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Abstract  21 

Soils of tropical forests are important to the global budgets of greenhouse gases. The 22 

Brazilian Atlantic Forest is the second largest tropical moist forest area of South America, 23 

after the vast Amazonian domain. This study aimed to investigate the emissions of nitrous 24 

oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes along an altitudinal transect 25 

and the relation between these fluxes and other climatic, edaphic and biological variables 26 

(temperature, fine roots, litterfall, and soil moisture). Annual means of N2O flux were 3.9 27 

(±0.4), 1.0 (±0.1), and 0.9 (±0.2) ng N cm-2 h-1 at altitudes 100, 400, and 1000 m, 28 

respectively.   On an annual basis, soils consumed CH4 at all altitudes with annual means 29 

of -1.0 (±0.2), -1.8 (±0.3), and -1.6 (±0.1) mg m-2 d-1 at 100 m, 400 m and 1000 m, 30 

respectively. Estimated mean annual fluxes of CO2 were 3.5, 3.6, and 3.4  µmol m-2 s-1 at 31 

altitudes 100, 400 and 1000 m, respectively. N2O fluxes were significantly influenced by 32 

soil moisture and temperature. Soil-atmosphere exchange of CH4 responded to changes in 33 

soil moisture. Carbon dioxide emissions were strongly influenced by soil temperature. 34 

While the temperature gradient observed at our sites is only an imperfect proxy for climatic 35 

warming, our results suggest that an increase in air and soil temperatures may result in 36 

increases in decomposition rates and gross inorganic nitrogen fluxes that could support 37 

consequent increases in soil N2O and CO2 emissions and soil CH4 consumption. 38 

1 Introduction 39 

The Brazilian Atlantic Forest is a heterogeneous region that includes a large variety of 40 

forest physiognomies and compositions (plant and animal species) and is distributed in 41 

different topographic and climatic conditions such as areas of coastal flooded forest 42 

(restinga), lowland, submontane and montane forests (Metzger, 2009; Vieira et al., 2008). 43 

It originally covered an area of 148 million ha, corresponding approximately to 17.4% of 44 

the Brazilian territory, extending for over 3300 km along the eastern Brazilian coast 45 
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between the latitudes of 3 and 30°S (Metzger, 2009; Ribeiro et al., 2009). The Atlantic 46 

forest represents the second largest tropical moist ecosystem of South America, after the 47 

vast Amazonian domain (Oliveira-Filho and Fontes, 2000), and it is also considered a 48 

hotspot in terms of biodiversity and endemism (Myers et al., 2000). Nevertheless, the 49 

Atlantic Forest is among the most threatened tropical forests in the world because its 50 

location coincides largely with the most populated areas of Brazil, where the settlement of 51 

European pioneers and African slaves started four centuries ago (Oliveira-Filho and 52 

Fontes, 2000). Currently the Atlantic Forest is reduced to only 12% of its original cover 53 

(Metzger, 2009), and most remnants are small and disturbed fragments (< 50 ha) or larger 54 

areas sheltered on steep mountain slopes (Metzger, 2009; Ribeiro et al., 2009). 55 

Despite the importance of the Atlantic Forest biome there are very few data concerning its 56 

function (Maddock et al., 2001). Soils of tropical forests are considered as important 57 

contributors to the global gas budgets as source of atmospheric nitrous oxide (Bouwman et 58 

al., 1995; Maddock et al., 2001), and carbon dioxide (Keller et al., 1986), and as sink of 59 

methane (Reiners et al., 1994; Reiners et al., 1997). Although considerable research has 60 

been done for a long time aiming to quantify the main global sources and sinks of the main 61 

greenhouse gases (N2O, CH4, and CO2) the uncertainties in the overall budgets of these 62 

gases remain large in part because of the limited spatial and temporal extent of the 63 

sampling in tropical regions (Maddock et al., 2001; Purbopuspito et al., 2006). 64 

The main objective of this paper is to quantify the soil emission rates of N2O, CH4 and CO2 65 

along a gradient of elevation in the Coastal Brazilian Atlantic Forest located in the northern 66 

coast of São Paulo state, southeast region of Brazil. Most studies related to tropical forests 67 

soil gas emissions are still strongly biased toward lowland tropical forests (Keller and 68 

Reiners, 1994; Davidson et al., 2000; Davidson et al., 2001).We chose to work along a 69 

gradient of elevation because of differences in climatic conditions, species composition 70 
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and structure (Marrs et al., 1988), nutrient supply (Grubb, 1977) and soil physical and 71 

chemical properties (Sollins, 1998; Tanner et al., 1998). Climate and soil properties are 72 

well known factors that modulate the emission of trace gases by soils (Davidson, 1993; 73 

Steudler et al., 1996; Breuer et al., 2000; Davidson et al., 2000; Kiese and Butterbach-74 

Bahl, 2002; Moreira and Siqueira, 2006). Therefore, we expected soil gas emissions to 75 

vary with altitude responding to combinations of the factors described above. Although 76 

tropical forest soils are expected to respond to global warming few studies have 77 

investigated soils from forests along a gradient of elevation that might provide some 78 

insight into controls on future trace gas exchange (Riley and Vitousek, 1995; Purbopuspito 79 

et al., 2006).  80 

2 Material and methods 81 

2.1 Study area 82 

This study was conducted in the Coastal Brazilian Atlantic Forest, on the northern coast of 83 

the São Paulo State, within the management units (nucleos) of Picinguaba (lowland, 23° 84 

31’ to 23° 34’S and 45° 02’ to 45° 05W) and Santa Virginia (montane, 23° 17’ to 23° 24’S 85 

and 45° 03’ to 45° 11’W) of the Serra do Mar State Park. Three areas (treatments) were 86 

selected at the altitudes of 100 m (lowland), 400 m (submontane), and 1000 m (montane) 87 

(Alves et al., 2010). Historical monthly average temperatures of the study areas ranges 88 

from 19.1 to 25.5 °C (Sentelhas et al., 1999). According to Oliveira-Filho and Fontes 89 

(2000) and Talora et al. (2000), the lowland and submontane areas (100 m and 400 m) are 90 

characterized as tropical moist forests under a tropical climate (Af type in Köppen), 91 

whereas the montane area (1000 m) is considered a tropical montane forest (Tabarelli and 92 

Mantovani, 2000) under subtropical climate (Cfa according to Köppen). For a full 93 

description of the forest classification and structure see Alves et al. (2010). 94 
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According to the meteorological stations of the Department of Water and Energy of São 95 

Paulo State (DAEE-SP) the historical annual mean precipitation (1973-2004) at the 96 

municipality of Ubatuba located at 220 m altitude is 3050 mm and in the municipality of 97 

Natividade da Serra, near altitude 1000 m, the annual mean precipitation decreases to 98 

approximately 2300 mm. During May through August, the total historical precipitation is 99 

200 mm, about half as much as in other months. In this study we considered these four 100 

months as dry season and the other eight months as rainy season. 101 

Soils of the study sites are mostly sandy, but with higher clay contents at 100 m (Table 1). 102 

Soils at the three altitudes have low carbon (C) and nitrogen (N) contents and these 103 

nutrients are concentrated in the upper soil layer (up to 10 cm depth), decreasing with 104 

depth (Martins, 2010). Soil C and N concentrations and stocks progressively increase along 105 

the altitudinal gradient (Table 1). 106 

2.2 Soil gas flux 107 

At each altitude four plots (replicates) of 1 ha were delimited (Alves et al., 2010). Gas 108 

samples were collected once a month from September 2006 through August 2007, in each 109 

plot with a day of collection per altitude, generally between 08:00 and 18:00 h local time. 110 

Fluxes of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) were measured at 111 

random points along 30 m transects that were initiated at randomized seed points in 112 

randomized directions each month with eight cylindrical PVC chambers (8 sub-sample 113 

chambers per plot) consisting of a pipe that served as a base (0.29 m diameter) and a cap 114 

that fit snugly on the base (Keller et al., 2005). For N2O and CH4, four samples of 60 mL 115 

of the air from the chambers were withdrawn at intervals of 1, 10, 20 and 30 min after 116 

closing with 60 mL syringes and then transferred to previously evacuated glass serum vials 117 

sealed with gas impermeable, butyl rubber septum stoppers. Samples were analyzed by gas 118 

chromatography (SHIMADZU GC-14A Model) within five days of collection. Lab tests 119 
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showed that N2O and CH4 concentrations were unaffected by storage for up to thirty days. 120 

Gas concentrations were calculated by comparing peak areas for samples to those of 121 

commercially prepared standards (Scott-Marin) that had been calibrated against standards 122 

prepared by the National Oceanic and Atmospheric Administration/Climate Monitoring 123 

and Diagnostic Laboratory (NOAA/CMDL). Fluxes were calculated from linear 124 

regressions of concentration versus time. 125 

A dynamic flow system was used for measurements of CO2. Air flowed from the soil 126 

enclosure through a Teflon-lined polyethylene sample line 5 m in length and then it entered 127 

an infrared gas analyzer (Li-Cor 820). Data was stored in a palmtop computer and fluxes 128 

were calculated from the linear increase of concentration versus time adjusted for the ratio 129 

of chamber volume to area and the air density within the chamber (Keller et al., 2005). 130 

Because of instrument malfunctions, CO2 fluxes were not available for several months of 131 

the year (see Results). 132 

2.3 Litterfall and fine roots 133 

Litterfall data were obtained by thirty 80 cm diameter litterfall traps per plot deployed at 134 

randomized points in two plots at each elevation and samples were collected every fifteen 135 

days, kept in paper bags, labeled, and dried at 60°C. After drying, samples were weighed. 136 

In addition, surface litter layer mass was weighed to assess litterfall stocks simultaneously 137 

with litterfall. Thirty surface litter samples were collected from randomly located 0.3 x 0.3 138 

m plots marked by a rigid frame for two plots at each altitude, every thirty days. Samples 139 

were kept in paper bags, dried at 60°C and weighed to determine stocks of litter on soil 140 

surface. Litterfall and surface litter collections started six months after gas sampling 141 

(March 2007) and therefore overlapped the gas collections for only 6 months (March 142 

through August 2007). Decomposition rates were calculated according to the model 143 
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proposed by Olson (1963) and decomposition time was determined according to Shanks 144 

and Olson (1961). 145 

Five fine root soil cores samples were randomly collected from 0 to 10 cm depth in every 146 

plot of each altitude, and treated according to Vogt and Persson (1991). Fine root samples 147 

were analyzed for total C and N concentration using a Carlo Erba elemental analyzer at the 148 

Laboratory of Isotope Ecology, CENA-USP. For statistical tests, the mean of the five root 149 

samples collected at each plot was considered as one of the four replicates per gradient of 150 

elevation. 151 

2.4 Soil water filled pore space (WFPS) and N contents 152 

Once a month during one year of collection, and after soil gas collection, the surface litter 153 

was removed from each chamber location and a soil core about 5 cm diameter and 10 cm 154 

deep was collected. After collection, soil samples were transported on ice in an insulated 155 

cooler to the Laboratory of Isotope Ecology at CENA-USP and stored at ~4°C until 156 

analysis. Soil samples were sieved (sieve 2 mm mesh) to remove roots and large stones, 157 

and a ten grams subsample was oven-dried at 105°C for 24 h to determine water content 158 

gravimetrically and N contents (NH4
+ and NO3

-), and N-mineralization and N-nitrification 159 

processes as the procedures described by Piccolo et al. (1994). Water filled pore space 160 

(WFPS) was obtained from soil core samples collected once a month from each chamber 161 

location and calculated according to Carmo et al. (2007). Additionally, we recorded air and 162 

soil temperatures (2 cm depth) using electronic thermometers. 163 

2.5 Statistical analysis 164 

All data were first tested for normal distribution and for homoscedasticity by the 165 

Kolmogorov-Smirnov test. Because of the non-normal distribution of the fluxes for CH4 166 

and N2O, these data were log-transformed to homogenize variances. We analyzed gas 167 

fluxes and other variables in a 2-way ANOVA design using altitude and month as 168 
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treatments.  Four plots served as replicates at each altitude. Months could be considered as 169 

treatments because the collection points for chambers were randomized every month. 170 

Tukey’s post-hoc analysis was used to make comparisons among altitudes. Pearson 171 

correlation coefficients between N2O, CO2, and CH4 fluxes, soil N contents, soil 172 

temperature, and soil moisture also were calculated. Statistical analyses were performed 173 

using Minitab version 15 software (Minitab Inc., 2006). 174 

Cumulative annual flux of N2O and CH4 were calculated by linear interpolation and 175 

integration of fluxes among the sampling dates. The difference among cumulative annual 176 

fluxes by altitude was also tested by one-way-ANOVA. We estimated the missing CO2 177 

fluxes by fitting an exponential relation between soil temperature and CO2 flux (Doff Sotta 178 

et al., 2004). After filling the missing CO2 data, the accumulative annual CO2 flux was also 179 

estimated. 180 

3 Results 181 

3.1 Soil temperature and soil chemical-physical properties 182 

As expected, lower soil temperatures (P<0.05) were found at higher altitude (1000 m) and 183 

soil temperature increased downwards (Figure 1). 184 

Soil moisture expressed as WFPS was significantly higher (P<0.05) in the plots at 100 m 185 

and 400 m than in soils located at 1000 m (Figure 2). The trends in WFPS reflect in part 186 

the soil porosity and packing (Beare et al., 2009). Soil bulk densities at 5 cm depth were 187 

greater at the lower elevations (0.98 g m3  at 100 m and 1.06 Mg m3  at 400 m) compared 188 

to the montane site (0.8 g m3 at 1000 m). 189 

There was no difference (P>0.05) in annual net mineralization and net nitrification rates 190 

among altitudes. However, ammonium (NH4
+) and nitrate (NO3

-) concentrations were 191 

significantly higher (P<0.05) at altitude 1000 m (9.7±0.6 and 19.1±1.0 µg g-1, 192 
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respectively). No significant correlations were found between soil nitrate or ammonium 193 

concentrations and flux of soil gases during the sampling period nor was soil net N, net 194 

mineralization and net nitrification rates significantly correlated to soil gas emissions. 195 

3.2 Fine root and litter production 196 

On average total fine root biomass (0-10 cm depth) was greater (P<0.05) in the dry season 197 

than in the rainy season. During the rainy season fine roots had larger live mass (P<0.05) 198 

than dead mass and fine root mass (live and dead) was larger (P<0.05) at 1000 m (Table 199 

2). In the dry season, there was no significant difference (P>0.05) between live and dead 200 

mass along the altitudes but greater root mass (P<0.05) was again found at 1000 m 201 

altitude.  202 

Carbon to nitrogen (C:N) ratio of fine roots (live and dead) collected during the rainy 203 

season was significantly higher (P<0.05) than in the dry season (Table 3). In both seasons, 204 

the C:N ratio of live roots was significantly (P<0.05) higher than dead roots. There was no 205 

significant difference of C:N ratio of fine roots among altitudes (Table 3). 206 

Although a decrease in litterfall was observed at higher altitudes, there was no significant 207 

difference among altitudes (Table 4). Litterfall stocks on soil surface were significantly 208 

higher (P<0.05) at 1000 m (Table 4). Calculations using Shanks and Olson’s model (1961), 209 

showed that litter decay rate decreases as altitude increases (P<0.05, Table 4); litter takes 210 

18 months for 95% loss at 100 m and about 50% more time at 400 and 1000 m. 211 

3.3 Soil-atmosphere emissions of trace gases 212 

Annual means of soil N2O flux decreased (P<0.05) with the increase of altitude (Table 5). 213 

At all altitudes, we observed consumption of soil CH4 with the smallest consumption 214 

(P<0.05) observed at 100 m (Table 5). CO2 fluxes do not correspond to a full year and 215 

valid data correspond to the months from March, 2007 through August, 2007. For these 216 
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months, soil CO2 fluxes averaged 3.1 (±0.3) µmol m-2 s-1 at 1000 m and were significantly 217 

lower (P<0.05) than at 400 m and 100 m (3.3 (±0.3) and 3.6 (±0.2) µmol m-2 s-1 218 

respectively), which were not distinguishable from one another.  219 

The cumulative annual fluxes of N2O and CH4 for the three altitudes were calculated and 220 

the ANOVA results for N2O were similar to the simple averages (Table 5).  In contrast, for 221 

the cumulative fluxes of CH4 we found no significant difference among altitudes.  We note 222 

that the simple data provide a more powerful test than the cumulative data because they 223 

include more degrees of freedom. 224 

Higher fluxes of CO2 were observed in all altitudes between February and April, 2007, 225 

during the rainy season, and lower fluxes were measured between May and August, 2007, 226 

during dry season (Figure 3c). Carbon dioxide emissions increased with soil temperature 227 

(r2 = 0.7 at 100 m, r2 = 0.9 at 400 m and 1000 m, respectively, P<0.05), but no correlation 228 

was observed with WFPS.  229 

Using an exponential model for CO2 flux with temperature (Doff Sotta et al., 2004), we 230 

estimated the missing CO2 data (October, 2006 through April, 2007) and then interpolated 231 

the data as we did for N2O and CH4 to estimate annual fluxes. The cumulative annual 232 

fluxes of CO2 were also estimated and values were 3.5, 3.6 and 3.4 µmol m-2 s-1 at altitudes 233 

100 m, 400 m, and 1000 m altitudes respectively.   Based on the exponential model we also 234 

calculated Q10 values of 1.6, 2.3, and 2.1 at altitudes 100 m, 400 m and 1000 m, 235 

respectively. 236 

 237 
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3.4 Altitudinal and monthly variations of soil gas fluxes and their dependency on 238 

changes in soil temperature and WFPS 239 

At 100 m there was a significant (P<0.05) variation in N2O fluxes during sampling period, 240 

with the highest fluxes measured in the rainy months of December, 2006 and January, 241 

2007 (Figure 3a). A significant positive correlation (r2=0.86, P<0.05) between soil 242 

moisture (WFPS) and N2O flux was observed exclusively at 100 m while there was no 243 

correlation between soil temperature and N2O flux at the same altitude. 244 

Fluxes measured at 400 m showed significant differences along the sampling period, with 245 

the largest N2O emissions (P<0.05) measured during the rainy season, between August 246 

2006 and January 2007 (Figure 3a). At 1000 m there was a weak but significant (P<0.05) 247 

monthly variation of N2O fluxes, and the largest emissions were observed between the 248 

rainy months of November, 2006 and January, 2007 (Figure 3a) whereas significantly 249 

(P<0.05) lower fluxes were found in the dry months of July and August, 2007. A weak but 250 

significant correlation (r2 = 0.52, P<0.05) between soil temperature and N2O fluxes was 251 

observed at altitude 1000 m. 252 

At 100 m soil-atmosphere exchange of CH4 showed only negative fluxes (soil consumption 253 

of atmospheric methane) and consumption varied significantly (P<0.05) among months.  254 

The largest consumption occurred in August, 2006 (transition between rainy and dry 255 

seasons) and in the hot and wet period between February and March 2007 (rainy season). 256 

Smaller consumption was measured during the cool and dry months of June, July and 257 

August 2007 (Figure 3b).  258 

Methane consumption varied significantly (P<0.05) among months at 400 m altitude. More 259 

consumption (P<0.05) occurred in the rainy months of September, 2006 and March, 2007 260 

and less consumption was measured during November, 2006 and December, 2006 (rainy 261 

season) and in the dry month of June, 2007 (Figure 3b). At 1000 m consumption of CH4 262 
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also varied among months (P<0.05). The pattern was similar to the pattern at 400 m with 263 

less consumption (P<0.05) in the rainy months of November and December, 2006 and 264 

more (P<0.05) consumption in September 2006, and August 2007 (Figure 3b).  265 

In general, there was no significant correlation between CH4 fluxes and soil temperature at 266 

any altitude. In contrast, CH4 correlated weakly (r2=0.40, P<0.05) with WFPS at 100 m. 267 

4 Discussion 268 

4.1 Soil-atmosphere emissions of N2O 269 

In order to understand the decrease in soil N2O emissions with altitude we evaluate our 270 

data in relation to the hole-in-the-pipe (HIP) model (Firestone and Davidson, 1989; 271 

Davidson et al., 2000). According to this model, at a broad scale, N2O emissions increase 272 

with the nitrogen availability (gross inorganic nitrogen fluxes) in the system. Comparing 273 

different tropical regions, Davidson et al. (2000) found specifically that N2O emissions 274 

were correlated with soil nitrate concentrations, N-mineralization and nitrification, and 275 

were inversely correlated with the soil ammonium concentrations or the ratio of 276 

ammonium to nitrate.  277 

Our data contain some anomalies compared to the findings of Davidson et al. (2000) and 278 

other studies. At the 1000 m forest site, soil concentrations of ammonium and nitrate were 279 

higher than at other sites and average nitrate concentrations were 30% higher than average 280 

ammonium concentrations. Soil pools of ammonium and nitrate reflect a balance in 281 

production and consumption processes and do not necessarily correlate with gas fluxes.  282 

Nonetheless, the low N2O fluxes at the montane site are at odds with the trends for higher 283 

N2O emissions where soil nitrate pools exceeded soil ammonium pools (Davidson et al., 284 

2000).  Despite the high nitrate to ammonium ratio, N2O fluxes were significantly lower at 285 

the montane site than they were in the lowlands.  In part, we speculate that the low N2O 286 
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fluxes resulted from the limitation of denitrification by easy drainage in the sandy soil and 287 

the consequent good aeration and perhaps from low gross fluxes of inorganic nitrogen 288 

owing to the lower temperatures. WFPS was significantly lower at 1000 m than at l00 and 289 

400 m.   290 

The pace of decomposition is also important.  High rates of decomposition consume 291 

oxygen promoting low-oxygen conditions that promote greater N2O emissions in tropical 292 

forest soils (Keller and Reiners 1994). The data on litter stocks (Table 4) show that the rate 293 

of decomposition (promoted by higher temperatures) is nearly twice as great in the 294 

lowlands as in the montane sites.  Thus, low N2O emissions at montane sites could be 295 

related to low decomposition rates through the limitation in gross nitrogen transformations 296 

and through the limitation on oxygen consumption. 297 

No single factor promoted the greatest N2O fluxes found in months of December 2006 and 298 

January 2007 at elevation 100 m. We speculate that the high fluxes result from a 299 

combination of high temperature, elevated soil WFPS, and high rates of decomposition 300 

what could result low-oxygen conditions. In addition, we note that methane consumption is 301 

diminished at the same time. In this case, the association of low oxygen conditions with 302 

high N2O fluxes is corroborated by the correlation between N2O and WFPS (r2=0.86; P = 303 

0.05) at 100 m (McSwiney et al., 2001). The influence of soil temperature over gas 304 

emissions is corroborated by the significant positive relation between N2O and soil 305 

temperature at 1000 m (r2 = 0.5, P<0.05).  306 

We compare our N2O emissions with the survey made by Breuer et al. (2000) adding 307 

recent emissions measurements made in tropical forests, mainly in the Amazon region 308 

(Garcia-Montiel et al., 2001; Garcia-Montiel et al., 2002; Keller et al., 2005). The median 309 

value of all these measurements was approximately 2.0 kg N ha-1 yr-1. Emissions measured 310 

at 400 m and 1000 m forest sites were lower than these values, and near the lower end of 311 
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the spectrum of emissions. On the other hand, N2O emissions at the 100 m forest sites were 312 

larger (2.2 kg N ha-1 yr-1) than the median value, but approximately half as great as the 313 

highest observed emissions from tropical forests (6 to 7 kg N ha-1 yr-1). N2O  emissions 314 

measured at 100 m were similar to the mean fluxes found in the only other study that 315 

measured annual N2O emissions in the coastal Atlantic Forest  of  Brazil (Tianguá 316 

Biological Reserve, Rio de Janeiro, 170 to 300 m asl) (Maddock et al., 2001). 317 

4.2 Soil-atmosphere exchange of CH4 318 

Tropical rain forests can function as a significant sink for atmospheric CH4 and most 319 

studies have reported negative fluxes (Verchot et al., 1999; Breuer et al., 2000; Gut et al., 320 

2002, Kiese et al., 2003). In the Atlantic forest, we observed, on average, only negative 321 

fluxes (consumption) of CH4 at all altitudes, and the annual mean fluxes of CH4 found in 322 

this study are similar to fluxes reported by other studies conducted in tropical forests 323 

(Keller et al., 2005). Well-drained soils generally consume CH4 from the atmosphere and 324 

soil water content regulates the flux through its control on the diffusion of CH4 in the soil 325 

(Crill, 1991; Born et al., 1990). Butterbach-Bahl et al. (2004) in a study in an Australian 326 

tropical rainforests have shown that CH4 uptake was correlated with WFPS. Although 327 

weak, there was a significant (P<0.05) positive correlation between WFPS and CH4 flux at 328 

100 m forest site (r2 = 0.4, P<0.05) there was no correlation between WFPS and CH4 flux 329 

at the higher altitudes. We note that temperature and moisture correlate in these systems 330 

and that when soil moisture conditions are optimal for CH4 consumption in the cooler sites 331 

(400 m and 1000 m), low soil temperatures probably limit the microbial activity 332 

responsible for CH4 consumption. 333 

4.3 Soil-atmosphere emissions of CO2 334 

Because of equipment malfunctions, the temporal CO2 extent of emissions measured in our 335 

study was limited to only about one-half year.  Using the exponential model of flux by 336 
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altitude, the integrated carbon dioxide emissions were similar at all altitudes despite the 337 

higher temperatures (Figure 3) and the greater rates of decomposition (Table 4) in the 338 

lowlands.  We may have failed to capture the true dynamics of soil CO2 flux because we 339 

did not sample in the early part of the Austral summer (Figure 3c) when the combination of 340 

hot and wet conditions coincided with an abundant forest floor litter stock. As noted in 341 

most studies, soil CO2 emissions are tightly related to temperature and labile substrate 342 

(Joergensen et al., 1990; Kiese and Butterbach-Bahl, 2002; Davidson and Janssens, 2006; 343 

Moreira and Siqueira, 2006).  In our limited observations, the largest soil CO2 emissions 344 

were observed between February and April, 2007 (Figure 3c) when observed soil and air 345 

temperatures were highest (Figure 1), reinforcing the evidence for a strong temperature 346 

effect.  347 

5 Conclusion 348 

Overall we found that the emissions of N2O and the uptake of CH4 by soils of the coastal 349 

Atlantic Forest of Brazil are within the range of other tropical forests of the world. We 350 

observed that N2O and CO2 emissions were lower at higher altitudes, although the nitrogen 351 

and carbon stocks were greater at higher altitudes. According to our results, we speculate 352 

this contrast cannot be explained by an isolated factor but by an association of factors 353 

including air and soil temperatures, species composition (van Haren et al., 2010), soil 354 

physical and chemical properties, decomposition rates and nutrient supply. Amongst all 355 

those factors, the temperature gradient was most obvious.  An apparently non-linear 356 

response of both decomposition and nitrogen cycling to elevated temperature leads to 357 

strong seasonal N2O emissions in the lowlands whereas emissions are relatively low at 358 

submontane and montane sites throughout the year.  Climate change associated with 359 

increasing temperatures may result in increased in microbial activity with a consequent 360 

increase in soil N2O and CO2 emissions and soil CH4 consumption.  While the responses 361 
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along the elevation gradient associated with temperature are provocative, we recognize that 362 

no single factor in this complex system can adequately predict the response of greenhouse 363 

gas fluxes to climate change. 364 
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Table 1. Physical-Chemical characterization of the soil layers (0.3 m depth) sampled at the studied 

sites (mean ± standard error; n=32 for each altitude and depth). Data source: Martins, 2010. 

Depth 

(cm) 

N C Sand Clay Bulk Density 

……….......(g kg-1)…………… ……………(%)..................... (g m-3) 

100 m      

0-5 3.4 ± 1.4 45.9 ± 19.4 60.4 ± 9.7 31.5 ± 8.0 0.9 ± 0.1 

5-10 2.4 ± 1.1 31.8 ± 15.3 56.5 ± 9.3 35.1 ± 8.6 1.1 ± 0.1 

10-20 1.9 ± 0.7 25.9 ± 10.1 56.8 ± 9.9 35.3 ± 9.7 1.3 ± 0.1 

20-30 1.2 ± 0.4 16.5 ± 5.9 55.8 ±9.6 37.4 ± 9.7 1.4 ± 0.1 

400 m      

0-5 4.6 ± 1.1 58.9 ± 15.5 66.7 ± 6.6 16.4 ± 3.8 1.0 ± 0.0 

5-10 3.6 ± 0.8 45.8 ± 12.7 62.2 ± 3.8 20.5 ± 3.7 1.1 ± 0.1 

10-20 2.7 ± 0.5 34.7 ± 8.8 61.4 ± 6.0 22.1 ± 4.5 1.2 ± 0.1 

20-30 2.0 ± 0.3 26.0 ± 5.9 59.5 ± 5.9 23.4 ± 4.2 1.3 ± 0.1 

1000 m      

0-5 6.8 ± 3.1 91.5 ± 45.3 57.3 ± 12.2 20.3 ± 8.5 0.8 ± 0.2 

5-10 4.5 ± 1.5 58.8 ± 21.2 53.9 ± 14.3 22.3 ± 10.8 0.8 ± 0.2 

10-20 3.8 ± 1.2 49.6 ± 17.1 54.0 ± 12.2 19.8 ± 10.7 1.0 ± 0.2 

20-30 3.1 ± 1.2 44.4 ± 22.5 53.5 ± 12.3 20.6 ± 11.5 1.1 ± 0.2 
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 518 

Table 2. Fine root biomass (live and dead) at different altitudes in the rainy and in the 

dry season. Values represent mean and standard error of four replicates per altitude. 

Altitude 

(m) 

Rainy season (g m-2) Dry season (g m-2) 

Live Dead Live Dead 

100 m 204.2 (±28.1)a 82.1 (±16.0)b 433.8 (±119.1)a 275.4 (±131.9)a 

400 m 293.1 (±38.1)a 143.34 (±17.4)b 310.6 (±87.6)a 219.5 (±98.2)a 

1000 m 464.0 (±80.2)a  220.7 (±44.5)b 1098.3 (±89.8)a 896.2 (±82.3)a 

Lower case letters indicate difference between columns within seasons.  
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Table 3. Concentrations of carbon and nitrogen and C:N ratio of fine roots (<2 mm) at different altitudes in  rainy (January,2007) and 

dry (August, 2007) months. Values represent mean and standard error (in parenthesis) of four replicates per altitude. 

Season Altitude (m) Category C (%) N (%) C:N 

R
a

in
y 

100 m 
Live 42.8 (±1.2) 1.4 (±0.1) 32.6 (±2.7)a,A 

Dead 37.8 (±1.4) 1.5 (±0.1) 26.5 (0.1)b,A 

     

400 m 
Live 42.9 (±0.3) 1.5 (±0.1) 31.1 (±2.2)a,A 

Dead 38.0 (±2.4) 1.4 (±0.1) 27.1 (±0.5)b,A 

     

1000 m 
Live 45.4 (±1.0) 1.3 (±0.1) 35.7 (±2.1)a,A 

Dead 44.0 (±1.2) 1.5 (±0.1) 29.9 (±0.9)b,A 

     

D
ry

 

100 m 
Live 41.4 (±1.2) 1.7 (±0.2) 25.6 (±1.8)a,B 

Dead 37.4 (±0.5) 1.7 (±0.1) 22.1 (±1.5)b,B 

     

400 m 
Live 39.4 (±0.5) 1.6 (±0.1) 26.4 (±1.0)a,B 

Dead 37.2 (±1.0) 1.7 (±0.2) 22.3 (±1.7)b,B 

     

1000 m 
Live 43.6 (±0.8) 1.7 (±0.1) 27.1 (±1.6)a,B 

Dead 39.6 (±0.9) 1.7 (±0.1) 23.3 (±1.4)b,B 

Lower case letters indicate difference between altitudes within seasons and upper case letters indicate difference between seasons. 
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 521 

Table 4. Litterfall inputs and stocks in different altitudes and litter decomposition rates (k) 

and time (months) for decay of 50% (t 0.5) and 95% (t 0.05). Data represents six months of 

sampling (March through August 2007). Different letters represent statistically significant 

differences among altitudes. 

Altitude 

(m) 

Litterfall  Forest Floor 

Inputs 

(t ha-1 y-1) 

Stocks 

(t ha-1) 
DC1 (k) t0.5 t0.05 

100 8.4 (±1.5)a 4.3 (±0.8)a 2a 3 18 

400 7.4 (±1.8)a 4.4 (±0.4)a 1.4b 5 25 

1000 5.5 (±0.9)a 4.8 (±0.6)b 1.3b 5 27 

1DC= Decomposition coefficient 
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 522 

Table 5. Simple annual mean (SA) and integrated (Int.) fluxes of N2O and CH4 

for different altitudes. Different letters represent statistically significant 

differences among the altitudes. See text for a description of the averaging and 

integration approaches. 

Altitude 

(m) 

N2O  

(ng N cm-2 h-1 )  

CH4  

(mg CH4 m
-2 d-1 ) 

SA Int. SA Int. 

100 3.9a (±0.4) 4.4a (±0.5)  - 1.0a (±0.2) -1.0a (±0.2) 

400 1.0b (±0.1) 1.1b (±0.1)  - 1.8b (±0.3) -1.7a (±0.3) 

1000 0.9c (±0.2) 1.1b (±0.3)  - 1.6b (±0.1) -1.4a (±0.1) 
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Figure 1. Monthly soil temperatures (2 cm depth) at the three different elevations. Values 

represent the mean of four replicate plots per elevation, and error bars represent the 

standard error. Because of weather conditions it was not possible to access the sites at 

altitude 1000 m in February 2007. 
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Figure 2. Monthly variation of Water Filled Pore Space (WFPS) at different elevations. 

Values represent means of four replicates per elevation and bars represent standard errors. 

Because of weather conditions it was not possible to access the sites at altitude 1000 m in 

February 2007. 
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Figure 3. Monthly soil-atmosphere gas flux of (A) nitrous oxide (N2O), (B) methane (CH4), 

and (C) carbon dioxide (CO2) at different altitudes. Values represent the mean of four 

replicates per elevation and bars represent standard errors. 
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