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Abstract

Arctic warming is projected to continue throughout the coming century. Yet, our cur-
rently limited understanding of the Arctic Ocean carbon cycle hinders our ability to pre-
dict how changing conditions will affect local Arctic ecosystems, regional carbon bud-
gets, and global climate. We present here the first set of concurrent, full-depth, dual-5

isotope profiles for dissolved inorganic carbon (DIC), dissolved organic carbon (DOC),
and suspended particulate organic carbon (POCsusp) at two sites in the Canada Basin
of the Arctic Ocean. The carbon isotope composition of sinking and suspended POC
in the Arctic contrasts strongly with open ocean Atlantic and Pacific sites, pointing to
a combination of inputs to Arctic POCsusp at depth, including surface-derived organic10

carbon (OC), sorbed/advected OC, and OC derived from in situ DIC fixation. The latter
process appears to be particularly important at intermediate depths, where mass bal-
ance results suggest that OC derived from in situ DIC fixation contributes up to 22 % of
POCsusp. As in other oceans, surface-derived OC is still a dominant source to Arctic
POCsusp. Yet, we suggest that significantly smaller vertical POC fluxes in the Canada15

Basin make it possible to see evidence of DIC fixation in the POCsusp pool even at the
bulk isotope level.

1 Introduction

In the coming decades, the Arctic Ocean is predicted to experience significant changes
in sea-ice conditions and in its coupling with terrestrial systems. If trends continue, the20

Arctic Ocean carbon cycle may change profoundly as summer sea-ice gives way to
open water, permafrost thaws, coastal erosion and river inflow increase, and organ-
isms and ecosystems adapt to these changes (Serreze et al., 2000). Yet our ability to
accurately predict how Arctic Ocean ecosystems will respond is limited by an incom-
plete understanding of the Arctic carbon cycle and the dominant feedback mechanisms25

involved (McGuire et al., 2009).
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Dual carbon isotope (13C and 14C) measurements represent a valuable tool to im-
prove our understanding of present-day ocean biogeochemistry (e.g., McNichol and
Aluwihare, 2007). Yet relatively few full-ocean-depth dissolved and particulate OC iso-
tope profiles exist for the major ocean basins, and none have been reported in the
Arctic, a unique system poised for change.5

2 Background

The Arctic Ocean basin is filled by water from the Atlantic and Pacific oceans as well
as Arctic rivers. Sea-ice limits wind-driven vertical mixing throughout much of the year
which, together with strong stratification supported by inflowing waters, results in an
ocean strongly organized into several vertical layers (Stein and Macdonald, 2004).10

Surface waters (0–30 m) are strongly influenced by freshwater from rivers and melt-
ing sea-ice. Nutrient-replete Pacific waters dominate at depths between 30–250 m in
the Canada Basin (e.g., Yamamoto-Kawai et al., 2008), while warm and salty Atlantic
waters occupy intermediate depths (250–1500 m) and lie above the isolated deep wa-
ter. Each layer has unique physicochemical characteristics that reflect source water15

composition and modifications by biogeochemical processes within the Arctic. A par-
ticularly important feature of the Arctic Ocean is the strong perennial cold halocline,
which insulates surface waters (and sea-ice) from warm and salty Atlantic waters be-
low (Shimada et al., 2005).

The Arctic Ocean receives a disproportionate share of the OC delivered from rivers to20

oceans worldwide (Stein and Macdonald, 2004). The Canada Basin (Fig. 1a) receives
OC inputs from both North American (Mackenzie and Yukon) and Siberian rivers (Guay
et al., 2009; Yamamoto-Kawai et al., 2009). Particulate organic carbon (POC) from
the Mackenzie River may reach the interior Canada Basin directly as fine particles or
following deposition, re-suspension, and lateral transport in nepheloid layers (Forest et25

al., 2007). Marine production by pelagic and sea-ice algae is also an important source
of OC to the sediments and water column of the Canada Basin (Belicka et al., 2002).
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In the Arctic, POC source assignments based on 13C are difficult because of the
diversity of possible sources, the relatively narrow range in environmental δ13C values,
and large uncertainties in source signatures due to factors such as variable riverine OC
flux (Raymond et al., 2007), in situ temperature, nutrient limitation, and phytoplankton
growth rate (Goericke and Fry, 1994; Kennedy et al., 2002). Riverine POC inputs to5

this region have δ13C values of ∼−26 ‰ to −29 ‰ (Naidu et al., 2000), sea ice POC
has values of −15 ‰ to −22 ‰ (Belt et al., 2008; Stein and Macdonald, 2004), and
marine pelagic POC is closer to −24 ‰ (Naidu et al., 2000) but can range from −17 ‰
to −30 ‰ (Stein and Macdonald, 2004). Migratory zooplankton may further complicate
POC source assignments due to ontogenetic and seasonal migrations that can exceed10

1000 vertical meters (Ashjian et al., 2003).
The strength of the biological pump and the delivery of POC to sediments depends

on several factors, such as temperature, nutrient availability, sea-ice conditions, timing
of sea-ice melt, and zooplankton community dynamics (Honjo et al., 2010). Given
that Arctic ecosystems appear uniquely sensitive to changing temperature and sea-ice15

conditions, there is a clear need to determine the structure and function of the Arctic
Ocean carbon cycle. We address this need by reporting the first full suite (dissolved
inorganic carbon (DIC), DOC, and suspended POC (POCsusp)) of dual-isotope profiles
in the Arctic Ocean at two sites in the deep Canada Basin. These bulk isotope data are
valuable as a comparative baseline against which future change can be evaluated, but20

they also provide evidence that DIC fixation is particularly important in the deep Arctic
Ocean.

3 Methods

As a part of the 2008 Joint Ocean Ice Study (JOIS), the CCGS Louis S. St Laurent oc-
cupied two stations in the Canada Basin of the Arctic Ocean in August 2008 (Fig. 1a).25

Station CB4 (74◦59.998′ N; 150◦0.002′ W; 3825 m) is seasonally free of ice, while sta-
tion CB9 (77◦59.859′ N; 150◦4.887′ W; 3821 m) is semi-permanently ice covered. At

10680

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/10677/2011/bgd-8-10677-2011-print.pdf
http://www.biogeosciences-discuss.net/8/10677/2011/bgd-8-10677-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 10677–10696, 2011

Carbon dynamics in
the western Arctic

Ocean

D. R. Griffith et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

each site, water samples were collected at 24 depths using 10 l Niskin bottles on a
24-bottle rosette.

DIC samples were collected in combusted 600 ml clear glass DIC bottles, poisoned
with 100 µl HgCl2, sealed, and stored in the dark at room temperature to await car-
bon isotope analysis at the National Ocean Sciences Accelerator Mass Spectrometry5

(NOSAMS) facility in Woods Hole, Massachusetts (McNichol et al., 1994). The pooled
standard deviations for duplicate DIC samples (n= 8) were 0.025 mM, 0.23 ‰ (δ13C),
and 8.0 ‰ (∆14C).

DOC samples were collected in combusted (450 ◦C; 5 h) amber glass bottles with
Teflon-lined caps using 14C-clean techniques. One-liter samples were collected at10

depths greater than 400 m. All other DOC samples were 250 ml. Each DOC sam-
ple was immediately acidified with 85 % H3PO4 (1 ml or 250 µl) and stored in the dark
at 4 ◦C until processing at NOSAMS following Beaupre et al. (2007). The DOC samples
reported here were not filtered and represent total organic carbon (TOC), although the
difference between TOC and DOC was found to be negligible due to extremely low15

particle concentrations. The pooled standard deviations for duplicate DOC samples
(n=8) were 2.2 µM, 0.28 ‰ (δ13C), and 23 ‰ (∆14C).

POCsusp samples were obtained using submersible McLane® pumps loaded with
combusted 142 mm GF/F (0.7 µm) filters and lowered to specific depths where each
one pumped up to 950 l over 150 min. In one instance, a pump deployed to 3805 m at20

CB4 failed to start, yet 6.2 µmol of OC (∆14C=−247 ‰; δ13C=−25.1 ‰) was collected
on the filter. This was attributed to DOC that sorbed onto the filter during deployment.
Therefore, POCsusp values were corrected for DOC sorption assuming similar sorption
onto all sample filters. This DOC sorption “blank” represented 1–19 % of the total OC
measured on other sample filters and resulted in an average ∆14CPOCsusp correction25

of +11 ‰. Surface POCsusp samples (9 m water depth) were collected through the
ship’s clean water intake onto combusted 293 mm GF/F filters. All POC filters were
processed and analyzed according to the procedures outlined by Hwang et al. (2009).
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Continuous measurements of temperature and conductivity were carried out with
a Seabird SBE9+ CTD attached to the rosette. Conductivity was calibrated using dis-
crete salinity samples processed onboard following standard protocols. A temperature-
salinity plot of these data (Fig. 1b) facilitates the interpretation of carbon isotope profiles
in the context of vertical water mass structure in the Canada Basin.5

4 Results and discussion

4.1 Dissolved Inorganic Carbon (DIC)

In the Canada Basin, DI14C generally decreases with depth – from relatively enriched
values in the Atlantic layer to uniformly depleted values in the deep basin (Fig. 2). Deep
water DI14C in the Canada Basin is similar to the deep Makarov Basin but depleted by10

∼25 ‰ compared to the deep Nansen and Amundsen Basins (Schlosser et al., 1997).
And, except for moderate 14C enrichment in the Atlantic layer, the profile of DI14C in
the Canada Basin has not changed appreciably since 1992 (Jones et al., 1994).

At stations CB4 (seasonally ice-free) and CB9 (semi-permanently ice-covered), pro-
files of DIC, DI13C, and DI14C (Fig. 2) are similar, suggesting that sea-ice coverage is15

not a major factor controlling the vertical distribution of DIC in the Canada Basin. In-
stead, DIC profiles largely reflect preformed signals in a highly stratified water column.
For example, maximum DIC concentrations are found in Pacific Winter Water (PWW),
a layer that accumulates DIC as it flows across the highly productive Chukchi Sea.

4.2 Dissolved Organic Carbon (DOC)20

DOC profiles (Fig. 2) show that concentration and DO14C both decrease with depth
following the general pattern seen in other ocean basins (Bauer, 2002; Hansell et al.,
2009). Elevated DOC in the Pacific layer may reflect DOC-rich waters from the Beaufort
and Chukchi shelves that have subducted with brines during sea-ice formation or been
injected into the Canada Basin by mesoscale eddies (Mathis et al., 2007).25
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A large percentage (31–65 %) of primary production in the Canada Basin is released
as DOC (Gosselin et al., 1997), but DOC in the deep Canada Basin remains low
(∼40 µM) due to a weak biological pump, low POC fluxes, and high DOC biodegra-
dation rates (Anderson, 2002). Measurements of lignin phenols and 13C isotope signa-
tures also point towards relatively minor contributions from terrestrial OC to the deep5

Canada Basin DOC pool (Anderson, 2002; Opsahl et al., 1999).
DO13C profiles at CB4 and CB9 share several features. Generally, DOC is more

13C-enriched in surface and Pacific layers compared to deeper waters, which points
to greater contributions from sea-ice algal production and pre-formed Pacific/Chukchi
Sea DOC (Belt et al., 2008; Stein and Macdonald, 2004) or the preferential degradation10

of 13C-depleted DOC (e.g., riverine DOC) in the upper 400 m at both sites. Likewise,
deep waters at each site share similar DO13C values (∼−23 ‰). Yet in the core of the
Atlantic layer, at depths of 400–1000 m, DO13C values are more depleted at CB9 than
at CB4. This offset may reflect greater contributions from terrestrial OC (δ13C ∼−26 ‰
to −29 ‰; (Naidu et al., 2000; Raymond et al., 2007)) delivered from the Siberian15

margin to CB9 by the Atlantic layer boundary current (see Fig. 1a), or DOC derived
from microbial consumption of autochthonous POC along the Northwind Ridge (δ13C
∼−25 ‰ to −27 ‰; (Honjo et al., 2010)).

We also find significant offsets between DO14C profiles within the Canada Basin.
Below 400 m, DO14C is significantly more enriched (by ∼27 ‰) at CB9 compared to20

CB4 (t-test, p= 0.0034). This difference points to a weaker biological pump and/or
larger contributions from aged and advected DOC at the interior basin site (CB4). In
either case, we might expect to see this DO14C offset also reflected in the composi-
tion of PO14Csusp at both sites due to communication between DOC and POC via
heterotrophic respiration of in situ DOC and sorption of DOC onto POCsusp.25

4.3 Suspended Particulate Organic Carbon (POCsusp)

The Canada Basin is characterized by extremely low POCsusp concentrations (Fig. 2).
Those measured in the current study are consistently (and in some cases much) lower

10683

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/10677/2011/bgd-8-10677-2011-print.pdf
http://www.biogeosciences-discuss.net/8/10677/2011/bgd-8-10677-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 10677–10696, 2011

Carbon dynamics in
the western Arctic

Ocean

D. R. Griffith et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

than previous reports from nearby locations (Trimble and Baskaran, 2005). This differ-
ence can be attributed to the relatively small amount of DOC sorbed onto filters due
to the large volumes filtered (see Gardner et al., 2003) and the fact that our reported
POCsusp values have been explicitly corrected for DOC sorption onto filters during
deployment.5

Despite overlapping source isotope signatures, PO13Csusp values at mesopelagic
(∼200–1000 m) and bathypelagic (∼1000–4000 m) depths in the central Canada Basin
(∼−23 ‰ to −24 ‰) implicate pelagic plankton sources, whereas surface PO13Csusp
values (−27 ‰ to −30 ‰) point to either river-derived OC or slow-growing phytoplank-
ton (Fig. 2). The relative enrichment of surface PO13Csusp at CB9 may also reflect10

proportionately greater contributions from sea ice algae at this ice-covered site.
Radiocarbon data add an additional constraint when interpreting POCsusp profiles.

Canada Basin PO14C profiles (Fig. 2) support previous evidence from time-series stud-
ies of POC collected in sediment traps (POCsink), which suggest that the biological
pump in the Arctic is weaker than in other oceans due a smaller flux of ballast particles15

(Honjo et al., 2010). PO14Csink and PO14Csusp in the Canada Basin are both more
depleted than at corresponding depths in the Atlantic and Pacific Oceans (Druffel and
Williams, 1990; Hwang et al., 2008; McNichol and Aluwihare, 2007), which points to
smaller contributions from surface-derived OC to deep waters and sediments of the
Canada Basin.20

Unlike other oceans, where PO14Csink values reflect modern OC from surface ocean
primary productivity (Druffel and Williams, 1990; Druffel et al., 1992), in the Canada
Basin PO14Csink is more depleted than PO14Csusp (Fig. 2) (Hwang et al., 2008;
Hwang et al., 2011). This discrepancy may be due to the proportionately large in-
fluence of ocean margins and shelf-basin particle transport on POCsink in the Arctic or25

other factors such as bottom currents and the timing of sea-ice melt, which may affect
POCsink and POCsusp differently (Bates et al., 2005; Belicka et al., 2009; Darby et
al., 2009; Forest et al., 2010, 2007; Honjo et al., 2010; Hwang et al., 2008). Together,
depleted PO14C values, high aluminum content, and the timing of sinking particulate
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fluxes in the Canada Basin (Hwang et al., 2008; O’Brien et al., 2011) suggest that
resuspended margin sediments are an important source of pre-aged organic carbon
(OC) to the deep Arctic Ocean.

The unique character of Canada Basin PO14C profiles has important implications for
understanding the sources and fate of POCsusp. In the Canada Basin, PO14Csusp5

generally decreases with depth, a feature that has been observed in other oceans and
is typically attributed to the sorption of aged DOC (Druffel and Williams, 1990). The fact
that PO14Csink is more depleted than PO14Csusp raises the possibility that laterally ad-
vected refractory POCsink could be partially responsible for the observed depletion of
PO14Csusp with depth. Benthic nepheloid layers that transport resuspended shelf and10

slope sediments may also contribute to PO14Csusp patterns in the deepest samples
(Forest et al., 2007; Hwang et al., 2009).

Many of these explanations rely on some amount of communication between the
sinking and suspended pools. In the Canada Basin, POCsink fluxes (10 mmol C
m−2 y−1; ∆14C=−68 ‰; δ13C=−25.4 ‰; at 120 m (Honjo et al., 2010)) are certainly15

large enough to affect the character of the POCsusp inventory between 150–3000 m
(73 µmol C m−3; ∆14C=−70 ‰; δ13C=−23.8 ‰). Nonetheless, it is possible that the
difference between the isotopic signatures of PO14Csusp and PO14Csink is related to
mismatched sampling timescales (POCsusp “snapshots” versus POCsink time series).
But if this were the case, PO14Csusp would need to exhibit marked temporal variability20

since PO14Csink was consistently more depleted throughout multi-year deployments
(Hwang et al., 2008, 2011).

If we assume that the difference between PO14Csusp and PO14Csink is not a
timescale artifact, then the source of enriched PO14Csusp at depth is not immediately
clear. One possibility is that these enriched PO14Csusp values reflect heterotrophic25

organisms that consume labile (modern) OC attached to otherwise refractory POCsink
(e.g., White et al., 2007). An alternate explanation is that a significant fraction of
POCsusp in the Canada Basin is derived from DIC fixation at depth due to anapleu-
rotic DIC uptake (Rau et al., 1986) or chemoautotrophic organisms such as planktonic
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Archaea, which are common (if not dominant) below the euphotic zone of the world’s
oceans (Delong, 2007).

To resolve these questions, isotope mass balance calculations were used to estimate
the fraction of POCsusp derived from surface-derived OC (“fSD”), in situ DIC fixation
(“fDF”), and either advected POC or sorbed DOC (“fA/S”):5

fSD+ fDF+ fA/S =1 (1)

δ13CPOCsusp=fSD(δ13CSD)+ fDF(δ13CDF)+ fA/S(δ13CA/S) (2)

∆14CPOCsusp=fSD(∆14CSD)+ fDF(∆14CDF)+ fA/S(∆14CA/S) (3)

This system of equations was solved twice for each sample – once assuming no con-
tribution from advected POC, and again assuming no contribution from sorbed DOC.10

This was necessary in order to account for four carbon sources with only two isotopes.
The isotopic values of each end-member were derived from profile data according to
Table 1 and are specific to both location and water depth. Relatively large uncertainties
in POCsusp were taken into account by solving the mass balance for the full range (±1
standard deviation) of POCsusp isotope values.15

Mass balance results (Table 2) indicate that PO14Csusp in the Canada Basin re-
quires large contributions (41–71 %) from surface-derived OC, with smaller but signifi-
cant (4–22 %) contributions from in situ DIC fixation, particularly at intermediate depths
(e.g., 2000 m) and at the interior basin site (CB4). The balance in these calculations
(12–51 %) is attributed to either in situ DOC or advected/refractory POC. These cal-20

culations provide quantitative support that the POCsusp pool in the meso- and bathy-
pelagic Arctic contains carbon derived from both in situ DIC and surface-derived OC,
and that the relative proportion of each source varies with depth and location (Table 2).
These results also lend bulk isotopic evidence to support microbiological studies that
have recently found evidence for the dominance of chemoautotrophic communities in25

deep waters of the Arctic, Atlantic, and Pacific (Hansman et al., 2009; Herndl et al.,
2005; Ingalls et al., 2006; Kirchman et al., 2007; Wuchter et al., 2006).
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The source of chemical energy driving deep Arctic DIC fixation remains uncertain.
One possibility is that chemoautotrophy is driven by nitrifying organisms that utilize
NH+

4 from the decomposition of particle bound organic matter (Karl et al., 1984). If
we assume that the organic nitrogen flux between 150–3000 m (5.2 mmol N m−2 y−1

(Honjo et al., 2010)) is entirely converted to NH+
4 and nitrifiers require approximately 105

NH+
4 molecules to fix a single molecule of CO2 (e.g., Wuchter et al., 2006), then organic

nitrogen fluxes could support DIC fixation rates as high as 520 µmol C m−2 y−1, which
is large compared to the fraction of POCsusp derived from in situ DIC fixation at these
depths (3–16 µmol C m−3). And while further mechanistic, genetic, and compound-
specific isotope studies are clearly needed, our results provide bulk isotopic evidence10

that DIC fixation contributes significantly to POCsusp in the meso- and bathypelagic
Arctic.

5 Conclusion

Taken together, these findings have intriguing implications for our understanding of the
Arctic carbon cycle; in particular the weakness of the biological pump, the interplay15

between the dissolved and particulate OC pools, and the importance of DIC fixation at
depth. This study also sets a valuable baseline from which to identify future changes
in the Arctic Ocean carbon cycle.

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/8/10677/2011/20

bgd-8-10677-2011-supplement.pdf.
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Table 1. Determining end-member isotope values for POCsusp mass balance calculations.

Surface-derived OC
(δ13CSD; ∆14CSD)

DIC fixation
(δ13CDF; ∆14CDF)

Advected POC
(δ13CA; ∆14CA)

Sorbed DOC
(δ13CS; ∆14CS)

Isotope values
derived from:

POCsusp at 50 m in situ DIC ∆14C=−260 ‰
δ13C=−24.5 ‰

in situ DOC

Note(s): chlorophyll
maxima at
64 m (CB4) and
45 m (CB9)

assumes fixation
by the 3HP/4HB
pathway and a 13C
fractionation
factor of 4±4 ‰

extrapolating
POCsink isotopes
and %Al at CB4
back to crustal Al
content

sorbed onto
POCsusp or in-
corporated into
bacterial
biomass

Reference(s): This study This study;
Pearson (2010)

This study; Hwang
et al. (2010, 2008)

This study
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Table 2. Contributions to POCsusp in the Canada Basin based on isotope mass balance
calculations.

Surface-derived OC (%) DIC fixation (%) Advected POC/sorbed DOC (%)

CB4 150 m 71 (66–74) 15 (14–16) 14 (10–19)
CB4 1000 m 53 (41–63) 20 (18–22) 27 (16–41)
CB9 1000 m 70 (61–78) 10 (9–11) 20 (12–31)
CB4 2000 m 67 (53–75) 22 (19–27) 12 (1–28)
CB4 3000 m 41 (15–61) 8 (4–12) 51 (27–81)
CB9 3000 m 56 (24–78) 4 (1–6) 41 (16–75)

Numbers in parentheses show the extreme range of solutions to the mass balance given full uncertainties in
PO14Csusp and the DIC fixation fractionation factor, as well as separate treatment of advected POC and sorbed
DOC calculations.
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Fig. 1. (a) Sampling stations CB4 and CB9 in the Canada Basin are mapped along with surface
(red) and Atlantic (blue) water layer currents (McLaughlin et al., 2009; Stein and Macdonald,
2004) and the approximate sea-ice extent in August 2008 (http://nsidc.org/data/). (b) Water
masses in the Canada Basin are characterized by temperature and salinity. Solid lines (grey-
CB4; black-CB9) show real-time measurements from sensors attached to the rosette. Discrete
points correspond to bottle samples collected for isotopic analyses of DIC and DOC. Displayed
depths are used to translate labeled water masses onto depth profiles (Fig. 2).
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Fig. 2. Full-depth carbon isotope profiles of DOC (blue triangles), POCsusp (green squares),
and DIC (red circles) at sites CB4 (open symbols) and CB9 (filled symbols) in the Canada
Basin in August 2008. POCsink (black diamonds) represents a flux-weighted average from
time-series sediment traps at water depths of 2050 m (2008–2009), 3100 m (2004–2005; 2007–
2009), and 3750 m (2008–2009) (Hwang et al., 2011). POCsink at 120 m (grey diamonds) is
derived from an ice-tethered sediment trap that traversed the Canada Basin and Chukchi Rise
in 1997–1998 (Honjo et al., 2010). POCsink error bars show ±1 SD for each corresponding
time series. Error bars for POCsusp reflect propagated errors (±1 SD) from procedural blank
and DOC corrections; DOC errors (±1 SD) reflect propagated errors of blank corrections. Error
bars (±1 SD) for DIC reflect analytical uncertainty only. When not visible, error bars are smaller
than symbols. Water masses (Polar Mixed Layer – PML; Pacific Summer Water – PSW; Pa-
cific Winter Water – PWW; Atlantic Layer – ATL; and Deep Canada Basin Water – DBW) are
delineated according to characteristic temperature and salinity (see Fig. 1b). These data are
available in Supplementary Data Tables 1–3.
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