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Abstract

The terrestrial biosphere is currently a strong sink for anthropogenic CO2 emissions.
Through the radiative properties of CO2 the strength of this sink has a direct influence
on the radiative budget of the global climate system. The accurate assessment of
this sink and its evolution under a changing climate is, hence, paramount for any effi-5

cient management strategies of the terrestrial carbon sink to avoid dangerous climate
change. Unfortunately, simulations of carbon and water fluxes with terrestrial biosphere
models exhibit large uncertainties. A considerable fraction of this uncertainty is reflect-
ing uncertainty in the parameter values of the process formulations within the models.

This paper describes the systematic calibration of the process parameters of a ter-10

restrial biosphere model against two observational data streams: remotely sensed FA-
PAR provided by the MERIS sensor and in situ measurements of atmospheric CO2
provided by the GLOBALVIEW flask sampling network. We use the Carbon Cycle
Data Assimilation System (CCDAS) to systematically calibrate some 70 parameters
of the terrestrial biosphere model BETHY. The simultaneous assimilation of all obser-15

vations provides parameter estimates and uncertainty ranges that are consistent with
the observational information. In a subsequent step these parameter uncertainties are
propagated through the model to uncertainty ranges for predicted carbon fluxes.

We demonstrate the consistent assimilation for two different set-ups: first at site-
scale, where MERIS FAPAR observations at a range of sites are used as simultaneous20

constraints, and second at global scale, where the global MERIS FAPAR product and
atmospheric CO2 are used simultaneously. On both scales the assimilation improves
the match to independent observations. We quantify how MERIS data improve the
accuracy of the current and future (net and gross) carbon flux estimates (within and
beyond the assimilation period).25

We further demonstrate the use of an interactive mission benefit analysis tool built
around CCDAS to support the design of future space missions. We find that, for
long-term averages, the benefit of FAPAR data is most pronounced for hydrological
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quantities, and moderate for quantities related to carbon fluxes from ecosystems. The
benefit for hydrological quantities is highest for semi-arid tropical or sub-tropical re-
gions. Length of mission or sensor resolution is of minor importance.

1 Introduction

The terrestrial biosphere is a significant sink for atmospheric CO2 and thus plays a key5

role in the radiative budget of the global climate system (Denman et al., 2007). Prog-
nostic terrestrial vegetation models are used to simulate the strength and distribution
of this sink and its response to climate change. These prognostic models solve the
equations governing the evolution of the carbon, water, and energy balance. In their
formulation, these equations rely on a set of constants, which we call process param-10

eters. There is uncertainty in both the correct formulation of the equations and then
the correct values of the process parameters. This uncertainty yields significant un-
certainties in the simulated terrestrial carbon sinks on decadal and longer time scales
(Denman et al., 2007). On shorter time scales parameter uncertainty is reflected in
large uncertainties in the hydrological cycle on all spatial scales.15

The use of observational information is required to reduce this uncertainty. System-
atic model calibration through inversion procedures can infer parameter ranges that are
consistent with the observations and exclude parameter ranges that are inconsistent
with observations (Tarantola, 1987). Remaining inconsistencies can be attributed to
weaknesses in the formulation of the model equations or errors in the observational20

data. For such calibration procedures it is desirable to use multiple data streams and
sample at multiple locations and points in time. To assure consistency, it is then es-
sential to impose all observational constraints simultaneously, an approach we call
consistent assimilation. In a non-linear model, any step-wise inclusion of the observa-
tional information typically yields a suboptimal estimate of final parameter values, i.e.25

consistency with the observational information used in early steps is not assured.
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The first mathematically rigorous calibration of a prognostic terrestrial biosphere
model was performed within the Carbon Cycle Data Assimilation System (CCDAS,
http://CCDAS.org) built around the Biosphere Energy Transfer HYdrology scheme
(BETHY, Knorr, 2000; Knorr and Heimann, 2001). CCDAS estimates the values of
BETHY’s process parameters including their uncertainty ranges and maps them onto5

simulated carbon and water fluxes. The system was first used with 20 yr of atmo-
spheric carbon dioxide observations provided by the GLOBALVIEW flask sampling
network (GLOBALVIEW-CO2, 2008). The system evaluated the effect of this obser-
vational constraint on the 0 net and gross fluxes of CO2 over the assimilation period
(Rayner et al., 2005), and also on their predictions from years (Scholze et al., 2007) to10

decades (Rayner et al., 2011).
The above studies showed that the flask sampling data can only constrain part of

BETHY’s parameter space. Fortunately there is an ever-increasing set of observational
constraints on the terrestrial biosphere becoming available. One of the requirements
for assimilation of a given data stream is the capability to simulate (by a so-called ob-15

servation operator) its counterpart in the model. For the assimilation of atmospheric
carbon dioxide the role of the observation operator was taken by an atmospheric trans-
port model (TM2, Heimann, 1995) that was coupled to BETHY.

A further observational constraint on the terrestrial biosphere is provided by “Frac-
tion of Absorbed Photosynthetically Active Radiation” (FAPAR) (Gobron et al., 2008)20

products. FAPAR is an indicator of healthy vegetation, which exhibits a strong contrast
in reflectance between the visible and the near-infrared domains of the solar spectrum
(Verstraete et al., 1996). FAPAR products can thus be derived from observations pro-
vided by space-borne instruments, e.g. by ESA’s Medium Resolution Imaging Spec-
trometer (MERIS). The extensions of CCDAS for assimilation of FAPAR are detailed25

by Knorr et al. (2010), who also demonstrate the consistent assimilation of FAPAR at
multiple sites. These extensions include modules for simulation of hydrology and leaf
phenology and, as observational operator, a two flux scheme of the radiative balance
within the canopy.
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Here we report on the first consistent assimilation of flask samples of atmospheric
CO2 and FAPAR at global scale, i.e. the simultaneous assimilation of both data
streams. To limit the computation time in development, testing, and debugging, this
challenging exploration of unchartered territory was conducted in BETHY’s fast, coarse
spatial resolution.5

A further application of advanced assimilation systems that can propagate uncer-
tainties from the observations to target quantities of interest is quantitative network
design (QND). QND is particularly appealing because it can evaluate the benefit of
hypothetical data streams based on their assumed uncertainty. Kaminski and Rayner
(2008) describe the methodological framework and present a set of examples related10

to the global carbon cycle. Within CCDAS, the QND concept was applied to support the
design of an active LIDAR mission sampling atmospheric CO2 from space (Kaminski
et al., 2010). For FAPAR assimilation at site-scale the concept was applied to evalu-
ate the effect of modifications of sensor characteristics on uncertainties in current and
future carbon fluxes (Knorr et al., 2008). This paper describes the development of an15

interactive mission benefit analysis (MBA) software tool based on the global version of
CCDAS. The MBA tool quantifies the benefit of space missions in terms of their con-
straint on various carbon and water fluxes, and we demonstrate the effect of design
aspects such as mission length and sensor resolution.

The remainder of the paper is organised as follows. Section 2 describes first CCDAS20

(Sect. 2.1) and then the MBA tool (Sect. 2.2). The observational data are presented in
Sect. 3. Next, Sect. 4 describes the consistent assimilation of the MERIS FAPAR prod-
uct at multiple sites (Sect. 4.1) and the consistent global-scale assimilation of MERIS
FAPAR and atmospheric CO2 (Sect. 3.2), and Sect. 5 presents our simulations for
mission design. Finally, we draw conclusions and give perspectives in Sect. 6.25
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2 Methods

2.1 CCDAS

The Carbon Cycle Data Assimilation System (CCDAS) is a variational assimilation sys-
tem built around the Biosphere Energy Transfer HYdrology scheme. The system is
described in full detail elsewhere (Scholze, 2003; Kaminski et al., 2003; Rayner et al.,5

2005; Scholze et al., 2007; Knorr et al., 2010).
In brief, BETHY, simulates carbon uptake and plant and soil respiration embedded

within a full energy and water balance and phenology scheme (Knorr, 2000). The
model is fully prognostic and is thus able to predict the future evolution of the ter-
restrial carbon cycle under a prescribed climate scenario. The process formulation10

distinguishes 13 plant functional types (PFTs) based on the classification by Wilson
and Henderson-Sellers (1985). Each model grid cell can be populated by up to three
different PFTs. Driving data (precipitation, minimum and maximum temperatures, and
incoming solar radiation) were derived from a combination of available monthly grid-
ded and daily station data (R. Schnur, personal communication, 2008) by a method by15

Nijssen et al. (2001).
As mentioned above, assimilation of atmospheric CO2 requires, as an observation

operator, an atmospheric transport model (TM2, Heimann, 1995) coupled to BETHY.
CO2 fluxes from processes not represented in BETHY, i.e. fossil fuel emissions, ex-
change fluxes with the ocean and emissions from land use change, were prescribed20

as in Scholze et al. (2007). The observation operator for FAPAR calculates the verti-
cal integral of the absorbed photosynthetically active radiation (PAR) by healthy green
leaves between the canopy top and the canopy bottom, divided by the incoming radi-
ation. FAPAR thus equals the net PAR flux entering the canopy at the top (incoming
minus outgoing) minus the net PAR flux leaving the canopy at the bottom (outgoing25

minus incoming, i.e. reflected from soil background), divided by the incoming PAR flux
at the top of the canopy. The PAR flux is calculated by a two-flux scheme (Sellers,
1985), which takes into account soil reflectance, solar angle and incoming amount of
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diffuse radiation.
Equating satellite and model FAPAR means that given the same illumination condi-

tions, the same number of photons enter the photosynthetic mechanism of the vege-
tation, even if some of the assumptions differ between BETHY and the model used to
derive FAPAR (Gobron et al., 2000). It also means that FAPAR in the model is defined5

based on the assumption that the canopy consists only of photosynthesising plant parts
(Pinty et al., 2009), which is consistent with the definition used for deriving the MERIS
FAPAR product.

Assimilation of FAPAR required the extension of CCDAS by components included in
BETHY for simulating hydrology and leaf phenology. In the previous CCDAS setup,10

these components were used in a preliminary assimilation step that provided input to
CCDAS. This extension was necessary to allow consistent assimilation of FAPAR and
atmospheric CO2.

CCDAS implements a probabilistic inversion concept (see Tarantola, 1987) that de-
scribes the state of information on a specific physical quantity by a probability den-15

sity function (PDF). The prior information on the process parameters is quantified by
a PDF in parameter space and the observational information by a PDF in the space
of observations. Their respective means are denoted by x0 and d and their respec-
tive covariance matrices by C0 and Cd , where Cd accounts for uncertainties in the
observations as well as uncertainties from errors in simulating their counterpart (model20

error). If the prior and observational PDFs were Gaussian and the model linear, the
posterior PDF would be Gaussian, too, and completely characterised by its mean xpost
and covariance matrix Cpost. Further xpost would be the minimum of the following cost
function:

J(x)=
1
2

[(M(x)−d )TC−1
d (M(x)−d )+ (x−x0)TC−1

0 (x−x0)] , (1)25

where M(x) denotes the model operated as a mapping of the parameters onto simu-
lated counterparts of the observations. Further Cpost would be given by:

C−1
post =J′′(xpost) , (2)

10768

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/10761/2011/bgd-8-10761-2011-print.pdf
http://www.biogeosciences-discuss.net/8/10761/2011/bgd-8-10761-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 10761–10795, 2011

Assimilation of
MERIS FAPAR into
a terrestrial model

T. Kaminski et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where J′′(xpost) denotes the Hessian matrix of J , i.e. the matrix composed of its second

partial derivatives ∂2J
∂xi∂xj

.

Our model is non-linear and we approximate the posterior PDF by a Gaussian with
xpost as the minimum of Eq. (1) and Cpost from Eq. (2).

The inverse step is followed by a second step, the estimation of a diagnostic or5

prognostic target quantity y . The corresponding PDF is approximated by a Gaussian
with mean

y =N(xpost) (3)

and covariance

Cy =N′(xpost)CpostN
′(xpost)

T +Cy,mod , (4)10

where N(x) is the model operated as a mapping of the parameters onto the target quan-
tity. In other words, the model is expressed as a function of the vector of its parameters
x and returns a vector of quantities of interest, for example the uptake of carbon inte-
grated over a region and time interval. The linearisation (derivative) of N around xpost

is denoted by N′(xpost) and also called Jacobian matrix. Cy,mod denotes the uncertainty15

in the simulation of y resulting from errors in N. If the model was perfect (a hypothetical
case), Cy,mod would be zero, and only the first term would contribute to Cy . Conversely,
if all parameters were known to perfect accuracy (an equally hypothetical case), Cpost
would be zero and only the second term would contribute to Cy .

The minimisation of Eq. (1) and the propagation of uncertainties are implemented in20

a normalised parameter space with Gaussian priors. The normalisation is such that
parameter values are specified in multiples of their standard deviation, i.e. C0 is the
identity matrix (for details see Kaminski et al., 1999; Rayner et al., 2005). In addition,
for some bounded parameters a suitable variable transformation is included.

Technically, the minimisation of J is performed by a powerful iterative gradient algo-25

rithm, where, in each iteration, the gradient of J is used to define a new the search
direction. The gradient (plus J itself) are efficiently evaluated by a single run of the
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so-called adjoint code of J . The associated computational cost is independent of the
number of parameters and is in the current case comparable to 3–4 evaluations of J .
Likewise J′′(xpost) is evaluated by a single run of the derivative code of the adjoint code
(Hessian code). Here the associated computational cost grows roughly linearly with the
number of parameters (more precisely an affine function of the number of parameters).5

In the present case of 71 parameters the cost is comparable to about 60 evaluations
of J . These numbers are only a rough indication of performance as they vary with
platform, compiler, and even compiler flags. For performance numbers of the previous
CCDAS implementation we refer to Kaminski et al. (2003). All CCDAS derivative code
(adjoint, Hessian, Jacobian) is generated from the model code by the automatic dif-10

ferentiation tool Transformation of Algorithms in Fortran (TAF) (Giering and Kaminski,
1998). The Hessian code is generated by reapplying TAF to the adjoint code.

2.2 Mission benefit analysis

Our mission benefit analysis is based on the Quantitative Network Design (QND)
methodology presented by Kaminski and Rayner (2008). The approach exploits the15

fact that the uncertainty propagation from the observations to the parameters (via Eq. 2)
and then further to the target quantities (Eq. 4) can be performed independently from
the parameter estimation. The requirements for the evaluation of J′′ in Eq. (2) are the
data uncertainty (Cd ), the capability to simulate (expressed by M(x)) a counterpart of
the data stream via an appropriate observational operator, and a reasonable parame-20

ter vector. We can then evaluate the benefit of hypothetical or planned observational
data streams on the uncertainty reduction in relevant target quantities.

A QND system for mission benefit analysis was built around the extended CCDAS
framework for global scale assimilation described in Sect. 4.2. The tool can combine
prior information, flask samples of atmospheric carbon dioxide, and global coverage25

FAPAR within a single cost function (see Fig. 1). For the tool, the sensitivity of each data
item (each observation of FAPAR and atmospheric CO2) with respect to the process
parameters was precomputed and stored for a run of 14 yr. These sensitivities are the
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derivatives of M(x) (see Eq. 1), which are evaluated for the optimal parameter vector
x determined by the global scale assimilation run (see Sect. 4.2). To approximate the
posterior parameter uncertainty (Eq. 2) resulting from a user-defined data uncertainty
(Cd of Eq. 1), requires just matrix multiplications and a matrix inversion. In this inversion
step, the user can choose the length of the mission. This will determine how many of5

the 14 yr of data for which sensitivities were precomputed are actually used in the
assessment. Further, the user can choose to include or exclude the information from
the atmospheric CO2 observations.

Evaluation of Eq. (4) yields posterior uncertainties in a set of target quantities. The
target quantities we offer are annual mean values of net ecosystem production (NEP),10

net primary production (NPP), evapotranspiration, and plant available soil moisture av-
eraged over five years. Each of these quantities is available for six regions of the globe.
The Jacobian matrix N′ (of Eq. 4) representing the derivative of the target quantities
with respect to the model parameters was also precomputed and stored. For this step,
just as for the previous step, the tool only requires matrix multiplications.15

In summary, all steps to assess a mission configuration from the precomputed CC-
DAS output only involve matrix algebra. On a standard notebook these operations take
only a few seconds, which enables the tool to run in interactive mode. The options for
the configuration comprise the uncertainty in the FAPAR product, the length of the mis-
sion, and whether atmospheric CO2 observations are included or excluded. A similar20

tool (including a web interface) was set up for the in situ network of the carbon cycle
(see http://imecc.ccdas.org).

3 Observational data

3.1 MERIS FAPAR

We use FAPAR products derived from the Medium Resolution Imaging Spectrometer25

(MERIS) of the European Space Agency (ESA). At site scale we use the Level 2 FAPAR
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land product for the period June 2002 to September 2003. We use daily data at the
operational 1.2 km resolution, from which scenes consisting of 15 by 15 pixels have
been processed. For each site, we selected a rectangular subset of the respective
scene in such a way that it constitutes visually homogeneous land cover as identified
through Google Earth images. For each site, the number of pixels within the respective5

rectangular study areas is indicated in Table 1, along with further site-properties. Note
that data for the last site were used for validation purposes and therefore withheld from
the assimilation procedure. As mentioned in Sect. 2 BETHY allows up to three PFTs
(out of a total of 13) per site. Each of the selected sites contains two to three PFTs
with a corresponding surface cover fraction, where the remainder corresponds to bare10

ground. In total, the above sites cover seven PFTs. For further details we refer to Knorr
et al. (2010).

At global scale we use the Level 3 product for the period June 2002 to September
2003. The data were processed at ESA’s Grid Processing on Demand (GPoD, http:
//gpod.eo.esa.int) facility on a global 0.5 degree grid in the form of monthly composites15

and then interpolated to the model’s coarse resolution 10 by 8 degree grid.
For both scales, global and site-scale, we use an uncorrelated data uncertainty of

0.1 for the definition of Cd in Eq. (1) irrespective of how many pixels where used in the
spatial averaging of the FAPAR pixels (Gobron et al., 2008).

3.2 Atmospheric CO220

We use monthly mean values of atmospheric CO2 concentrations provided by the
GLOBALVIEW flask sampling network (GLOBALVIEW-CO2, 2008). We use data for
the period from 1999 to 2004 at two sites, Mauna Loa (MLO) and South Pole (SPO).
We use the time series of residual standard deviations (RSD) from the compilation to
assign a data uncertainty to the observations. We only use data from years when suf-25

ficient measurements are made to assign values without the gap-filling procedures in
the GLOBALVIEW compilation.
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4 Assimilation experiments

4.1 Site-scale assimilation

The consistent assimilation at site scale uses the MERIS FAPAR product at all sites
(except the validation site) as simultaneous constraints. We give a summary of the
main findings and refer for details to Knorr et al. (2010). The first point to mention is5

that only 38 of the global model’s 72 parameters affect FAPAR at our eight study sites.
This is due to two reasons: first, as mentioned, the sites cover only a subset of BETHY’s
PFTs. Second, FAPAR simulation is insensitive to some of BETHY’s processes (e.g.
the carbon balance in the soil), and, hence, to their parameters.

Table 2 summarises the assimilation results. At all sites, including the validation site10

where FAPAR data were not assimilated, the posterior fit to the observations (RMS
post) is improved compared to the prior (RMS prior). The improvement is small for
Loobos, Sodankylä and Zotino, where the prior agreement with the data is already
good. Interestingly, of the two grass sites included, the posterior fit at the validation
site (Hainich grass) is better than at the site included in the assimilation (Aardhuis).15

This validation confirms the quality of both the assimilation approach and the process
formulations in the model.

In order to assess to what extent the MERIS FAPAR data helped to constrain sim-
ulations of vegetation-atmosphere carbon fluxes, we select as target quantities (i.e.
as y in Eq. 4) the vector composed of annual mean net primary production (NPP) at20

each site, including the validation site. For these prognostic simulations we deliber-
ately choose a period beyond the assimilation interval, namely from January 2001 to
December 2003, which is almost twice as long as the assimilation interval. We did
so in order to demonstrate a major strength of the process-based variational data as-
similation technique: as previously shown by Scholze et al. (2007) it can propagate25

information to periods before and after the assimilation period.
The computed prior and posterior means and uncertainties of annual NPP are shown

in Table 2. Relative change in NPP is shown as a percentage of the prior uncertainty,
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which is computed at the optimal parameter point. The lowest NPP is found at the far
northern sites, a rather low value also for Loobos and for the semi-arid Maun site, inter-
mediate values for the temperate sites at Hainich and Aardhuis, and high values for the
evergreen tropical site at Manaus. Prior uncertainties are considerable for Sodankylä,
and moderate for the remaining sites.5

The only site where there is a large relative change (over 100 % of prior uncertainty)
in the simulated NPP is Manaus. We suspect that with either larger uncertainties for
FAPAR or a more conservative screening algorithm to account for remaining effects
by clouds or cloud shadows, the posterior NPP would be closer to the prior value.
This would also mean much less uncertainty reduction (also quantified as a percent-10

age of prior uncertainty) for Manaus, which here is shown as 34 %. The other sites
where we find a considerable uncertainty reduction (by more than 10 %) are Aardhuis,
a grass site, Hainich forest, and our validation site, Hainich grass. This demonstrates
the capability of the assimilation approach to transfer observational information to an
unobserved site.15

4.2 Global-scale assimilation

The consistent assimilation at global scale uses both data streams, the MERIS FAPAR
product and the atmospheric CO2 observations, as simultaneous constraints. Figure 1
displays the flow of information in the forward sense, i.e. from process parameters
to the cost (or misfit) function. As mentioned we use the computationally fast, 8 by20

10 degree resolution with about 170 land grid cells. Our assimilation interval is the five
year period from 1999 to 2004.

Several approaches to address the problem of bias in the FAPAR data product have
been investigated. For the global-scale assimilation, we resolved to the following solu-
tion: we computed the average FAPAR over three years for each model grid cell and25

compared this value to the average observed value. We then multiplied the cover frac-
tion of each PFT within the grid cell concerned by the ratio averaged observed FAPAR
divided by average model FAPAR. If this ratio was above 1, which only occurred in very
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few grid cells, no correction was applied.
In order to investigate the occurrence of multiple minima, we started five minimisa-

tions of the cost function from different starting points including the prior parameter
value. Out of these five minimisations, four find the same minimum. The minimisation
starting from the prior parameter value takes 153 iterations to reduce the cost function5

J from from 4574 to 2829 and the norm of its gradient by more than eight orders of
magnitude from 4×103 to 2×10−5. At the minimum the respective contributions (see
Eq. 1) of the prior term, the CO2 observations, and the MERIS observations to the total
cost function J are 124, 61, and 2644.

At both stations, MLO (left hand panel of Fig. 2) and SPO (left hand panel of Fig. 2)10

the fit to atmospheric CO2 has improved considerably. Figure 3 displays the change in
simulated FAPAR through the assimilation (posterior – prior) for four months of 2003.
FAPAR is reduced over the Amazon forest, increased over Australia, and exhibits an
increased seasonal cycle over East Asia and the North American high latitudes.

For validation of the calibrated model, i.e. the model with the posterior parameter15

values, we need independent information. This information is provided by flask sam-
ples of the atmospheric CO2 concentration at extra sites withheld from our assimilation
procedure. Figure 4 displays observed concentration (black) together with concentra-
tions simulated with prior (blue) and posterior (red) parameter values for Point Barrow,
a marine site in Alaska (left hand panel), and Izaña, a mountain site on the Canary20

Islands (right hand panel). We note that the posterior provides a considerably better
fit than the prior, i.e. the validation confirms that the calibrated model performs better
than the uncalibrated model.

The uncertainty reduction for the parameters is displayed in Fig. 5. Parameters 1
through 71 are control parameters of BETHY, while Parameter 72 is the initial atmo-25

spheric CO2 concentration used by the transport model. Of the BETHY parameters,
numbers 57 to 71 relate to the phenology model, which controls leaf area and thus
has an immediate impact on simulated FAPAR. While the site-scale assimilation con-
strains the parameters outside the phenology model only marginally, in the global scale
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assimilation of FAPAR or atmospheric CO2 ten of these parameters show an uncer-
tainty reduction of about 20 % or more.

Of more general interest are uncertainty reductions in target quantities such as pre-
dicted fluxes, because they are less specific to the model used than the process pa-
rameters. Here, we select net ecosystem production and net primary production (NEP5

and NPP) integrated over the period from 1999 to 2003 and six regions (Fig. 6). For all
regions and both target quantities, we find a considerable degree of uncertainty reduc-
tion, where fluxes in Australia are somewhat less constrained by the data than it is the
case for the other continents. It is interesting to note that, even though the observed
atmospheric CO2 is more closely related to the net atmosphere-biosphere flux (NEP)10

than to only one component of it (NPP), the impact of the data is to constrain NPP
more than NEP compared to the prior case.

5 Mission benefit analysis

As a first example we analyse the individual information content in our two data streams
(Fig. 7). We assume a long mission of 14 yr. For simulation of regional NEP (left hand15

panel) we note that the FAPAR constraint is marginal, and that most of the uncertainty
reduction can be attributed to the atmospheric CO2 observations. The same holds for
NPP (right hand panel).

Interestingly the picture is reversed for hydrological target quantities, i.e. evapotran-
spiration (left hand panel) and plant available soil moisture (right hand panel). It ap-20

pears that FAPAR is a powerful constraint for those parameters with a strong effect on
hydrological fluxes while atmospheric CO2 is powerful in constraining parameters with
a strong effect on the carbon fluxes for the case of long-term averages.

The weak constraint of FAPAR on carbon fluxes is, mathematically, reflected by
a sub-space within the overall parameter space that is at the same time crucial to25

simulate long-term carbon fluxes and either not at all or only weakly constrained by the
MERIS FAPAR data (Fig. 7). In the first case the model simulated FAPAR data would
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have zero sensitivity to this part of the parameter space, while in the second case the
sensitivity would be only small. There is an important difference between both cases:
unlike the zero sensitivity, the weak sensitivity can be compensated for by a reduced
data uncertainty.

Such a reduced data uncertainty would correspond to a new hypothetical mission5

concept. We investigate two hypothetical sensor concepts: the first sensor has higher
spatial resolution than the MERIS sensor and the second is a hypothetical sensor with
ideal resolution. We reproduce the characteristics of the sensor with higher resolution
by reducing the data uncertainty for FAPAR from 0.1 (corresponding to our data uncer-
tainty for the MERIS sensor, see Sect. 3.1) to 0.05. For the sensor with ideal resolution,10

we use a data uncertainty of 0.001. We stress that this low value is selected to explore
an extreme case, not a case we can hope to achieve in reality. Even if future instru-
ments might allow considerably higher precision, the theoretical limitations imposed by
radiative transfer through heterogeneous canopy would prevent data uncertainties as
low as this.15

Figure 9 shows the reduction in parameter uncertainty for the MERIS sensor and
both hypothetical mission concepts. We see that while for some parameters the un-
certainty reduction improves with sensor resolution, a large fraction of the parameters
remains unobserved. Figure 10 shows the corresponding uncertainty reductions in an-
nual NEP and NEP averaged over the mission period of 14 yr (note change of scale20

on y-axis). Indeed the uncertainty reduction improves only marginally with sensor res-
olution, i.e. the unobserved parameters are important for constraining these carbon
fluxes.

We further studied the effect of mission length. Figure 11 indicates that for the hy-
drological target quantities the gain in uncertainty reduction through a mission length25

extension from 3 to 14 yr is hardly larger than 10 %.
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6 Conclusions and perspectives

The study demonstrates the potential of consistent assimilation of multiple data
streams, i.e. as a simultaneous constraint on the process parameters of a terrestrial
biosphere model. This is the first study to combine in a mathematically rigorous frame-
work observed FAPAR and atmospheric CO2.5

The most novel result of this study is that the MERIS-derived FAPAR product can
indeed be highly valuable and beneficial for local to global scale ecosystem, hydrol-
ogy and carbon cycle modelling when applied within a data assimilation framework.
This includes prognostic studies, where data from climate simulations are used and
predictions are made beyond the period of observations. Validation of the calibrated10

model resulting from the assimilation against independent observations shows a clear
performance improvement.

The systematic application of the mathematically rigorous uncertainty propagation
capability implemented by CCDAS allows to support the design of space missions with
maximised benefit expressed in terms of uncertainties of carbon or water fluxes. The15

study has developed an interactive mission benefit analysis (MBA) tool that allows in-
stantaneous evaluation of a range of potential mission designs. Applying the MBA tool,
the study showed that the benefit of FAPAR data is most pronounced for hydrologi-
cal quantities, and moderate for quantities related to carbon fluxes from ecosystems.
In semi-arid regions, where vegetation is strongly water limited, the constraint deliv-20

ered by FAPAR for hydrological quantities was especially large, as documented by the
results for Africa and Australia. Sensor resolution is less critical for successful data
assimilation, and with even relatively short time series of only a few years, significant
uncertainty reduction can be achieved.

We also note that the approach used here to constrain process parameters of25

a global model can be considered an automated procedure for scientific investigation
of the processes the parameters represent. We further note that the approach of multi-
data stream assimilation presented here could easily be extended to include more than
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one data stream from remotely sensed products. Obvious candidates are land surface
temperature from the Advanced Along-Track Scanning Radiometer (AATSR), surface
soil moisture from the Soil Moisture and Ocean Salinity (SMOS) mission, and possibly
column-integrated CO2 observations. This would allow a rigorous assessment of the
consistency of multiple data streams (as done here for FAPAR and atmospheric CO2).5

The complementary nature of existing and potential future data streams could be
explored by an extension of the MBA tool. A prominent candidate observation would
be a column-integrated CO2 product. The MBA tool could be extended such that ob-
servational data uncertainty and sampling strategy for the mission are assessed in
terms of the uncertainty reduction in the tool’s target quantities, i.e. terrestrial carbon10

fluxes but also hydrological quantities. The tool’s concept is, however, general and
thus also applicable to other sensor types, such as RADAR (e.g. BIOMASS, SMOS, or
the Advanced Orbiting Satellite, ALOS) or LIDAR (e.g. the Geoscience Laser Altimeter
System, GLAS, on ICEsat), individually or combined.

While the study emphasised improvement of process parameters, the highly flexi-15

ble structure of the variational approach allows, as a slight modification of the existing
CCDAS framework, to devise a soil moisture monitoring system that adjusts state vari-
ables through time such as soil moisture instead of static parameters. If input data for
the ecosystem model can be derived from near-real time sources such as weather fore-
casting analyses or satellite data, this could result in an effective operational monitoring20

system for soil moisture.
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Table 1. List of sites for assimilation taken from Knorr et al. (2010), showing central coordinates,
elevation in m, N-S and E-W extent in km of the rectangular satellite scenes, and n the number
of daily data points after spatial averaging. The site in the last row has been included for
validation only.

Site Description Country Latitude Longitude Elevation N-S E-W n

Sodankylä Boreal evergreen forest Finland 67.3619◦ N 26.6378◦ E 180 1.2 1.2 80
Zotino Boreal mixed forest Russia 60.8008◦ N 89.2657◦ E 116 1.2 1.2 101
Aardhuis C3 grassland Netherlands 52.2381◦ N 5.8672◦ E 7 1.2 1.2 91
Loobos Temperate pine forest Netherlands 52.1679◦ N 5.7440◦ E 25 1.2 1.2 103
Hainich forest Temperate deciduous forest Germany 51.0793◦ N 10.4520◦ E 430 1.2 1.2 106
Manaus Tropical rainforest Brazil 2.5892◦ S 60.1311◦ W 80 18.0 14.4 146
Maun Tropical savanna Botswana 19.9155◦ S 23.5605◦ E 940 3.6 3.6 154

Hainich grass C3 grassland Germany 51.0199◦ N 10.4348◦ E 302 2.4 1.2 119
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Table 2. Mean annual prior and posterior NPP for the period 2000–2003 (inclusive) with change
relative to prior uncertainty, prior and posterior RMS fits to observations, prior and posterior
uncertainties and relative uncertainty reduction. Units are gC m−2 yr−1 or percentage when
stated.

Site prior NPP post. NPP rel. change RMS prior RMS post prior unc. post. unc. unc. reduction
(%) (%)

Sodankylä 137 151 68 0.085 0.080 112 98 5
Zotino 201 216 54 0.081 0.072 28 28 0
Aardhuis 853 842 −7 0.336 0.267 164 101 38
Loobos 449 424 −40 0.088 0.085 62 59 5
Hainich forest 689 657 −29 0.198 0.147 112 98 13
Manaus 1465 964 −196 0.250 0.130 255 168 34
Maun 350 346 −10 0.105 0.052 50 46 8

Hainich grass 619 786 97 0.280 0.165 172 89 48
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Fig. 1. Flow of information for evaluation of the cost function. J is the sum of the cost function
contributions from the individual information items. Ovals denote data and rectangular boxes
denote processing (i.e. code modules).
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Fig. 2. Atmospheric CO2 at Mauna Loa (left hand panel) and South Pole (right hand panel) in
ppm: Observations (black), prior (blue), and posterior (red).

10786

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/10761/2011/bgd-8-10761-2011-print.pdf
http://www.biogeosciences-discuss.net/8/10761/2011/bgd-8-10761-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 10761–10795, 2011

Assimilation of
MERIS FAPAR into
a terrestrial model

T. Kaminski et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 3. Posterior-prior FAPAR for 4 months in 2003: January (upper left panel), April (upper
right panel), July (lower left panel), and October (lower right panel).
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Fig. 4. Atmospheric CO2 at Point Barrow (left hand panel) and Izaña (right hand panel) in ppm:
observations (black), prior (blue), and posterior (red).
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Fig. 5. Uncertainty reduction in process parameters.
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Fig. 6. Uncertainty reduction in simulated NEP (left hand panel) and NPP (right hand panel)
over six regions.
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Fig. 7. Reduction in uncertainty in NEP (left hand panel) and NPP (right hand panel) over
six regions from MERIS sensor for a 14-yr mission. For assimilation of CO2 (red) and FAPAR
(brown) separately and jointly (green).
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Fig. 8. Reduction in uncertainty in evapotranspiration (left hand panel) and plant available
soil moisture (right hand panel) over six regions from MERIS sensor for a 14-yr mission. For
assimilation of CO2 (red) and FAPAR (brown) separately and jointly (green).
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Fig. 9. Reduction in parameter uncertainty for a 14-yr mission for FAPAR data from the MERIS sensor (left hand
panel) a hypothetical higher resolution sensor (middle panel) and from a hypothetical ideal resolution sensor (right
hand panel).

10793

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/10761/2011/bgd-8-10761-2011-print.pdf
http://www.biogeosciences-discuss.net/8/10761/2011/bgd-8-10761-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 10761–10795, 2011

Assimilation of
MERIS FAPAR into
a terrestrial model

T. Kaminski et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 10. Reduction in uncertainty in NEP (left hand panel) and NPP (right hand panel) over six
regions from three sensor concepts: the MERIS sensor (green), the higher resolution sensor
(brown), and the ideal resolution sensor (red).
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Fig. 11. Reduction in uncertainty in evapotranspiration (left hand panel) and plant available soil
moisture (right hand panel) over six regions from MERIS sensor for a mission length of 3 yr
(green), 5 yr (brown) and 14 yr (red).
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