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Abstract

Soil organic carbon plays a major role in the global carbon budget, and can act as a source or
a sink of atmospheric carbon, whereby it may influence the course of climate change. Changes
in soil organic soil stocks (SOC stocks) are now taken into account in international negotiations
regarding climate change. Consequently, developing sampling schemes and models for esti-
mating the spatial distribution of SOC stocks is a priority. The French soil monitoring network
has been established on a 16km x 16km grid and the first sampling campaign has recently
been completed, providing circa 2200 measurements of stocks of soil organic carbon, obtained
through an in situ composite sampling, uniformly distributed over the French territory.

We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks
as a function of other variables such as climatic parameters, vegetation net primary productivity,
soil properties and land use. The calibrated model was evaluated through cross-validation and
eventually used for estimating SOC stocks for mainland France. Two other models were cali-
brated on forest and agricultural soils separately, in order to assess more precisely the influence
of pedo-climatic variables on soil organic carbon for such soils.

The boosted regression tree model showed good predictive ability, and enabled quantification
of relationships between SOC stocks and pedo-climatic variables (plus their interactions) over
the French territory. These relationships strongly depended on the land use, and more specif-
ically differed between forest soils and cultivated soil. The total estimate of SOC stocks in
France was 3.260 4= 0.872 PgC for the first 30 cm. It was compared to another estimate, based
on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC.
We demonstrate that the present estimate might better represent the actual SOC stocks distribu-
tions of France, and consequently that the previously published approach at the European level
greatly overestimates SOC stocks.
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1 Introduction

The increasing concentration of greenhouse gases in the atmosphere has led to the need for
reliable estimates of the amounts of organic carbon that might be sequestered by soils (Batjes|

19965 [Eswaran et al.,[1993} 2004; Paustian et al.,[1997} [Post et al, 1982} [Saby et al., 20084
Schlesinger, [1991).

Indeed, the organic matter contained in the earth’s soils is a large reservoir of carbon (C) that
can act as a sink or source of atmospheric COy. The world’s soils represent a large reservoir
of C of about 1500 PgC (Batjes| (1996} [Eswaran et al.l [1993} [Post et al., [1982). Accurate esti-
mates of this pool are needed, however their reliability depends upon suitable data in terms of
organic carbon content and soil bulk density and on the methods used to upscale point data to
exhaustive spatial estimates. Therefore, precise assessments of soil organic carbon stocks (SOC
stocks) based on measurements over large areas are rather few because systematic sampling
scheme including soil organic carbon (SOC), bulk density and rock fragment content are quite
rare (Morvan et al.| 2008) and because large levels of SOC spatial variability require very high
sampling density to get accurate estimates (Bellamy et al., 2005} [Saby et al., [2008b). Several
approaches involving empirical models to upscale SOC point measurements to the national level
are found in the litterature. These approaches range from simple statistics or pedotransfer rules,

relating SOC contents or stocks to soil type 2007) or soil type and land use
linson and Milne], 2006; [Arrouays et al.| [2001)), to multivariate statistical models

2008| with multiple linear models and [Yang et al., [2008], with generalized linear models).
Recent works involved technics coming from the data mining and machine learning field with

piecewise linear tree models or multiple regression trees for regional studies
(Grimm et al.} 2008} [Lo Seen et al,[2010). Despite the spatial dimension of such studies, few
geostatistical approaches were proposed for working at the national scale (see althought
2009), mainly because of the difficulty to include the effect of the different drivers of
SOC dynamics in geostatistical models.

Jones et al.| (2005) developed a methodology for estimating organic carbon concentrations (%)
in topsoils (octop) across Europe and recently published a map of SOC stocks by country. The
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information is available as a database which can be downloaded from the EU-soils web site
(http://eusoils.jrc.it). This methodology, based on pedotransfer functions, gave results which
were validated using data from England and Wales and Italy (Jones et al.,[2005). However, the
match between country level estimates of SOC stocks using this method and estimates based
on national databases depends on the country and may sometimes be poor. For instance, SOC
stocks for the first 1 m in Denmark was estimated to vary from 0.563 to 0.598 PgC, among which
60% is found in the 0-28 cm layer (Krogh et al., 2003). Thus, the amount can be rescaled to
0.338 to 0.359 PgC, for the first 28 cm layer, when the Joint Research Center(JRC)’s estimate is
0.6 PgC for only the first 30 cm (Hiederer,[2010). The issue of accurately assessing SOC stocks,
at the country level, is critical because they are used as input for studies about the impact of fu-
ture land use changes or climate change on SOC stocks dynamics and potential greenhouse
gases (GHG) emissions (Chaplot et al., 2009). For instance, they may be used for defining the
baseline state for SOC change simulations (van Wesemael et al., 2010) or setting some of the
models’ parameters (Tornquist et al.,[2009). In this paper, we apply a new methodology named
boosted regression trees (BRT), already successfully applied in India (Lo Seen et al., [2010), to
predict the geographical distribution of SOC stocks in metropolitan France from a set of 1.974
paired observations of SOC and bulk densities. We examine the effects of the main control-
ling factors of SOC stocks distribution. We estimate the uncertainty of our national estimate
and compare the results with those previously obtained by |Arrouays et al.| (2001)) and |Hiederer|
(2010) on the same territory.

2 Materials and method
2.1 Data

2.1.1 Site specific soil and agricultural data

Soil Organic Carbon Stocks were computed for a set of 1.974 sites from the French soil survey
network (RMQS), for which analytical data was available (Fig. [I)). This dataset covered a broad
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spectrum of climatic, soil and agricultural conditions. In the near future, the RMQS will cover
the entire metropolitan France. The network is based on a 16 km x 16 km square grid and the
sites are selected at the centre of each grid cell resulting in about 2.200 soil sampling sites. In
the case of soil being inaccessible at the centre of the cell (i.e. urban area, road, river, etc.), an
alternative location with a natural (undisturbed or cultivated) soil is selected as close as possible,
but within 1 km from the centre of the cell (for more information, see |Arrouays et al., [2002).

At each site, 25 individual core samples were taken from the topsoil (0-30 cm) using a hand
auger according to a stratified random sampling design within a 20 m x 20 m area. Individual
samples were mixed to obtain a composite sample for each soil layer. Apart from composite
sampling, at 5 m from the south border of the 20 m x 20 m area, a soil pit was dug, from which
main soil characteristics were described and 6 bulk density measurements were done, as de-
scribed previously (Martin et al.| [2009). From these data, SOC stocks were computed for the
0-30cm soil layer.

SOCstockssgem = ZpiBDiSOCi(l —CE)) (D
i=1

Where n is the number of soil horizon present in the 0-30 cm layer, BD; , CE; and SOC; the bulk
density, percentage of rock fragments (relative to the mass of soil) and the SOC concentration
(percent) in these horizons, and p; the fraction of the horizons to take into account to reach the
30 centimetres.

Field observations were used to assign land use categorical values to the RMQS sites. Land
cover was described using a 3 levels classification, similarly to what is done for the Corine
Land Cover maps (Feranec et al.,2010). The level 1 (L1) land covers include various crops (1),
permanent grasslands (2), woodlands (3) orchards and vineyards, shrubby perennial crops (4),
wasteland (5), specific natural systems (6) and parks and gardens (7). The levels 2 and 3 refine
level one. For instance, for specific woody surfaces, one could find the following description:
woody surface (L1), forest (L.2) and coniferous forest (L3). The number of classes was 7, 22
and 41 for the L1, L2 and L3 levels, respectively.

Soil moisture regime was also described using two variables wlogging and wregime, which
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were used as predictors for SOC stocks. wregime indicates soil moisture regime resulting from
field observations (by soil scientists). It is described according to 6 classes, depending on the

9 9

saturation degree and its timing : “permanently saturated ”, ”saturated every day”, ’saturated for
some part of the year ”, ” continuously moist”, ’dry for some part of the year”, > continuously
dry”. wlogging describes the origin of waterlogging (perched water table, groundwater, springs

and resurgences, submersion), according to field observations.
2.1.2 Net Primary Productivity data

The Moderate Resolution Imaging Spectroradiometer Net Primary Productivity (MODIS| NPP,
gCm~2y~!) was used to get NPP estimates at each of the RMQS sites. MODIS NPP data are
made of 926 x 926 m? resolution raster images. The MODIS algorithm uses the near-infrared
wavelength to estimate the normalized difference vegetation index (NDVI), used in turn to
estimate the daily gross primary production, the daily net photosynthesis and finally the annual
net primary productivity. The estimation involves constants depending on the vegetation type,
such as the active radiation conversion efficiency coefficient (Running et al., 2004). Thus the
MODIS NPP data are to be used with corresponding MODIS Land Use raster images, since
the NPP estimate depends on the vegetation type. The method for estimating a NPP value at
the RMQS sites consisted of a three steps procedure. For each RMQS site, first, pixels from
the MODIS layer not matching the land use of the RMQS site where excluded. Second, mean
and standard deviation of NPP values of pixels with matching land cover (i.e. not hidden in the
previous step) and not distant of more than a limit distance (dy;,,) were computed. Four dj,,
were tested, in {5, 10, 20, 30} km. Third, dy;;,, resulting in the highest mean/standard deviation
of NPP values was selected. The estimate of NPP at the RMQS site was the mean of MODIS
NPP values for the selected dy;,,. Prior to applying this procedure, MODIS land covers were
reclassified to match the RMQS land cover classification (L1).


http://modis.gsfc.nasa.gov/
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2.1.3 Climatic data

Available climatic data were monthly precipitations (mm/month), potential evapotranspiration
(PET, mm/month), and temperature (°C) at each node of a 12 x 12 km? grid, averaged for the
1992-2004 period. These climatic data were obtained by interpolating observational data using
the SAFRAN model (Quintana-Segui et al., 2008)), which was initially designed for providing
an analysis of the atmospheric forcing in mountainous areas for the avalanche forecasting. The
RMQS site specific data were linked to the climatic data by finding for each RMQS site the
closest node within the 12 x 12 km? climatic grid. This grid was also used in turn as climatic
data input when applying the BRT model to the whole territory. Elaborated agro-pedo-climatic
variables were also derived from the rough data : we used temperature and soil moisture min-
eralization modifiers, as modelled in the RothC model (Coleman et al., |1997). The mineral-
ization modifier related to temperature (a) was estimated directly from temperature data from
the 12 x 12 km? climatic grid. The mineralization modifier related to soil moisture (b, function
of clay, land use and climatic data) was estimated differently for point data (observations at
the RMQS site) and the continuous spatial layers used for interpolation. For point data, we
combined rainfall and PET data obtained from the climatic grid, with site observation of land
use and clay content. Continuous spatial layers of b were obtained by combining the climatic
grid, the spatial layers for land use and clay content (see section 2.2). b was then calculated
within each homogeneous spatial unit regarding climate, land use and clay content. The RothC
modelling of the influence of water content, b, onto the mineralization of SOC is applicable
for soils that are both non-waterlogged soils (Coleman et al., [1997) and not organic organic
(Yokozawa et al., 2010). We did not check for the first criteria since the use of other predictors
such as wlogging and wregime gave the possibility to the statistical model to minimize the in-
fluence of b for specific values of wlogging or wregime where the RothC modeling would not
have been relevant. Regarding the second criteria, following the World Reference Base system,
organic soils (histosols) are characterized by organic matter contents above 30% for the first
30cm (Isss-Isric-Fao, [1998)). Our dataset contained only 1 such soil. Hence we did not make
specific treatment for this single individual, taking into account the robustness, to the presence
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of outliers in the dataset, of the statistical models used in this study.
2.2 Spatial layers used for interpolation

Soil spatial coverage was obtained from the 1/1 000 000 European soil map. Land use data was
taken from the TERUTI (Utilisation du Territoire) survey (Chakir and Parent, |2009) provided
by the statistical center of the ministry of agriculture (SCEES). This survey comprises 150 000
observational locations where the land use is recorded. The same locations were surveyed
yearly between 1992-2004 to determine the land cover and the land use. The survey provides
with instant distribution of the land uses as well as temporal transitional data from one land
use to another. The 2004 recordings of land use distribution were used for estimating the SOC
stocks distribution. Prior to this, TERUTI data have been reclassified to match a classification
adapted from the Intergovernmental Panel on Climate Change (IPCC) reporting guidelines (see
legend of Fig. [2).

2.3 Boosted Regression Trees (BRT) Modelling

Boosted regression trees belong to the Gradient Boosting Modelling (GBM) family. GBM is
one among many methods to solve the predictive learning problem where the objective is to
estimate the function F that maps the values of a set of predictor variables © = {z1,..,zp} into
the values of the output variable y, by minimizing a specified loss function L. It uses one
particular approach to prediction, i.e. classification and regression trees (Breiman et al., [1984),
that is extended using a powerful learning technique called boosting (Freund and Schapire,
1996). Boosting methods are generally applied to significantly improve the performance of a
given estimation method, by generating instances of the method iteratively from a training data
set and additively combining them in a forward “stagewise” procedure. BRT uses a specialized
form (for regression trees) of the Stochastic Gradient Boosting (Friedman, 2001). A thorough
description of the method is given in |Friedman| (2001) and a practical guide for using it in Elith
et al.| (2008).

BRT is known to have improved accuracy compared with simple regression trees, thanks
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to its stochastic gradient boosting procedure aiming at minimizing the risk of over-fitting and
improving its predictive power (Lawrence et al., 2004). The algorithm enabling fitting the
model to the data is an iterative process. At each iteration, individual regression trees, which
will compose the final BRT model, are fitted on a fraction (namely the bag fraction) of the
dataset sampled without replacement. The main parameters for fitting BRT (boosted regression
trees) are the learning rate and the tree size, also known as interaction depth. The learning rate
(Ir), sometimes called shrinkage parameter, is the constant coefficient determining the influence
of the individual trees combination that forms the final BRT model. The second important
parameter is the tree size (¢s). It gives the size of individual regression trees. When ¢s is one,
each individual tree is made of a single node, thus modeling the effect of only one predictor
variable. Then, the final additive model separately includes the effects of the predictor variables
and the interactions between variables are not explicitly taken into account. When £s=i and is
strictly greater than one, each individual tree models the interaction of at least two predictor
variables. This enables the use of models taking into account ith order interactions between
predictor variables. The ability to represent interactions between predictor variables without a
priori knowledge is one of the advantages of BRT and more generally of regression trees. Two
other important parameters are the minimum number of observations in the terminal leaves of
the trees (min.obs) and the bag fraction (bf).

The contribution of predictor variables are assessed using a variable importance index (VIM),
based on the number of times a given variable is selected for splitting individual trees weighted
by the square improvement to the model as a result of these trees, summed over all the individual
trees (Friedman and Meulman), [2003]).

The nature of the dependence between the predictors and the response variable can be as-
sessed by using average or partial dependence plots (Hastie et al., 2001). Put it briefly, they
represent the effect of a set of selected predictors (usually 1 to 3) on the modelled response
variable after accounting for the effects or the remaining (not selected) predictors.

The BRT models were fitted and used for prediction using the “gbm” R package (Ridgeway,
2006). The stopping criterion for choosing the best iteration when fitting a BRT model was the
cross validation method under “gbm” (with cross-validation folds set to 5), since this method
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was shown to be the most efficient one (Ridgeway, [2006) amongst the ones available in the
“gbm” package. In this study, whatever the BRT parameters’ value, the maximum number of
allowed iterations was set so that the choice of the model’s best iteration did not depend on it.
We undertook a tuning procedure for finding out the best combination of these parameters as in
Martin et al.| (2009).

2.3.1 Models of SOC stocks

Three models of SOC stocks were tested, for prediction on the 0-30 cm layer. Two models using
all available predictors, among which one aimed at explaining SOC values on forest lands (¥
model), and the other one in cultivated areas (Cult model). The third model used only predictors
available at the national scale and was applied to prediction at this scale. This model was fitted
on the 0—30 cm stocks making up one additional model used for interpolation (Extra model).

The F model was fitted on sites under forest (421 sites) and the Culr model on cultivated
sites (1398 sites) only. This was done in order to facilitate models results interpretation and
also because SOC stocks variability is known for being much more important in forest lands
compared to cultivated land (Saby et al., 2008b).

The predictors used for each model were:

— the Cult model: [ul, lu2 and [u3 (land use coded according to, respectively, the L1, L2
and L3 RMQS land cover classifications), clay, silt (%), rf (rock fragments, mass per-
centage), potential evapotranspiration (pet, mm/month), rain (mm/month), ph, wregime
(water regime), wlogging (water-logging), the two RothC mineralization modifiers, a and
b and the net primary productivity npp (gCm=2 yr—1).

— the F model shared the same set of predictors except for [ul which was excluded since it
exhibited only one level for forests.

— the Extra model: lu_ipcc (land use classification adapted from the [PCC guidelines, 2006),
clay, pet, rain, temp, a, b and npp.
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2.3.2 Validation procedure

The BRT models were validated in two ways. The first procedure involved fitting the models to
the full dataset (with a restriction regarding the land use for the C and ' models) and validating
model predictions on this dataset. The second involved using cross-validation. The first proce-
dure enabled to estimate the quality of the fit of the models of C prediction. Only the second
validation procedure, which involved validation against independent data, enables to estimate
the predictive power of the proposed models.

In both procedures, comparison between observed and predicted values of SOC stocks was
carried out using several complementary indices as it is commonly suggested (Schnebelen et al.,
2004): the mean prediction error (MPE), the standard deviation of the prediction error (SDPE),
the root mean square prediction error (RMSPE) and the prediction coefficient of determination
(R?) measuring the strength of the linear relationship between predicted and observed values.

The second validation procedure was done following principles similar to K-fold cross-
validation, enabling us to perform what will be referred to in the following as external vali-
dation. 90% of the individuals was drawn randomly without replacement from the dataset and
used as the training dataset. Validation was done on the remaining 10% of individuals (external
validation). This procedure was repeated 1000 times, which provided robust results. External
validation was used as a way to explore the predictive power of the resulting model for pre-
viously unseen data. In the following, the MPE, SDPE, RMSPE and R? indices, computed
through this external validation, are adjoined the ext suffices (i.e. MPEqy;, RMSPEq and so
forth). Enclosing indices with the < and > signs indicates that the median value over the 1000
trials is given (for instance <MPEqy>). RMSPE resulting from cross validation were also
estimated as a function of SOC stocks values. This enabled us to refine the estimation of uncer-
tainty related to the estimation of the spatial SOC stocks. The error on the SOC stocks estimate
for the whole territory was obtained by summing the errors on each elementary spatial unit:

ASOCstocks =Y ~S;RMSPE(SOCstocks;) 2)

Jj=1

11



20

where ASOC stocks is the global error, S; is the surface of the elementary spatial unit j, SOC
stocks; its estimated SOC stocks and RMSPE() the function relating the predicted SOC stocks
to the model error (eq. [2).

2.3.3 Parameter settings for BRT models

Although some general recommendations exist for setting the values for tree size, learning
rate, minimum number of observations in the terminal nodes values and bag fraction, a tuning
procedure was run, because, in practice, as for single regression trees, optimum values may
depend on the dataset (Lilly et al., 2008)). The bf parameter was set to 0.75 and we tested
different ts, [r, min.obs values chosen according to recommendations found in the literature
(Lilly et al., [2008} |[Ridgeway, 2006). This tuning procedure was carried out as in (Martin et al.,
2009). The resulting parameter values are given in Table [T}

Selecting these parameter settings for each of the models was a preliminary step in the study.
We then assumed that these settings could be applied to all subsequent fits. They were thus used
in turn for producing all the results displayed in the paper, i.e. regarding (i) the BRT models’
performance on the full dataset and (ii) the predictive performance tested against independent
data.

3 Results
3.1 Observed SOC stocks

The SOC stocks depended greatly on the land cover type (Fig. 2). Highest values were observed
for the forest, grasslands and wetlands (only two observations though). On the first 30 cm,
the stock in forest (mean SOC stocks of 7.00 kg/m?) was less than under permanent grassland
(mean SOC stocks of 7.57 kg/m?) with comparable standard deviation (3.42 and 3.51 kg/m?,
respectively). Dispersion of values on cultivated areas, excluding permanent grasslands was low
(1.85kg/m?) compared to permanent grasslands and forest lands. Lowest SOC stocks values
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were observed for vineyards (mean SOC stocks of 3.2kg/m?) and some uncultivated coastal
areas (mean SOC stocks of 2.42 kg/m?).

3.2 Goodness of fit and predictive performance

General indices of agreement of the models prediction and the observed data (MPE, SDPE, RM-
SPE, R?), are given in Table [2l BRT models yielded good results when fitted on and validated
against the full dataset (internal validation). The fit was best for the Cult model, with R? value
of 0.91 and RMSPE value of 0.934 kg/m?. The prediction was worse on forest soils, where the
F model yielded 0.74 and 1.910kg/m? values for R? and RMSPE, respectively. For the three
models, MPE was negligible indicating models with low precision and high accuracy. Ranking
of the models performance using cross-validation was the same as according to validation on
the dataset used for learning. The Extra model, developed for prediction on soils under any kind
of land use yielded < R?cx> value of 0.5 (with 95% confidence interval of [0.386, 0.613]) and
<RMSPE > of 2.271 kg/m? (Clgs, of [1.862, 2.68] kg/m?). <MPE.y> values, representing
the bias, were on average low, if not negligible and reached —0.002 kg/m? for the Extra model.
For this model, the Clgsy, for <MPEy > was large ([—0.348, 0.344] kg/m?) indicating that
some models, depending on the sub-dataset used for fitting produced significantly biased pre-
dictions on the sub-dataset used for validation. This model underestimated SOC stocks for low
observed SOC stocks and overestimated SOC stocks for high observed values (Fig. [3). The best
of the three models, when validated using cross-validation was the Cult model, with a <R?exi>
value of 0.54 ([0.393, 0.688]) and <RMSPE.> of 2.046 kg/m? ([1.557, 2.536] kg/m?).

The analysis of the Extra model’s error (Fig. 4)) indicates a positive correlation between the
observed C stock value and the <RMSPE.>, estimated within C stock classes. Expected
<RMSPE, > lies between 1 and 3 kg/m? for SOC stocks belonging to the [2, 14] kg/m? range.
Uncertainty on the error estimate itself can be computed and the results, as shown on Fig.
indicates <RMSPE > values under 8 kg/m? for SOC stocks below 15kg/m?. Above this
threshold, mean <RMSPE.> as well as the upper limit of the confidence interval rises in-
dicating a very high uncertainty of the results in the model’s prediction. CI95% could not be
computed above 18 kg/m? because of the rarity of such high observed values.
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3.3 Variable relative influence

The computation of the VIM values associated to the predictors for the three models (Table [3))
indicates a strong influence of clay content. This predictor ranks second for the Cult model
and first for the F and Extra models. Rain is consistently ranked in the four most important
predictors. For the Cult and Extra models, the land use appears to be important for predicting
the SOC stocks. The fit of the Cult model showed that it is worth using a detailed description
of the land use, since the /u2 and [ul predictors had a negligible importance, whereas the [u3
predictor had the most important VIM index. However, for the F model, the [u3 variable, which
in this case represent the kind of forest considered had a very low variable importance index.
The VIM index value for rock fragments was more important for the F' model than for the Cult
model, and was ranked fourth. On the F model, the npp values computed on each RMQS site
ranked fifth. On the Cult and Extra models, the temperature, best represented by the transformed
a variable ranked 3 and 4, respectively. Temperature exhibited a limited importance for the F
model, as pet did whatever the model.

3.4 Map of soil organic carbon stocks

The total stock for France (0—30 cm) computed on the 12 x 12km? grid was 3.242 PgC for a
surface of 541 060 km?2. The total surface represented by the grid is slightly smaller than the ac-
tual mainland French territory (543 965 km2). The total stock for the French mainland territory
could thus be rescaled to 3.260 PgC. Estimated uncertainty was 0.872PgC (eq. [2). Predicted
SOC stocks ranged from 2.0 to 15.8 kg/m? over the French territory. The highest stocks were
observed in mountaineous areas (Alps, Jura, Massif Central and Pyrénées), in Brittany and in
parts of Lorraine regions (Fig. [3).

The comparison of empirical cumulative distribution function (ecdf) between the observed
SOC stocks on RMQS sites, and the surface estimate from the Extra model reveals several as-
pects of the spatial prediction quality (Fig.[3). It shows that although the Extra model managed
to reproduce the distribution of the observed values, when applied to the whole territory, the
resulting distribution exhibits a narrow range of predicted values. The variability on the pre-
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dicted map was smaller than on observed or predicted SOC stocks values on RMQS sites, but
the distributions were entered around close median values.

4 Discussion
4.1 Validity of the estimate

The total SOC stocks estimate was in good agreement with a previous estimate (3.1 PgC on a
soil mass equivalent to 30 cm under forest, (Arrouays et al.,2001)). However, it disagreed with
the estimate based on the organic carbon content layer available at the European level (Jones
et al., 2005) of 5.0 PgC for the first 30 cm (Hiederer, 2010). We recalculated this estimate by
combining JRC’s octop layer (1 km x 1 km resolution, Jones et al.,[2005) and a spatial layer of
bulk density (10" x 10" grid, |Smith et al., 2005) in topsoils (0-30 cm). Adjusting the resolution
of the octop and bulk density layers to the resolution of our 12 km x 12 km grid was done using
the ARCGIS zonal statistics algorithm for the SOC content and a weighted mean procedure for
the bulk density layer. Our global estimate using these data layer was 5.303 PgC. This values
lies outside the interval defined by taking into account the uncertainty associated to BRT model
(£0.872 PgC). The magnitude of the overestimation related to the JRC’s European SOC content
layer matched the one found by |Dendoncker et al.| (2008)) at a much smaller scale for a small
area of southern Belgium. Assuming that because of its systematic sampling scheme, the RMQS
dataset is representative of the French territory, its cumulative distribution of SOC stocks can
be used as a reference of SOC stocks in France. Figure [3| showed that the distribution resulting
from the processing of JRC data consistently overestimated the SOC stocks. On the other hand,
the Extra model spatial estimate was unbiassed but the occurrence of high SOC values (above
8 kg/m?) was much lower than for the distribution on RMQS sites. This discrepancy was not
observed for values below the SOC median value (circa 5 kg/m?). Thus the total estimated SOC
stocks might underestimate the real SOC stocks for France but according to Fig. [3|the absolute
error of the estimate provided here was less than the one observed with the JRC data. The
comparison between the empirical cumulative distribution function of observed RMQS SOC
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stocks and the one provided by the Extra model suggests that the distribution tails are poorly
represented, i.e. that the extreme SOC stocks values where not predicted correctly by the model.
This is likely to result from the spatial distribution of the predictors, since the model managed
to predict extreme values when applied to the RMQS sites. The fact that there was (not shown
here) a similar difference for clay, the most important predictor in the Extra model, between the
ecdf of the spatial layer and the one of RMQS sites, supports this statement.

It can be argued that the resolution of the native datasets (especially for the SOC content
layer of the JRC, 1 km x 1 km) are very different from the one presented in this paper. The ag-
gregation of the data up to the 12 km x 12 km?2 may explain locally some of the differences with
the estimate provided by the BRT model. However, at the national scale, i.e. when summing
the SOC stocks over the whole map, the aggregation itself is not expected to explain much of
the difference observed here. More likely, the difference between methodologies, come from
SOC and bulk density estimates themselves. The JRC SOC content estimate results from pedo-
transfer rules fitted on the European soil database (at a scale of 1:1 000 000) and validated on
England, Wales and Italy only. Bulk densities have been estimated using pedotransfer rules as
well. On the contrary the present estimation relies on a model fitted and validated against a sys-
tematic sampling scheme (16 km x 16 km resolution) with both SOC content and bulk density
measurements.

CO, emissions from soils are often modelled as a function of the product between the current
SOC stocks and mineralization rates (as in the RothC model). As a result, simulating CO»
emissions for France under diverse scenarios can potentially result in very different estimates of
emissions, whether a 3.260 PgC or a 5.303 PgC is considered as being the baseline SOC stocks
value. Consequently, studies regarding SOC changes at the national scale such as in |Smith
et al.| (2005) or [Zaehle et al.[|(2007) could benefit from such improvements of SOC distribution
estimates through the use of data from soil monitoring networks (SMNs).

SMNs can help refine estimates of SOC dynamics too by providing better starting soil C values
for model initialisation, and for testing models against measured change in SOC. Conversely,
the performance, of SMNs themselves, for detecting long term SOC change trend has recently
been demonstrated (Saby et al., 2008b), using estimates of SOC spatial distributions (in that
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case the JRC’s SOC content map, Hiederer et al.,2004). Thus, more accurate estimates of SOC
distributions could in turn improve the assessment of SMNs performance.

The uncertainty estimated for the BRT model results from the application of the uncertainty
function depending on SOC stocks values provided by the cross validation trials (Fig. d)). The
fitted model is characterized by very high uncertainties for SOC stocks values above 15 kg/m2.
Uncertainty on this estimate itself starts to increase notably from 11 kg/m?, making it difficult
to draw any conclusion about the validity of the model for such SOC stocks values. On the
contrary for values under 11 kg/m?, the value of the uncertainty of predicted SOC stocks values
can be accurately known. The model error (<RMSPE.>) is comparable to results of other
study studies based on different statistical techniques but among the few providing an assess-
ment of model predictions based on cross-validation. Different geostatistical models yielded a
estimate of 4.54 +0.74 PgC for Laos (Phachomphon et al.l 2010) and a RMSE of 2.89 kg/m?
when mapping 0-50 cm SOC stocks for the Indiana state (Mishra et al., 2009). The quality of
the fit was better than for recent studies applying generalized linear models to the prediction of
SOC stocks in Tibetan grasslands and explaining 73% of the variation of SOC densities (Yang
et al., |2008), to be compared to the R? of 0.73, 0.74 and 0.91 of the Extra, F and Cult models
presented here. On the RMQS dataset, the SOC stocks values above 15 kg/m2, which could
be considered outside the validity domain of the BRT model are rare (2% of the RMQS sites
display SOC stocks values above 15kg/m?, Fig. [3). The predicted distribution of SOC stocks
includes a negligible fraction of SOC stocks above 15 kg/m? (below 0.01%), and consequently
such spatial units, where estimated uncertainty is high, have a negligible impact on the global
uncertainty related to the national SOC stocks prediction (0.14%).

4.2 Relative importance of the predictors
4.2.1 Effect of the land use

Discrepancies between the Cult and the F models might give an estimate on how agricultural
practices, both in grassland and arable lands, determine the relationships between pedo-climatic
variables and SOC stocks, compared to forest systems. For instance, the lesser importance of
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soil pH for the Cult model might have resulted from the influence of some agricultural practices
onto this chemical parameter. Similarly, it was possible to show (not display here) that the effect
of clay depended on the land use and was attenuated for croplands. This might be explained
by the fact that farmers have, for crop cultivation for instance, the chance of mitigating the
influence of an unfavourable water budget, related to low clay contents, by tuning the cultivation
calendar or the irrigation timing. More generally, the F model performed much worse than the
Cult model (R%.y are 0.36 and 0.58, respectively). This means that the SOC stocks under
forest have a great amount of variability that remained unexplained by the set of variables that
were included in the model. The VIMs of predictors related to the land use showed that if in
some case a detailed land use description is relevant (predictor /u3 in model Cult), a coarser
description (i.e. lu_ipcc in model Extra) is still valuable for predicting SOC stocks and of the
same importance as information about the clay content (Table 3)).

4.2.2 Effect of the soil properties

The modelled effect of clay onto SOC stocks was monotonic increasing (Fig. [6] (a)). This
expected effect may result from several processes. The most commonly cited is the physical
interaction, mediated by various soil elements and biological activity, between the clay materials
and organic compounds (Arrouays et al., 2006} Chaplot et al.l 2009). It tends to protect soil
organic matter (SOM) from decomposition (Liao et al.,[2009).

The soil moisture has been reported, as well in field experiment as on large scale statistical
surveys (Bauer et al., [2008; [Meersmans et al., 2008) to influence the SOM decomposition and
consequently the observed SOC stocks. The modelling of soil moisture regimes, as it is done
within the RothC model (predictor b), proved to be pointless for our dataset as it was of much
less importance than variables such as rain or clay alone (Table[3). Surprisingly, the inclusion of
water content variables (wlogging and wregime) resulting from field observations, did succeed
even more poorly. There might be several reasons for this, mainly coming from the available
dataset. In many cases (25%) this information was missing, which decreases the final VIM of
this variable in the fitted models. Secondly, the water regime was available at the whole profile
level only and might not have been representative of the first 30 cm. Thirdly, this water regime
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was informed based on the observation at the sampling time, and, again, might not have been
representative of the water regime across the year.

4.2.3 Effect of the climatic variables

The relationship between climatic variables and amount of organic carbon in soil is also well
known, and again, is linked to the effect of these variables onto plant productivity on one side,
and soil carbon decomposition on the other. The effect of these variables, as they are measured
here (rain, PET, above ground temperature), is mediated by soil properties and the vegetation
cover. As such, the rain predictor was consistently one of the most important one. The effect
of temperature (predictors temp and a), which may be dependent upon other variables such as
physical protection, chemical protection, drought, flooding and freezing (Davidson et al., 2000),
was important too, but less than the effect of the rainfall. Temperature increase enhance NPP
and mineralization at the same time (Heimann and Reichstein, 2008)), assuming that tempera-
ture remains below a given threshold. The trade-off between mineralization and NPP increase
determines the sign of relationship between SOC stocks and temperature. Here, the relation-
ship between SOC stocks and a was monotonic decreasing (not displayed here), which could
indicate that the effect of temperature onto mineralisation is, in France, more important than the
effect onto NPP.

4.3 Possible improvements of the models

From the current models of SOC dynamics, the influence of decomposition modifiers (here
a, b) is expected to be of same magnitude as the estimated soil carbon inputs (Martin et al.,
2009). Nevertheless, our estimate of carbon inputs, the npp variable, had a low VIM value.
This demonstrated that our estimate was inaccurate. Both the resolution of the MODIS data
and algorithms used for providing NPP, and our procedure for retrieving values at our sam-
pling locations might have resulted in an irrelevant NPP predictor. Additional work would be
necessary for estimating more accurately SOC inputs on the RMQS sites.

Topography was not taken into account in this study. Indeed it has been shown that it is
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relevant to SOC stocks prediction. Importance of Digital Elevation Models derived variables
has been demonstrated at the national (Chaplot et al.,[2009)) and small region scale (Grimm et al.,
2008). This might be related to the redistribution processed related to soil erosion for instance.
In our case this information was not readily available both at the RMQS sites locations and at
the national scale and thus was not included in the models.

Fe and Al oxydes, CEC are also known for being correlated to SOC stocks (Chaplot et al.,
2009). Although this information was available along with SOC stocks measurements at RMQS
sites, this information cannot be seen as an external variable which the SOC stocks is a function
of, because these soil properties, and mainly CEC, are difficult to inform spatially, as SOC
stocks are for that matter. Consequently their use for predicting SOC stocks spatial distributions
is limited.

The best next candidate among soil properties would be the soil pH. The spatial distribution at
a national scale of this predictor, relevant for forest soils, will be accessible in a near future. Its
omission in the Extra model led to some discrepancies between known SOC stocks distribution
and the modelled one. For instance, the model predicted low SOC stocks in the Landes region
(south west of France), most probably because of low clay contents, whereas acid forest soils in
this region are known for exhibiting higher SOC stocks values, between 8 and 14 kg/m? (Jolivet
et al., 2003)).

Land management and agricultural practices influence on SOC stocks has been and still is
currently widely studied and its role might be in some cases underestimated (Bell and Wor-
rall, 2009). It is well established that some specific practices, such as organic matter addition
(Lashermes et al., 2009), reduced tillage practices (Metay et al., 2009) or crop residues man-
agement and permanent cover crops (Rice, 2006), may influence the SOC inputs and its fate
in agricultural soils. Not speaking about specific agricultural practices, including information
about detailed land use showed to be valuable for explaining observed SOC stocks: the VIM
value of the [u3 variable greatly outperformed those of the [u2 and [u/ variables, which are less
informative about the land use. The inclusion of the /u3 variable in the model used for esti-
mating SOC stocks at the national scale was out of concern simply because spatial information
with this level of detail was out of reach. Obtaining such an information is needed in order to
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refine our estimate of the spatial distribution of SOC stocks in French soils. Similarly, it could
support detailed implementation of future land use changes and its consequences in terms of
SOC stocks dynamics.

5 Conclusions

We gave in this paper a new estimate for the spatial distribution of the first 30 cm SOC stocks
for France, based on the French monitoring network (RMQS). The total estimate is 3.260 +
0.872 PgC. It was compared to another estimate based on the previously published European
octop maps. This second estimate of 5.303 PgC was consistent with the SOC stocks published
by the JRC for European countries, and much higher than the estimate provided in this paper
and based on RMQS data. Two elements advocate the preferential use of this latter estimate,
for instance for supporting future GHG emission studies. First, it relies on a dataset provided
by a sampling scheme ensuring an efficient treatment of the spatial variability of SOC, both
locally (through composite sampling) and of over a larger extend (through the use of a regular
16 x 16 km? grid). The RMQS sampling protocol is also one of the few, at the European level,
providing bulk densities. This avoids the use of pedo-transfer function for estimating it and
the resulting uncertainties associated to them. Second, the proposed model relied on the use of
BRT which has been confirmed here as being a robust tools for predicting SOC stocks. While
offering a good predictive performance, it enabled quantification of relationships between SOC
stocks and pedo-climatic variables (plus their interactions) over the French territory. These
relationship strongly depended on the land use, and more specifically differed between forest
soils and cultivated soil. Along with land use, the clay content of soils was the most driving
variable of SOC stocks. Besides the improvement of the model by including more predictors,
the refinement of spatial data layers, regarding soil and land use will be a critical step for
improving the SOC stocks assessments at the country level.
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Table 1. Tested and optimal values for the ts, Ir, min.obs parameters of the three boosted regression trees
models. The optimal values were selected as resulting in the best <R2.>, obtained through the cross
validation procedure

Parameters  Tested values Selected parameter value

F model Cult model Extra model
ts 4,8,12 8 8 12
Ir 0.001, 0.005, 0.01, 0.1 0.005 0.01 0.01
min.obs 4,6,8 4 4 8
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Table 2. Fit and cross validation results for a ratio of 0.9/0.1 training vs. validation datasets. Quality of
the fit on the full data set is expressed using R?, mean prediction error (MPE, kg/m?), standard deviation
of the prediction error (SDPE, kg/m?), and root mean square prediction error (RMSPE, kg/m?). The
cross-validation results are expressed using <R? o>, <MPEqy > (kg/m?), <SDPE > (kg/m?) and
<RMSPE > (kg/m?) estimated using the validation datasets. The 95% confidence intervals obtained
for the corresponding normal distributions using the standard percentile method are given in brackets.

Model R? MPE  SDPE RMSPE <R2e> <MPE, > <SDPE, > <RMSPE, >
Cult 0.91 —0.001 0935 0934 0.58 [0.445,0.723]  —0.041 [—0.379,0297]  1.94 [1.481,2.397] 1.94 [1.486,2.395]
F 074  2e-04 1912 1910 0.36 [0.141,0.57] —0.009 [—0.845,0.827]  2.75 [2.036,3.467] 276 [2.053,3.459]
Extra 0.73 —0.001 1.727 1727 0.5 [0.386,0.613]  —0.002 [—0.348,0.344] 227 [1.86,2.68] 227 [1.862,2.68]
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Table 3. Relative influences of the predictors for each model, expressed as variable importance indexes
(VIM), and rank according to the VIM values. The predictors are grouped, starting with the variables
related to land use, then related to the climatic or pedo-climatic factors, then to plant productivity and
finally related to the soil properties only. Variables names and definitions are detailed in sections 2.1.1]

and2.3.11

Cult model F model Extra model
redictor VIM rank VIM rank VIM rank
1u3 33.66 1 0.77 11 - —
u2 1.26 13 0.00 14 — —
lul 0.11 15 — — — —
lu_ipcc 0 16 — — 2683 2
a 7.1 3 1.47 10 8.76 4
b 3.72 7 4.83 7 6.53 6
rain 6.6 4 1327 3 10.66 3
pet 3.3 8 44 8 5.73 7
temp 3.03 9 1.83 9 6.77 5
npp 2.89 10 6.54 5 5.33 8
wlogging 1.34 12 0.06 12 — —
wregime 1.14 14 0.03 13 —
rf 6.08 5 8 4 — —
clay 22.55 2 29.55 1 29.4 1
silt 1.96 11 5.91 6 - -
ph 5.26 6 23.35 2 — —
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Fig. 2. SOC stocks for the first 30 cm as a function of land cover type according to the adapted IPCC land
use classification (various crops (1, n = 817), permanent grasslands (2, n = 463), woodlands (3, n = 468)
orchards and shrubby perennial crops (4, n = 18), wetlands (5, n = 2), others (6, n = 5), vineyards (7,
n=32)).
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Fig. 3. Empirical cumulative distribution functions (ecdf) for the two spatial estimates presented in this
paper (using the Extra model and the JRC estimate) as well as for the observed (curve RMQS) and
predicted (curve Extrapqing) SOC stocks at RMQS sites. Computing ecdf on spatial estimates is done as
follows: first the statistical population is made of each spatial unit where the prediction model has been
applied (the Extra model for instance). Second, a weight is computed for each unit as the ratio between
its area and the sum of spatial units area (here, the area of France). Third, the ecdf is estimated on models
predictions within the spatial units (kg/m?) using weights previously calculated. Ecdfs of site observed
or predicted values are calculated using equal weights between individuals.
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Fig. 4. Uncertainty of the Extra model, as a function of the organic carbon stock (30 cm). Uncertainty
values are calculated as <RMSPE.> resulting from cross-validations trials as a function of predicted
SOC stocks, grouped within intervals of 1kg/m? width, from 0 to 30 kg/m2. The solid line represents
the mean of uncertainty within each interval of SOC stocks values, and the upper and lower dashed lines
represent the bounds of the Clgse, assuming a normal distribution within each interval. Tick marks at the
lower border of the diagram give the 1% quantiles for the RMQS dataset.
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Fig. 5. Map of the soil organic carbon for the first 30 cm (kg/m?).
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Fig. 6. Effect of the three most important variables in the Extra model (i.e. a) clay, b) rain and c) lu_ipcc).
The lower left diagram gives the modelled relationship between SOC stocks and land use (coded using
the adapted ipcc classification: croplands (1), permanent grasslands (2), woodlands (3) orchards, shrubby

perennial crops (4), wetlands (5), others (6), vineyards (7)).
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