+ 2m;). The non-block-diagonal ele-
ments of Matrix D are zero as no cross-level correlations
between the random effects on plot and measurement
occasion level have been assumed. Matrix Z is the model
matrix of the random effects of dimension (n;) x
(2 4+ 2 m;), where n; denotes the number of single tree
height measurements (observations) over all measurement
occasions m; of plot i. R is a diagonal matrix with
dimension n; x n; with the estimates of 02|oc0)7,»jk\20 in the
diagonal and zero for the nondiagonal elements. y; is a
vector that contains the (transformed) single tree height
observations y;; (Eq. 2) over all measurement occasions m;
of plot i and has length n;. Vector g; contains the related
predicted values aoy;x by employing only the fixed effect
part of the model. Since we fit a 2-step model in our case,
the y;; are the predictions from the gam (Eq. 2bl) multi-
plied by the coefficient o from the linear mixed model
(Eq. 2b2). However, the fact that the estimates from the
linear mixed model still have a minor bias calls for testing
other equations as alternatives to the “Nislund function”.

Results
Generalized additive model

Of particular interest are the effects of the squared mean
diameter (dg) and the geographic coordinates on the
parameter estimates of Eq. 2bl and the overall model
accuracy. Statistical characteristics of the gam (Eq. 2bl)
are presented in Table 1. Smooth terms in our case are
presented by a combination of a linear term and a centered
smooth term; hence, coefficients of parametric terms are
estimated and displayed also.

Effects of squared mean diameter (dg)

The effects of the dg on the original parameters o and /5 are
definitely nonlinear since no straight line could be placed
within the dashed lines that represent the two times
pointwise standard error of the expectation value (Fig. 3).
The original parameters o and f§ have no direct biological
meaning. However, with decreasing parameters o and f the
height—diameter curve generally shifts toward greater
heights. Actually, the derived values of o increase with
increasing dg. But concerning the resulting height—diame-
ter curves (Fig. 4), this trend is over-compensated by the
decreasing values of f (Fig. 3).

The overall effect of the dg on the height—diameter
curve is illustrated in Fig. 4. For a constant geographic
location (northing 58.5, easting 25), the increase in dg
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Table 1 Statistical characteristics of the generalized additive model
(Eq. 2b1)

Estimate Std. error t-Value Pr(>lil)
Coefficients of parametric terms
o 0.9799 0.0084 117.1 <2e-16%**
p 0.3418 0.0004 771.6 <2e-16%**
edf F P-value
Approximate significance of smooth terms
f1 (dg) 2915 41.67 <2e-16%**
f> (north, east) 28.204 29.92 <2e-16%**
f5 (dg) 8.995 495.83 <2e-16%**
fa (north, east) 29.000 105.48 <2e-16%**
R? (adjusted) = 0.986 Deviance explained = 98.6%
GCV score = 0.089 n = 22,347

Significance codes: ‘“***’ 0.001 “**> 0.01 ‘*’ 0.05

results in larger heights for a predefined dbh. However,
from a dg of 34 cm the height—diameter curve is assumed
to be constant. This constraint was set during model
parametrization since the derived (unconstraint) nonlinear
effects resulted in an unfeasible set of curves for plots
exceeding a dg of 34 cm up to the maximum dg within the
database of 41.4 cm. Parameterizing unconstrained effects
of dg resulted in a decrease in tree height for a given dbh
for the entire diameter range. The crossing of height—
diameter curves over time or with increasing dg is a natural
consequence of different growth rates in different diameter
and height classes that should not be constrained (Lappi
1997). However, in our investigation the entire curve
moved toward lower heights, and this did not seem to be
feasible. Only about 3% of the observed pine stands in our
database have a dg of more than 34 cm. Thus, the decrease
in the height—diameter curve with increasing dg in the area
of large dg’s might be due to confounding effects and an
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Fig. 3 Effects of dg on the intercept (o; left) and slope (f3; right) of
the original Eq. 2 which are estimated as nonlinear effects (Eq. 2b1).
Solid lines represent the predicted values (expectation values); dashed
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Fig. 4 Height-diameter curves predicted by employing Eq. 2bl for
different dg at geographic location north 58.5 and east 25.0

unbalanced data structure. For example, site index is often
correlated with stand age, and thus patterns like “old stands
grow mostly on poor sites” confound the original corre-
lation. The results show that the database needs to be
extended for large dg’s that cover the whole range of sites
in Estonia.

Geographical effects (structured spatial effects)

The influence of the geographical location within Estonia
on the original parameters o and 5 (Eq. 2bl) is shown in
the two maps in Fig. 5. The maps do not present the sta-
tistical effects of the geographical location, but isohetes of
parameter values for a dg set constant to 20 cm; plot
locations are shown as black dots on the maps. Two cross
sections permit a more detailed analysis of the spatial
effect on the height—diameter relations. The northern sec-
tion cuts across the northern part of Hiiumaa in the west
over Rapla and Roosna-Alliku to Tudulinna in the eastern
part of Estonia. The southern section runs from Kuressaare

0.3

0.2

fa(dg)
0.1
rd

0.0

T ——

;
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lines represent two times the standard error of the expectation value.

The small lines along the x axis show the location of the sample plots
concerning their values of dg

@ Springer



Eur J Forest Res

o p
59.5 4 16 59.5 - —10.36
—t14 ]
59.0 = 59.0 .
= = 2 L
= 1 = [
S 585 = 5 565 - L
e 10 2
0.32
58.0 58.0 -
0.30
57.5 - 57.5 -
T T T T T T T T T T T
22 24 26 28 22 23 24 25 26 27 28
easting easting
north; dg=20 [cm] south; dg=20 [cm] = north; dg=20 [cm] - south; dg=20 [cm]
o (=] - -
< -]

1.5
1.5

0.35
0.35

82 82 @ @
o (=]

. : i g g

o o

o -] -] a
=1 =

22 23 24 25 26 27 28 22 23 24 25 26 27 28 22 23 24 25 26 27 28 22 23 24 25 26 27 28
easting easting easting easting

Fig. 5 Influence of the geographical location within Estonia on the
values of the intercept () and the slope (f5) of the original Eq. 2 that
are estimated as nonlinear effects (Eq. 2bl). The maps present the
isohetes of the parameter values for a constant dg of 20 cm; the

on the island Saaremaa in the west across over Parnu and
Viljandi to Tartu in the eastern part of the country. The two
cross sections are shown as dashed lines in Fig. 5.

The changes in the parameter values predicted by the
gam for different easting values are shown in the lower part
of Fig. 5, separately for the northern and the southern cross
section. For a comparison of parameter values between
different geographic locations, the predicted values are
supplemented by estimations of the two times pointwise
standard errors again. The interpretation of the map fea-
tures and the gam results allows three conclusions:

e Dboth parameters show a considerable variability within
Estonia, which underlines the need for two 2-dimen-
sional surface estimators that vary o« and f
simultaneously.

e the parameters are negatively correlated as the spatial
distributions are similar but inverted;

e the variable width of the confidence intervals in Fig. 5
reflects the different sample densities; as expected, it is
rather narrow in the south-central part where the
highest concentration of research plots is found.

In view of the complexity of the model, the question
could be raised whether the estimates are plausible. An
informal way to evaluate the plausibility is to generate a set
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graphs below the maps show the parameter values for different
easting values of the northern and southern crosscuts. Larger white
dots with black edge mark the positions for that exemplary height—
diameter curves are predicted (Fig. 6)

of diameter—height curves for locations located on the cross
sections of Fig. 5 and to ask local experts whether a spe-
cific height curve is plausible in a particular location
(Fig. 6).

These results confirm empirical observations and local
experience. Local experts could confirm the validity of the
relationships for extreme sites in the northwest and
southeast of the country. The poor sites in the northwest are
characterized by shallow soils on limestone, known as
“Loo” (Arcostaphylos/Calamagrostis/Sesleria) sites in
Estonia. The fertile sites in the southeastern part of the
country are known as “Janesekapsa” (Oxalis-Rhodococcum)
sites (Lohmus 2004). A more formal procedure of evalu-
ating the results is to calculate diagnostic plots as boxplots
of residuals (observation-prediction) over classes of pre-
dicted heights. Since our model uses coordinates as pre-
dictors, a specific validation concerns the model
predictions for different regions of Estonia. In doing so, the
most important criterion is the average deviance between
observations and predictions which should be approxi-
mately zero. However, when comparing the residual box-
plots for cross sections of one degree longitude and latitude
width (Gauss-Kriiger), respectively, through Estonia and
comparing combinations with a high number of observa-
tions only, in most cases a slight positive bias is obvious
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Fig. 6 Predicted height—diameter relationships on locations located on the northern cross sections (leff) and southern cross section (right) of
Fig. 5. Solid lines were initialized with a dg of 30 cm and dashed lines with a dg of 15 cm

(Figs. 7, 8). Focussing on these combinations, it is also
obvious, however, that none of them shows a serious bias.

When calculating the residual plots for different indi-
vidual tree diameter and dg classes for the whole area of
Estonia (Fig. 9), the slight bias is still obvious but smaller
compared to the bias within classes of predicted heights in
the different cross sections.

Mixed model

The coefficient o of the fixed effect is approximately 1
and an additional (fixed) intercept was not significant,
indicating that the prediction from the gam is an unbiased
estimation for the expectation value of transformed
heights (Eq. 2b2). All random effects are significantly

Fig. 7 Residuals (gam, north: 57.5
Eq. 2bl) over predicted tree
height classes on three east-
westerly cross sections through
Estonia. Cross section ‘north: | - |
57.5° comprises all tree heights
with a northing coordinate of
less or equal to 58. Cross
section ‘north: 58.5” refers to
northing coordinates within
[58,0001-59] and cross section
‘north: 59.5” to northing |
coordinates of more than 59. | P
The table gives the number of L
observations that belong to a
certain height and coordinate
class combination. The bias of
the class is given in brackets

10

residuals [m]
0

10

0 10 20 30

mean of predicted height class [m]

different from zero (Table 2). The variation in the random
effects on plot level is much higher than on measurement
occasion level within plots. Thus, the variance of the
intercepts on the measurement occasion level a; is only
about 10% of the variance of the plot level intercepts a;
(Table 2). The variance of the random coefficients b;; is
only about 3% of the variance of the plot level coefficients
b; (Table 2). This result implies that the height—diameter
curves within stands vary over time to a much lesser
extent compared with the variation in the mean stand
curves around the mean curve of Estonia. This data pattern
is of considerable interest in forest management planning,
since from only one measurement occasion the prediction
accuracy for other points in time for the same plot can be
significantly improved. However, the partition of the

north: 58.5 north: 59.5

10
10

5
Jo

(=] - =
| v - * e ' 0 L ' - ' B
0 10 20 30 40 0 10 20 30
mean of predicted height class [m] mean of predicted height class [m)

40

northing class of predicted height
[<5.0] [5.0,14.9] [15.0,24.9]  [25.0,34.9] [=235.0]
north: 59.5 155(0.09)  3322(0.23) 1934 (0.31) 45 (-1.36) 0
north: 58.5 216 (0.04)  2365(0.26) 6526 (0.13) 4480 (0.21) 1(2.26)
north: 57.5 32 (0.26) 959 (0.05) 1711(0.12) 590 (0.77) 11 (-0.54)
all 403 (0.09) 6646 (0.21) 10171 (0.16) 5115 (0.27) 12 (-0.26)
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Fig. 8 Residuals (gam, east: 23
Eq. 2bl) over predicted tree
height classes on six cross
sections that run from south to
north through Estonia. Cross
section ‘east: 23’ comprises all —
trees heights with an easting
coordinate of less or equal to
23.5 and greater than 22.5, cross
section ‘east: 24’ comprises all
trees heights with an easting
coordinate of less or equal to
24.5 and greater 23.5 and so on.
The table gives the number of
observations that belong to a
certain height and coordinate
class combination. The bias of 0 10
the class is given in brackets
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mean of predicted height class [m] mean of predicted height class [m]

class of predicted height

easting
[<5.0] [5.0, 14.9] [15.0, 24.9] [25.0, 34.9] [=35.0]

east: 23 9 (-0.43) 278 (0.30) 366 (0.38) 0 0
east: 24 23 (0.10) 1011 (0.30) 511 (-0.09) 46 (-1.36) 0
east: 25 0 100 (0.38) 974 (0.27) 15 (0.98) 0
east: 26 315(0.06)  3777(0.19)  5895(0.10) 4143 (0.30) 12 (-0.26)
east: 27 49 (0.19) 711 (0.14) 1425 (0.40) 811 (0.26) 0
east: 28 2(4.71) 653 (0.21) 827 (0.10) 91 (-1.52) 0

all 403 (0.09) 6646 (0.21) 10171 (0.16) 5115 (0.27) 12 (-0.26)

overall variation is only valid for short periods, since the
observed time series cover on average only 6.8 years.
Additionally, the number of remeasurements is relatively
low since 90 plots have been measured three times, 208
plots have been measured two times, and 104 plots have
been measured only once. During model selection, it
became clear that the variance—covariance matrix on the
measurement occasion level D, can be parameterized as a
diagonal positive-definite matrix, and the covariance need
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not to be estimated (Table 2). No cross-level correlations
between the random effects on plot and measurement
occasion level have been assumed. The positive parameter
of the variance function indicates a slight heteroscedas-
ticity while the variance is increasing with increasing
height. The bias of the linear mixed model is considerably
reduced when comparing it with the gam results (from
0.156 to 0.084 m), and the residual standard error
decreases from 1.92 to 1.37 m.
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Fig. 9 Residuals of the gam (Eq. 2bl) over diameter and dg classes for Estonia

Table 2 Statistical characteristics of the linear mixed model (Eq. 2b2)

Value Std. error df t-Value P-Value
Fixed effects
O 1.003051 0.001832160 21,557 547.469 0
Value Lower 95% confidence bound Upper 95% confidence bound
Random effects
sd (a;) 0.2629 0.2382 0.2902
sd (b)) 0.01804 0.01649 0.01974
cor (a;, b)) —0.6731 —0.7360 —0.59867
sd (a;) 0.08218 0.07165 0.09426
sd (by) 0.002854 0.002138 0.003809
sd (&) 0.1415 0.1347 0.1487
With _ | var(a;) cov(a;, b;) . var(a;) 0
! cov(a;, b;) var(b;) 2 0 var(b;j)
Variance function
0 0.2052 0.1807 0.2299

Discussion and conclusions

The presented model for Scots pine provides a first com-
prehensive basis for tree height estimation from measured
diameters for the whole area of Estonia, based on the
extensive database of the Estonian forest growth experi-
ments. Like Mehtdtalo (2004), we use dg instead of age
(Lappi 1997; Eerikédinen 2003) to describe the longitudinal
development of the height—diameter curves. Since the
height—diameter relationship is modeled as a function of
dg, the model can be used as a surrogate for a real height
growth model also. This would require a combination with
a diameter growth model. The advantage of this often-used
approach is that tree height increments are not required for
model parameterization. The linear mixed model used in
our analysis shows some similarity with the approaches
presented by Lappi (1997) and Mehtitalo (2004). However,
there some differences. Firstly, Lappi and Mehtétalo use a
reparameterized logarithmic height—diameter relationship

(Korf-Function) where the parameters have some biologi-
cal meaning and a somewhat lower correlation than the
Nislund function. However, the Naslund function was
already applied successfully in linear mixed models
(Kangas and Maltamo 2002; Kinnunen et al. 2007). Lappi
and Mehtitalo present generalized models that include
different sets of predictor variables to describe the trends of
the original parameters. They also include a mean tree
diameter, as we have done, but additionally basal area.
Mehtitalo (2004) also uses the north coordinate and a
categorical variable to differentiate the site nutrient supply.
The different sets of predictors should account for differ-
ences in the availability of information. However, their
model variants that are predictor parsimonious are con-
siderably less (spatially) flexible compared with our
approach since the model effects are simple linear rela-
tionships. It can be assumed that their variants with several
predictors are more flexible especially if the predictors are
itself predictions from regionalization processes. But our
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model combines a high flexibility with parsimonious input
information. In the future, additional predictors might be
used in our model also, especially in view of improving the
biological interpretability. However, it can be assumed due
to unobserved influencing factors and limited regionaliza-
tion processes that spatial trends still will be present in
many databases. Hence, our methodology of estimating
2-dimensional surfaces for structured spatial trends will
still be required for optimum estimation.

The approach by Nanos et al. (2004) shows a high
spatial flexibility also. But their procedure does not sepa-
rate between a structured (correlated) spatial effect and an
unstructured (uncorrelated) spatial effect like we do. Our
2-step approach is a result of numerical problems, but
theoretically the procedure employs a simultaneous esti-
mation of 2-dimensional surfaces and (uncorrelated) ran-
dom effects. In contrast, the 2-step approach employed by
Nanos et al. (2004) is the result of the underlying meth-
odology: The random effects of a nonlinear mixed model
are predicted in a second step by applying geostatistical
methods. Hence, several methodological aspects have to be
discussed: (I) Is the geostatistical model flexible enough to
account for the unstructured spatial trend also? In our
model, this unstructured spatial trend is quantified by
uncorrelated random effects. (II) In the geostatistical
approach, the preceding (first step) estimation of random
effects is employed without considering spatial correlation.
Additionally, only one parameter is assumed to vary ran-
domly, and it is not clear in which way the geostatistical
approach could be extended to models with random vari-
ation of several parameters since the random effects are
usually correlated. In our approach, this correlation is
accounted for, because the two 2-dimensional surfaces are
estimated simultaneously. (III) In practical applications,
the approach of Nanos et al. (2004) employs two different
models depending on whether height—diameter measure-
ments are available or not. If prior information is available,
the random effects are predicted via the mixed nonlinear
model; otherwise, the random effects are estimated via the
geostatistical approach. In our case, the fixed part of the
model (Eq. 2bl) is already spatially explicit and is
employed even if prior information is not available. If prior
information is available, the calibration is based on the
same model but the random part is employed also.

Because of the more complex specification of the
2-dimensional trend function within a gam, we had to apply
a 2-step procedure by first fitting the gam and then using
the prediction as ‘a priori information’ in a linear mixed
model. This procedure might not be ideal, and further
approaches like geoadditive models that estimate the
structured spatial trend via a Gaussian Markov random
field should be tested. However, the quantification of the
spatial pattern of the height-diameter curve is a
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considerable advantage of the model and accounts already
for the structured spatial effects. Additionally, further
studies are required concerning the temporal autocorrela-
tion of the random effects of different measurement occa-
sions from the same plot. Until now, only a subsample of
the database includes remeasurements, and the observed
time series are rather short.

We recommend that the already excellent Forest
Research Network database will be extended in the future
or complemented with the dataset of the Estonian National
Forest Inventory, especially with the aim of capturing areas
with large dg’s and regions of Estonia that are sparsely
covered with sample plots. A such extended database
would possibly improve our model, e.g. removal of the
unconstraint decrease of the height—diameter curve for dg
larger 34 cm. As an alternative monotonicity constraints
could be explicitly integrated in the model (Brezger and
Steiner 2003).

If the spatial distribution of sample plots will be more
regular, further investigation into the choice of the basis
dimension of the 2-dimensional trend function could be
conducted. Wood (2006) recommends to test informally by
increasing the maximum basis dimension, if the chosen
dimension is sufficient to represent the underlying data
structure reasonably well. An indication for inadequate
model flexibility would be an estimated basis dimension
near the defined maximum. Given sufficient flexibility (i.e.
the basis dimension is large enough), the degree of
smoothing is almost exclusively governed by a “penalizing
term”, which is controlled by a smoothing parameter. To
determine the optimal smoothing parameter, extended
generalized cross-validation techniques are applied which
result in minimizing a generalized cross-validation score
(GCYV score; Wood 20006).

First attempts of increasing the basis dimension of the
2-dimensional smooth function resulted in a reduced bias.
Increasing the dimension considerably from 29 to 225
resulted in a decrease of the overall height bias from 0.156
to 0.106 m. Further enlargement of the dimension had
almost no effect on the bias reduction. However, this part
of model selection needs to be supplemented by extensive
cross-validation, especially due to the unbalanced spatial
distribution of the experimental plots.
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