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Abstract

The production and consumption of the greenhouse gases, carbon dioxide (CO2), ni-
trous oxide (N2O), and methane (CH4), are controlled by redox reactions in soils. To-
gether with oxygen (O2), seasonal and spatial dynamics of these atmospheric gases
can serve as robust indicators of soil redox status, respiration rates, and nitrogen cy-5

cling. We examined landscape patterns of soil oxygen and greenhouse gas dynamics
in Watershed 3 at the Hubbard Brook Experimental Forest, NH, USA. We analyzed
depth profiles of soil O2, CO2, N2O, and CH4 approximately bimonthly for one year.
Soil gas depth profiles were obtained from several different soil types encompassing a
range of topographic positions, drainage classes, and organic matter content. Soil O210

was a good predictor of greenhouse gas concentrations. Unsaturated soils always had
O2 concentrations >18 %, while saturated soils had O2 ranging from 0 to 18 %. For
unsaturated soils, changes in CO2 were nearly stoichiometric with O2. High concentra-
tions of CH4 (>10 µL L−1) were typically associated with saturated soils; CH4 was typ-
ically below atmospheric concentrations (<1.8 µL L−1) in unsaturated soils. High con-15

centrations of N2O (>5000 nL L−1) were found only in well-aerated soils after summer
rainfall events and in marginally-anoxic soils; N2O was consumed (<200 nL L−1) under
anoxic conditions. The production and consumption of greenhouse gases were linked
to functionally distinct biogeochemical zones of variable redox conditions (hotspots),
which exhibit dynamic temporal patterns of redox fluctuations (hot moments). These20

soil redox hot phenomena were temporally driven by climate and spatially organized by
soil type (reflective of topographic position) further constrained by subsurface hydrol-
ogy.
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1 Introduction

There remains considerable uncertainty in the magnitude of atmospheric trace gas
consumption and production from forest soils. This uncertainty is vexing because
controlled studies have shown that much of the variability in trace gas cycling can be
explained by soil temperature, moisture, and substrate availability-quality (Skopp et al.5

1990; Kirschbaum, 2006). However, expression of these controls in the context of the
inherent complexity of forest ecosystem terrain amidst multiple environmental factors
produces great variability in trace gas production and consumption and has inhibited
our ability to quantify and predict patterns of trace gases in the field.

Soil moisture is of particular importance in the regulation of trace gas dynamics,10

controlling oxygen (O2) diffusion at high soil moisture and substrate diffusion at low
soil moisture. Topography and climate can organize dynamic spatial gradients of soil
moisture, oxygen availability and redox even across upland ecosystems (Magnusson,
1992; Silver et al., 1999). The resulting redox gradients foster different biogeochemical
processes (e.g., nitrification, denitrification, methanogenesis) involved in the production15

and consumption of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4)
(Davidson and Swank 1986; Teh et al., 2005).

Soil O2 and greenhouse gases (CO2, N2O, CH4) have the capacity to function as
robust indicators of soil redox and are useful for identifying spatial and temporal tran-
sitions in biogeochemical processes across a landscape (Yu et al., 2006). Under op-20

timal environmental conditions, different combinations of soil temperature, moisture,
and substrates materialize into biogeochemical hot spots or hot moments (McClain et
al., 2003). Understanding the timing and location of such hot phenomena is of funda-
mental importance towards scaling small biogeochemistry studies up to the landscape
level.25

Soil O2 availability is equally critical to the biogeochemistry of upland soils as flooded
soils. Studies of soil O2 availability in upland ecosystems have focused on tropical
forests (Silver et al., 1999; Liptzin et al., 2011), but are noticeably lacking for northern

10861

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/10859/2011/bgd-8-10859-2011-print.pdf
http://www.biogeosciences-discuss.net/8/10859/2011/bgd-8-10859-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 10859–10893, 2011

Soil gas profiles in a
forest landscape

S. F. Werner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

hardwood forests. Studies that measure multiple trace gases along soil depth profiles
in northern hardwood forests are also very rare despite volumes of published surface
flux measurements. This is unfortunate as vertical profiling sampling examines trace
gas dynamics throughout the entirety of the soil profile, not just cumulative surface
flux. Deeper soil horizons are frequently ignored but can play an essential role in the5

consumption and production of trace gases and overall biogeochemistry in northern
hardwood forest soils (Yavitt et al., 1995; Davidson et al., 2006; Fierer et al., 2005;
Kellman and Kavanaugh, 2008).

The goals of this study were to (1) capture forest landscape patterns in soil oxygen
and trace gas concentrations and (2) examine their relationships to soil moisture and10

temperature as influenced by climate. We sampled a variety of soil profiles across dif-
ferent landscape positions to assess the challenges associated with prescribing bio-
geochemical processes based on superficial landscape features. We suspect that
subsurface hydrology may limit the use of landscape feature analysis for identifying
hot spots of biogeochemical activity, especially in mountainous terrain. We also ex-15

plored the utility of concomitant measurements of O2, CH4, and N2O to examine the
mechanism of N2O production from nitrification versus nitrification. Our objective in this
regard was to ascertain which soils expressed the redox conditions (in terms of O2 and
CH4 concentrations) most conducive for N2O production or possible consumption.

2 Methods20

2.1 Site description and experimental design

Field studies were conducted in Watershed 3 (W3), the hydrologic reference watershed
at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA (43◦56′ N,
71◦45′ W). Watershed 3 (W3) is a 42 ha south facing catchment with moderate slope
(12.1◦), ranging from 527 to 732 m in elevation (Fig. 1).25

The climate at the HBEF is humid-continental with an average annual precipitation
of 1400 mm, of which about 30 % falls as snow (Federer et al., 1990). A continual
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snow pack develops almost every year to an average depth of ∼1.5 m. Precipitation is
evenly distributed throughout the year; annual runoff in the experimental watersheds
averages ∼870 mm. The mean annual air temperature at the HBEF is 5.6 ◦C, the mean
air temperature in July is 19 ◦C and in January is −9 ◦C (Likens and Bormann 1995).

At the HBEF, vegetation is characteristic of a developing, northern hardwood for-5

est ecosystem. Due to the intermediate elevation and aspect in W3, the forest type
is predominately deciduous and lacks a spruce-fir-birch component at high elevation
(Johnson et al., 2000). Sugar maple (Acer saccharum Marsh.), yellow birch (Betula
alleghaniensis Britt.), and American beech (Fagus grandifolia Ehrh.) are the major tree
species in W3.10

Soils are underlain by the Rangely formation, a pelitic schist of sillimanite grade, and
a mantle of till derived from local bedrock that grades in depth from zero (scattered
bedrock outcrops) along the ridge to several meters downslope (Likens and Davis,
1975). Surface topography is generally rough (pit and mound, mostly from wind-thrown
trees) and mostly well drained; however, there are some impermeable pan layers (i.e.,15

Cd horizons) at depths of about 0.6 m that restrict vertical water movement and seeps
(Likens and Bormann, 1995).

Topography and hydrology play a large role in the formation of several soil types
within W3. We focused on three contrasting soil types in order to compare dynam-
ics: typical Spodosols (TYPS), “bimodal” Spodosols (BIMS), and umbric Inceptisols20

(UICP). The majority of the W3 area was dominated by Spodosols, classified as Halpo-
humods and Haplorthods which exhibit considerable spatial heterogeneity in physical
and chemical properties. Typical Spodosols (TYPS) are characterized by moderate
podzolization at the pedon scale, well drained, relatively dry, and occupied higher hill-
slope positions (i.e., crest, shoulders) (Fig. 2a). Bimodal Spodosols (BIMS) are a vari-25

ation of TYPS with a second Bh or Bhs horizon at the B/C interface resulting from
illuviation in two directions: (i) vertically in the upper, typical portion of the profile;
and (ii) laterally by development of a persistent water table. Bimodal Spodosols were
found at the transition between TYPS and UICP soil types, were generally well drained
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but exhibited higher moisture contents than TYPS. Umbric Inceptisols are classified
as Aquic Humic Dystrudepts characterized by a thin O, a thick A that grades into a Bh
over a Cd; umbric epipedons range from 28–82 cm thick. Umbric Inceptisol were mostly
poorly drained, frequently saturated, and occupied low lying, gently sloping landscape
positions (i.e., local depressions or pits, benches and toeslopes).5

2.2 Field Sampling

Soil gas samples were collected at nine soil stations and one seepage zone station for
a total of 10 stations.

Three hillslope transects (T1, T2, T3) each with three soil profiles (A, B, C) situated
along the length of the hillslope and one seepage zone were established as sampling10

stations (Fig. 1). Each hillslope transect sequence represented at least two of three
predominant soil types (TYPS, BIMS, and UICP) found in W3.

Two methods of soil gas sampling were utilized to determine the depth profiles of O2,
CO2, N2O, and CH4. Soil gas sampling in the seepage zone employed duplicate soil
diffusion chambers as described by Yu and DeLaune (2006) with further modification15

to allow profile sampling to a 60 cm depth (Method 1). For all other stations, a soil pit
was excavated down the Cd horizon and soil gas wells installed. Soil gas wells were
constructed of nylon tubing (155 cm length, 3 mm o.d., 2 mm i.d. yielding a 5 mL i.v.)
(Method 2). Gas well screens, composed of 4–6 lines of perforations 5 cm long, were
fabricated by a 22 g needle. A small brass screw fitted at one end prevented soil grains20

from clogging the gas well upon installation. Gas well installation was facilitated by a
4 mm diameter pilot-hole augured 25 cm into the upslope face of the soil pit. Soil pits
were back filled by horizon with gas sampling lines housed in 5 cm o.d. PVC pipe to
minimize environmental exposure and wildlife tampering. Red butyl sleeve stoppers,
serving as septa on both gas sampler varieties, were zip-tied to the exposed end of the25

tubing and replaced after each sampling campaign.
Gas profile sampling intervals varied due to variation in soil depth at each station.

Gas wells were installed in duplicate and staggered at depths of 5 cm, 10 cm, and
10864
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20 cm; ∼15 cm intervals thereafter. Soil profile depth and sampling intervals for all
stations are shown in Fig. 1. For Method 1, and Method 2 with unsaturated soil con-
ditions, fine needle polypropylene syringes were used to withdraw 15 mL of soil gas to
purge the sampling line and discarded. After the line was purged with fresh sample,
two 20 mL gas samples were collected for immediate O2 analysis with the remainder5

compressed into an evacuated 10 mL serum bottle fitted with molded PTFE/gray butyl
septa and analyzed within 48 h. Sample integrity over prolonged storage for CO2, N2O,
and CH4 remained unchanged >10 days. Sampling 60 mL of soil gas collected over
three 20 mL aliquots did reveal any significant differences in gas concentrations among
the individual aliquots.10

In the event of a saturated profile (defined as a continuous stream of extractable soil
water; i.e., a water table), soil water was withdrawn directly from the gas sampling line
via a 60 mL syringe after removing the septa. Each sample was immediately (<30 s)
equilibrated with an equal volume of air (30 mL) in the syringe by vigorously shaking
for 1 min; 20 mL of headspace gas was transferred into evacuated storage vials as per15

the “unsaturated” soil gas samples. Concentrations of dissolved CO2, N2O, and CH4
were corrected for sample volume, equilibration efficiency, and ambient concentrations
(monitored at each station). An additional 120 mL of soil water was withdrawn for
immediate field determinations of soil water temperature and dissolved O2.

Winter sampling presented additional challenges when collecting gas samples from20

the gas wells. Residual soil moisture within the sampling lines would periodically freeze
and plug the tubing contained in the PVC housing. To combat ice plugs, hot forced
air (1100W heat gun-power inverter-battery setup) was carefully circulated around the
outside of the tubing effectively melting the ice within the sampling lines while avoiding
damage to the nylon tubing.25

Soil gas samples at the nine soil type-hillslope stations collected for one year (2009–
2010) every two weeks in the summer (22 June–22 September), fall (23 September–
21 December), and spring (21 March–21 June); except during winter months (22
December–20 March) which were sampled monthly. Gas samples in the seepage zone
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were collected every two months (Yu and DeLaune, 2006). Ambient air (∼80 mL) was
used to re-induce the headspace in the diffusion chambers after sample collection; it
was assumed the chambers were equilibrated after two undisturbed months.

2.3 Analytical methods

Soil moisture and temperature sensors (Decagon Devices, Pullman, WA) were nested5

in six of the nine soil pits along the lower (T1) and upper (T3) hillslope transects (Fig. 1).
Soil temperature at all other locations was recorded via a long stem thermometer.
Temperature was measured at 20 cm below the forest litter layer or 10–16 cm below
the surface of the mineral soil.

Soil volumetric water content was measured by the charge time of a capacitor in the10

soil to calculate a dielectric constant. Soil moisture sensors (Decagon ECH2O) were
calibrated using manufacturer recommended generic mineral soil equations. Water
filled pore space (WFPS) was estimated from volumetric water content from sensors
that “leveled out” during the collection period. Leveled out sensor readings were as-
sumed equivalent to relative saturation = 1 and WFPS = 100 %. Volumetric water data15

were divided by the leveled out sensors readings of the same soil texture to account
for differences in porosity across soil horizons.

Soil oxygen was measured in the field using an Apogee MO-201 Oxygen Meter with
a flow-through head (Apogee Instruments Inc, Logan, UT). The flow-through head was
modified to accommodate push button syringe valves, one at each opening, to create20

an air tight sample introduction chamber. Ambient air and a 15 % O2 gas standard (Air
Liquide America Specialty Gases, Plumsteadville, PA) were used to calibrate the O2
meter. Before introducing a 20 mL soil gas sample or standard, the sample chamber
was flushed with 180 mL of ambient air and re-calibrated. Dissolved O2 was mea-
sured in the field using a Hanna HI9142 Dissolved Oxygen Meter (Hanna Instruments,25

Woonsocket, RI).
Soil CO2, N2O, and CH4 were measured by gas chromatography. Nitrous ox-

ide was detected with an electron capture detector (ECD), and CH4 and CO2
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(after methanization) with a flame ionization detector (FID) using an Agilent 6890N
GC with a G1888 headspace auto-sampler (Agilent Technologies, Santa Clara, CA).
Chromatographic conditions for N2O, CH4, and CO2 provide minimum detection limits
of <50 ppbv N2O (ECD), <0.2 ppmv CH4 (FID), and <10 ppmv CO2 (FID). With the ex-
ception of the seepage zone, all soil gas concentrations from each duplicate gas well5

were averaged to derive a single gas concentration per depth per station for use in data
analysis.

2.4 Statistical analyses

Differences in soil gas concentrations among soil types were examined using ANOVA
on ranks (Kruskal-Wallis) for non-normal distributions. Pair-wise comparison tests on10

nonparametric data were assessed by Dunn’s method. Multivariate comparison of log
transformed soil gas concentrations across all soil types were explored with factor anal-
ysis using a principal component parameter estimation method. Orthogonal (varimax)
rotation was applied in the calculation of factor loadings, values >0.50 were considered
significant. All statically analyses were preformed with SAS (version 9.2, SAS Institute,15

Cary, NC, USA).

3 Results

3.1 Soil properties and chemistry

Both TYPS and BIMS exhibited similar C and N concentrations, however BIMS ex-
hibited a deeper accumulation of C within the second Bh horizon (Table 1). Umbric20

Inceptisols exhibited the greatest accumulation of C and N of any soil type due to the
presence of an umbric epipedon. All soils were acidic, pH <4.3.
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3.2 Spatial patterns of soil O2 and trace gas concentrations

Over 1500 individual gas profile samples were collected from 30 June 2009 to
21 May 2010 capturing a wide variety of hydrologic and climatic conditions across
the different soil types. There was large variation in gas concentrations for indi-
vidual soil profiles within a particular soil type (Fig. 2). When soil gas concen-5

trations were grouped by soil type statistically significant (α < 0.05) differences in
soil gas concentrations were apparent. Soil O2 concentrations amongst soil types
ranked highest to lowest TPYS = BIMS>UICP>SEEP (Fig. 2b). Soil CO2 con-
centrations ranked UICP>TYPS = BIMS = SEEP (Fig. 2c). Soil N2O concentra-
tions ranked UICP>BIMS = SEEP>TYPS (Fig. 2d). Soil CH4 concentrations ranked10

SEEP>UICP>BIMS>TYPS (Fig. 2e).
Soil GHG concentrations also exhibited considerable variation throughout the soil

profile (Fig. 3). Carbon dioxide generally increased with depth across all soil types
(Fig. 3a), except after storm events when larges pulses of CO2 were observed at the
organic-mineral soil interface. The highest concentrations of N2O were observed in15

mineral horizons across all soil types. High concentrations of CH4 were coincident
with the rise and fall of the local water table and generally remained below ambient
concentrations above the water table across all soil types (Fig. 3c).

3.3 Soil water content and soil gas concentrations

Variation in soil gas concentrations among and within soil types showed a strong cor-20

relation with differences in soil moisture driven by fluctuations in the local water table
(Fig. 4). Incidences of significant O2 depletion (<10 %) and high CH4 concentrations
(>10 µL L−1) corresponded with saturated conditions (100 % WFPS), which were driven
by changes in the local water table (Fig. 4a and c). Concentrations of O2 and CH4
generally followed a strict inverse relationship with WFPS. Production of N2O seem-25

ingly exhibited a unimodal distribution in response to WFPS with local maxima oc-
curring between 50 % and 80 % WFPS (Fig. 4c). High concentrations of CH4 also
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appeared at >70 % WFPS. However, these distributions were only apparent for BIMS
and UICP soil types. Concentrations of N2O did not exceed 1500 nL L−1 when WFPS
was >80 %. There was no apparent relationship between CO2 and WFPS across soil
types (Fig. 4b).

Soil moisture among the four UICP soil profiles were highly variable with some pro-5

files very dry and others frequently saturated. Such differences in soil moisture corre-
sponded with differences in the concentrations of soil gases. Soil moisture in station
T1A was much lower compared to station T3A whose profile was frequently saturated
even to the surface. Correspondingly, station T1A exhibited high O2 coupled with low
CH4 concentrations compared to station T3A characterized by low O2 and high CH410

concentrations. Relative to these two extremes, intermediate concentrations of O2 and
CH4 were observed at stations T2A and T2B while exhibiting the highest CO2 and N2O
concentrations of the UICP soils sampled.

3.4 Temperature and soil gas concentrations

Both CO2 and N2O showed strong seasonal patterns (Fig. 5a–b). Soil concentrations15

of CO2 and N2O were highest in summer, sharply declined over the fall and winter
months, followed by an increase in spring. Soil CO2 increased exponentially with soil
temperature (20 cm depth) across all stations (Fig. 6a). The soil CO2-temperature re-
sponse was highly variable across the different soil types and within each soil type.
Soil O2 closely followed the CO2-temperature relationship (data not shown). Concen-20

trations of N2O>1000 nL L−1 occurred only above 8 ◦C (Fig. 6b). Large pulses of N2O
following spring snowmelt were not observed. There was no apparent relationship
between soil CH4 concentrations and soil temperature.

3.5 Soil O2 availability and greenhouse gas concentrations

Soil O2 was generally a good predictor of greenhouse gas concentrations. We25

examined relationships between O2 and trace gases separately for saturated and
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unsaturated conditions. Unsaturated soils always had soil O2 levels >18 %, while satu-
rated soils had O2 levels ranging from 0 to 18 %. For unsaturated soils, changes in CO2

were nearly stoichiometric with O2 (slope = 0.94±0.019, r2 = 0.82) (Fig. 7a). High
concentrations of CH4 were typically associated with saturated soils when O2 < 18%;
CH4 was generally below atmospheric concentrations when O2 > 18% (Fig. 7b). High5

concentrations of N2O (>2000 nL L−1) were found only in unsaturated soils when
O2 >18% (Fig. 7c).

The 18 % O2 threshold failed to predict soil greenhouse gas concentrations under all
environmental conditions; most notably during the dry down of a previously saturated
soil profile. Such a dry down occurred at station T3A during the month of September10

2009 (Fig. 8a–b). When the lower soil profile “dried out”, CH4 concentrations remained
above ambient (>3 µL L−1), N2O significantly increased (>1000 nL L−1), and O2 was
>18 %. Upon re-saturation in October, N2O sharply decreased to pre-September con-
centrations. Hence, under certain environmental conditions, high concentrations of
both CH4 and N2O co-occurred with O2 >18%.15

3.6 Factor analysis

A conceptual model of landscape-level N2O cycling was developed using factor analy-
sis. Principal components analysis (PCA) was used to identify the initial eigenvalues:
the first factor explained 51 % of the variance, the second factor 32 %, and a third 11 %.
Only Factors 1 and 2 had eigenvalues >1.0. Communalities for all soil gas variables20

were >0.88. Causal naming of Factor 1 was “Aerobic/Anaerobic Respiration” as only
O2 and CH4 were significant; O2 and CH4 had nearly equal but opposite scores (Ta-
ble 2). We interpreted large positive values as indicative of aerobic respiration (high O2,
below ambient CH4); large negative values as anaerobic respiration (low O2, above am-
bient CH4). Causal naming of Factor 2 was “Nitrous Oxide Production/Consumption”25

as only N2O was significant. We interpreted large positive values as indicative of N2O
production; large negative values as N2O consumption.
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We identified four quadrants of proposed N2O production/consumption relative to
aerobic and anaerobic respiration processes when plotting Factor 1 vs. Factor 2 by
soil type (Fig. 9). Quadrant I: N2O production under marginally anoxic and/or anoxic
conditions. Quadrant II: N2O production under oxic conditions. Quadrant III: no N2O
production and/or N2O consumption under oxic conditions. Quadrant IV: N2O con-5

sumption under marginally anoxic and/or anoxic conditions.
Our conceptual model of N2O cycling proved robust across all soil types. For in-

stance, consumption of N2O (<200 nL L−1) observed in the seep occurred under anoxic
conditions evidenced by high CH4 (>25 µL L−1) and low O2 concentrations (<5 %) on
several occasions. These observations were made apparent as a cluster of three points10

in Quadrant IV. High concentrations of both N2O and CH4 in UICP soil type during a
dry down period (i.e., Fig. 8) were evident in Quadrant I. The observed N2O spikes
that followed summer storm events when O2 remained >18 % in BIMS soils clustered
within Quadrant II.

4 Discussion15

4.1 Soil moisture

The widely held notion that an increase in soil moisture advertently leads to a concomi-
tant decrease in soil oxygen availability appears to be highly dependent on soil type. In
HBEF soils, increased soil moisture did not always correspond to low soil O2 or the on-
set of anoxic conditions. Rather, even under saturated conditions (i.e., 100 % WFPS),20

soil oxygen concentrations ranged from relatively oxic (>15 %) to anoxic (0 %). Poorly
drained, organic rich soils (i.e., UICP and the seep) were most prone to incidences of
significant O2 depletion and CH4 production. In contrast, well drained soils remained
>10 % O2 despite enduring saturated conditions, apparently lacking the environmental
conditions (e.g., hydrologic residence time, biological activity, substrate quality) neces-25

sary to significantly deplete O2.
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Understanding soil O2 availability with respect to soil moisture must also account for
both the physical factors and biological processes controlling re-aeration rates. Physi-
cal limitations restrict gas transport into and out of the soil profile (e.g., air permeability
as influenced by soil structure, texture, and water content). When biological demand for
O2 exceeds re-aeration rates, O2 can become depleted resulting in marginally anoxic5

to anoxic conditions. The same mechanisms that limit O2 movement into the soil profile
also restrict the movement of gases from the profile, leading to a buildup of gaseous
respiration byproducts. Aerobic heterotrophic metabolism of labile C substrates should
yield a 1:1 molar relationship between O2 and CO2 based on the stoichiometry of car-
bohydrate metabolism (e.g., C6H12O6 + 6O2 →6CO2 + 6H2O). The slope of soil CO2–10

O2 linear regressions can be interpreted as proxies for soil gas exchange. Slopes close
to unity suggest minimal limitations on soil gas diffusion; alternatively, slopes exhibiting
large deviations below unity infer significant gas diffusion limitations. Under unsat-
urated conditions, across all depths and soil types at HBEF, the slope of soil CO2–
O2 regression was very close to unity (0.94) remaining highly correlated (r2 = 0.82)15

and linear above 18 % O2. Under saturated conditions, however, the slope was 0.10
and poorly correlated (r2 = 0.36), closer resembling a humid tropical soil whose slope
ranged from 0.25–0.39 (Teh et al., 2005). These results suggest the bulk of the soil
atmosphere was well aerated when soil moisture was below field capacity but poorly
aerated above field capacity.20

The presence of anoxic microsites was apparent by observations of high concentra-
tions of N2O and CH4 despite prevailing oxic conditions in some soil profiles (>18 %
O2). Both nitrification and denitrification can produce N2O as an intermediate product
as described in the the “hole-in-the-pipe” conceptual model of Firestone and David-
son (1989). The rate of nitrogen cycling through ecosystems affects the production25

and/or consumption of N2O; the fraction of N converted into N2O is influenced by soil
water and other environmental factors (e.g., O2 and electron donor availability, tem-
perature). Methanogenesis is carried out by obligate anaerobes in the absence of
oxygen. Hence, the production of either N2O or CH4 requires at least some degree
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of O2 limitation; however, such periods of O2 limitation were only established under
specific environmental conditions.

Large pulses of N2O were observed in the upper mineral soil following summer
storm events only in BIMS and UICP soil types. These observations are consistent
with increased nitrification and/or denitrification rates following rain fall events (David-5

son, 1992). However, because such observations clustered in Quadrant II of Fig. 9,
we speculate that nitrification was the predominant source of N2O following summer
rainfall events given the lack of appreciable CH4 concentrations. In contrast, high con-
centrations of both N2O and CH4 were found in a UICP soil during a dry down period,
evident in Quadrant I of Fig. 9. We speculate that denitrification under marginally anoxic10

conditions was the predominant source of N2O under these environmental conditions
because CH4 production persisted (Bollmann and Conrad, 1998). Although this UICP
profile was seemingly well aerated, the associated anoxic microsites were most likely
masked by our crude soil O2 measurements. Nitrous oxide consumption (<200 nL L−1)
was only observed in the seep during the fall when CH4 concentrations peaked (Quad-15

rant IV of Fig. 9). We speculate that denitrifiers reduced N2O to dinitrogen gas (N2)
under anoxic conditions.

While our soil O2 measurements at times failed to capture anoxic microsites present
in soil profiles, soil water content (as WFPS) did reflect important thresholds in soil
redox. Soil water content at 60 % WFPS (near field capacity) has been suggested as20

a critical transition between aerobic and anaerobic processes (Linn and Doran, 1984;
Davidson, 1993; Davidson et al., 1986). Our findings are consistent with 60 % WFPS
as a critical transition: (i) the highest concentrations of N2O were clustered between
50 % and 80 % WFPS (Fig. 4c); and (ii) CH4 production only appeared when WFPS
exceeded 75 %. These results suggest (1) optimal N2O production via nitrification25

occurred at WFPS near 50 %; (2) optimal N2O production via denitrification occurred at
WFPS ≤80 %; and (3) anoxic conditions were only found to occur above field capacity.
Carbon dioxide exhibited a wide range of concentrations even above field capacity
and showed no optimal response to WFPS (Skopp et al., 1990). This suggests CO2
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concentrations were regulated by environmental factors other than soil moisture (e.g.,
temperature, root activity, substrate availability) and/or reflects that CO2 is produced by
both aerobic and anaerobic respiration processes.

Continuous soil O2 measurements would have greatly aided in capturing short term
O2 dynamics following rainfall or snow melt events (see for example, Liptzin et al.,5

2011). Although our sampling regime captured such events, any significant short-term
O2 depletion (order of hours) would have been missed by our methodology. Advances
in soil O2 probes allow for more discrete and smaller soil atmospheres to be sampled,
crucial to understanding soil O2 dynamics. Continuous monitoring can create a soil O2
almanac for determining the frequency and durations of specific O2 thresholds (e.g.,10

hours/days of the year soil O2 < 10%) with respect to a variety of redox driven soil
biogeochemical processes.

4.2 Soil temperature and substrate quality/quantity

Seasonal patterns of CO2, O2, and N2O reflect changes in climate and associated
biological activity. Soil O2 concentrations were tightly coupled to soil respiration as15

influenced by soil moisture and temperature. Soil temperature, however, appeared
to have the largest influence on soil O2 concentrations via the respiratory demand of
aerobic soil respiration in unsaturated soils evident by (1) the strong CO2 response to
temperature; (2) the slope of the CO2–O2 regression being very close to unity; and
(3) the lack of any apparent relationship between CO2 and WFPS.20

Production of both CO2 and N2O peaked during the summer months; moreover, sig-
nificant production of N2O occurred only under high soil respiration activity in the upper
mineral soil (Fig. 3). The WFPS thresholds on N2O production were only apparent
during summer months suggesting both a link to soil climate and substrate limitations.
Microbial biomass and N cycling activities are greater during the summer than any25

other season at the HBEF due to higher temperatures and large quantities of labile
substrate available for microbial respiration (Bohlen et al., 2001). Although new inputs
of labile C become available following senescence, N immobilization may limit inorganic
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N availability to either nitrifiers and denitrifiers thus restricting N2O production despite
high soil water content (Dittman et al. 2007). The accumulation of organic matter in
UICP and at depth in BIMS soils are important C stores; high concentrations CO2 and
N2O were observed at depth and suggest that biological activity at depth is significant.

Root and microbial processes are active in cold (0–5 ◦C) soils; however, our results5

indicate very little gas production both during the winter and spring snow melt at any
depth in the soil profile. Most reports of large trace gas fluxes in northern hardwood
forests occur after severe soil frost, whether natural or experimentally induced. Snow
pack manipulation studies both at the HBEF and elsewhere show increased N2O fluxes
predominantly due to increases in labile C and inorganic N as a result of several mecha-10

nisms: (1) mineralization of deceased roots; (2) decreased N retention due to root mor-
tality and/or injury; (3) physical disruption of soil aggregates and release-mineralization
of particulate organic matter; and (4) accumulation of N2O below ice layers (Goldberg
et al., 2010; Groffman et al., 2006) .

Climate change will most likely affect soil temperature, moisture and substrate avail-15

ability at the HBEF in some way. Uncertainty exists even with knowledge of how such
variables ultimately control the production of N2O and other greenhouse gases. N cy-
cling processes at the HBEF appear to be more sensitive to variation in soil moisture,
whereas C cycling processes appeared to be more strongly influenced by temperature
(Groffman et al., 2009). Although, the concept of “colder soils in a warmer planet” does20

increase N2O fluxes, soil water dynamics during snow melt do not seem to be dramat-
ically altered (Hardy et al., 2001). Still, reduced infiltration may lead to decreased soil
moisture thus reducing nitrification and/or denitrification rates. Reduced soil moisture
is also expected in a warmer climate in northern hardwood forests due to increases in
primary production albeit accompanied by an increase in nitrate leaching due to large25

increases in net mineralization and nitrification (Campbell et al., 2009). However, most
N2O production appeared to occur after rainfall events or when routinely saturated soils
dried out under extended dry conditions. Climate change may also alter the frequency
and intensity of rainfall events (IPCC, 2007). Our results demonstrate the importance
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of soil moisture dynamics in governing when and where soil redox hotspots and hot
moments emerge across the landscape.

4.3 Significance of greenhouse gas concentrations at Hubbard Brook

The majority of trace gas studies at the HBEF have focused solely on flux measure-
ments between soil surface and the atmopshere. Our results revealed that soil O2 and5

GHG concentrations in deeper soil horizons were just as dynamic as in surface organic
horizons, especially at the water table interface. The water table interface is a very dy-
namic zone in terms of soil redox and trace gas cycling (Berglund and Berglund, 2011;
Jungkurst et al., 2008). Deeper soil horizons at the HBEF were important zones of
GHG production especially in soil profiles (i.e., UICP) experiencing highly fluctuating10

water tables.
Large spatial and temporal variability existed in soil GHG concentrations across W3

even within the same soil type. Even so, HBEF soils are not large sources of N2O
or CH4 to the atmosphere at regional or global scales (Keller et al., 1983). Large
fluxes of N2O only seem to occur under significant disturbance such as after a forest15

clear-cut (Bowden and Bormann, 1986) or severe soil freezing (Groffman et al., 2006;
Groffman et al., 2010). Rather, understanding the landscape patterns of soil O2 and
GHG concentrations have value towards better understanding hot spot and hot mo-
ment dynamics of soil biogeochemical processes. For example, patterns of soil N2O
concentrations helped reveal that the UICP soils and seeps are dynamic zones of N20

cycling.
Small areas of the landscape can play a significant role in the overall biogeochem-

istry of the forest ecosystem. At HBEF, the majority of soils are small sinks for at-
mospheric CH4; however, small zones of poorly drained organic rich soils (e.g., Histi-
sols) comprising only a slight portion of the landscape (e.g., 5 %), are potentially large25

sources of atmospheric CH4. When CH4 fluxes were weighted by the areal extent
of these soil types in a northern hardwood forest in New Hampshire, the ecosystem
became a net source of atmospheric CH4, rather than a CH4 sink (Yavitt and Fahey,
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1993). In this study, seepage zones demonstrated very dynamic N2O and CH4 con-
centrations and are possibly important hotspots for denitrification. The seepage zone
we studied was just of one several small seepage zones throughout W3. The bio-
geochemical significance, hydrology, and the spatial extent of these seepage zones at
Hubbard Brook are largely unknown.5

4.4 Hydrology and pedology: Implications at the landscape scale

Surface topography plays a large role in the development and setting of different soil
types in W3. However, our results suggest that subsurface hydrology influenced soil
oxygen and trace gas concentrations at the HBEF more than surface topography. Di-
agnosing biogeochemical characteristics of any particular soil type based solely on10

superficial features proved problematic at the HBEF. For example, station T1A was
classified as an UICP soil in a riparian zone but did not exhibit similar hydrology (high
moisture content, elevated water table) or the biogeochemistry of other UICP soil pro-
files. Rather, station TIA was relatively dry due the lack of a Cd horizon to restrict
vertical water movement and therefore exhibited much higher soil O2 concentrations15

and lower GHG concentrations despite its close proximity to the stream.
Overall our results are consistent with ideas about the organization of hillslope land-

scapes and pedological units into functionally distinct biogeochemical zones resulting
in hotspots and hot moments (Davidson and Swank, 1986; Nishina et al., 2009; Pacific
et al., 2008; Webster et al., 2008). Anaerobic processes such as denitrification and20

methanogenesis were limited by soil moisture which in turn was regulated by precipi-
tation, slope position, but most importantly subsurface hydrology. Aerobic processes,
such as nitrification and aerobic metabolism, were regulated by thresholds in WFPS
and soil O2 availability. Therefore, hotspots were not permanent locations, but rather
such thresholds were dynamic across the hillslope, shifting the location of hotspots of25

CO2 and N2O up or down the slope depending on soil moisture conditions. During
wet conditions, hotspots were present in BIMS mineral horizons identified as a critical
transition between well drained TYPS and poorly drained UICP. However, during dry

10877

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/10859/2011/bgd-8-10859-2011-print.pdf
http://www.biogeosciences-discuss.net/8/10859/2011/bgd-8-10859-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 10859–10893, 2011

Soil gas profiles in a
forest landscape

S. F. Werner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

conditions, the hotspots shifted downslope into UICP soil types.
Micro-topography can also significantly alter the normal hydrologic and biogeochem-

ical processes along a hillslope (van Verseveld et al., 2009). Pit and mound topogra-
phy (areas of focused groundwater recharge) are common throughout the HBEF. Such
micro-topographic features may escape our current methods of landscape feature clas-5

sification. Moreover, inclusion of a bottom layer (i.e., underlying geology) would greatly
enhance the current surface level approach to understanding landscape biogeochem-
istry by accounting for subsurface hydrology. The ability to model ecosystem processes
(e.g., catchment scale denitrification) requires a mechanistic understanding of biogeo-
chemical cycles at the landscape scale including even the smallest of areas of biogeo-10

chemical significance.

5 Conclusions

Redox is fundamental to soil biogeochemistry yet remains cryptic, largely attributed to
difficulty in its practical measurement in the field. Soil gas measurements are robust,
easily collected, and relatively inexpensive to analyze. Concomitant measurements of15

multiple gases can reflect important changes in soil redox, providing valuable insight on
the relative activity of specific biogeochemical processes from a metabolic perspective.
Our results demonstrate that surface flux measurements may at times fail to capture
the important soil redox processes reflected in the production/consumption of GHGs of
deeper soil horizons. Despite the inherent complexity of forest ecosystem terrain, most20

of the variability in trace gas production and consumption could be explained in terms
of soil temperature, moisture, and substrate availability materializing hotspot and hot
moments of biogeochemical activity. Soil redox appeared dynamic and mobile across
the HBEF landscape driven by climate and topography, constrained by subsurface hy-
drologic processes.25
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Table 1. Summary of soil horizon characteristics of soil types and associated sampling stations:
Typical Spodosols (TYPS); Bimodal Spodosols (BIMS), Umbric Inceptisols (UICP), and seep
(SEEP).

Soil Type (Stations) Horizon pH
(CaCl2)

N % C % C:N

TYPS Oa 3.25 1.63 30.70 19.1
(T1 C, T2 C, T3 C) Bhs 3.87 0.26 3.93 17.4

B 3.45 0.22 5.54 24.7

BIMS Oa 3.02 1.32 27.17 20.5
(T2 B, T3 B) Bhs 3.70 0.19 3.68 19.2

Bs 4.05 0.32 4.19 13.3
BC 4.22 0.24 1.13 4.64
Bh 3.66 0.34 5.79 16.9

UICP Oa 3.48 2.28 40.49 17.8
(T1 A, T2 A∗, T2 B, T3 A) A 3.67 0.80 12.00 15.1

Bh 3.91 0.23 4.81 22.0

SEEP Oa – 0.75 10.86 14.5
Bs – 0.21 3.79 17.9
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Table 2. Factor analysis of soil gas concentrations (n= 727). Value in parentheses indicate
which factors were significant contributors to the different factors.

Orthogonally rotated factors

Soil Gas Factor Pattern Standardized Scoring Coefficients

Factor 1 Factor 2 “Aerobic/Anaerobic “Nitrous Oxide Production/
Respiration” Consumption”

O2 (−0.92) −0.01 (−0.526) 0.046
CO2 0.12 0.29 −0.132 −0.324
N2O 0.01 (0.96) −0.006 (1.140)
CH4 (0.94) 0.02 (0.576) 0.048
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Fig. 1. Site map of watershed 3 (W3) and general location of the Hubbard Brook Experimental
Forest (HBEF), New Hampshire (NH), USA. Contour interval is 5 m. Circles denote locations
of soil gas sampling stations; square denotes location of the seep gas sampling station.
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Fig. 2. Summary of (a) water filled pore space (WFPS) and soil concentrations of (b) oxy-
gen, (c) carbon dioxide’ (d) nitrous oxide, and (e) methane; across all sampling dates and
profile depths for individual stations grouped by soil type: typical Spodosols (TYPS), bimodal
Spodosols (BIMS), umbric Inceptisols (UICP), and seep.
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Fig. 3. Soil profile concentrations of (a) carbon dioxide, (b) nitrous oxide, and (c) methane
pooled by soil layer across all sampling dates for typical Spodosols (TYPS), bimodal Spodosols
(BIMS), umbric Inceptisols (UICP), and seep. Organic layer defined by >10 % carbon content
by mass; mineral <10 % carbon. Values are means ± standard deviation.
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Fig. 4. Relationships of soil concentrations of (a) oxygen, (b) carbon dioxide, (c) nitrous oxide,
and (d) methane with water filled pore space across all sampling dates and profile depths for
typical Spodosols (TYPS), bimodal Spodosols (BIMS), umbric Inceptisols (UICP).
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Fig. 5. Seasonal patterns in soil (a) oxygen, (b) carbon dioxide, (c) nitrous oxide, and
(d) methane concentrations across all dates, depths, and soil types.
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Fig. 6. Correlation between soil temperature and (a) carbon dioxide (b) nitrous oxide concen-
tration by soil type: typical Spodosols (n= 53, TYPS), bimodal Spodosols (n= 36. BIMS), and
umbric Inceptisols (n= 72, UICP) at 20 cm depth. Dashed line references the ambient N2O
concentration 315 nL L−1.
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Fig. 7. Correlation between soil oxygen and (a) carbon dioxide (b) nitrous oxide (c) methane
for unsaturated soils (n= 598, open circles) and saturated soils (n= 94, closed circles) across
all soil types (excluding seep), depths, and sampling dates.
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Fig. 8. Bimonthly concentrations of soil (a) methane (b) nitrous oxide over the period of 31 July
2009–22 November 2009 at station T3 A, an umbric Inceptisol. Values are means + standard
deviation (n = 3 for 5–20 cm; n = 2 for 30–40 cm). The dotted line at 20 cm references the
transition from organic to mineral soil layers. Gray region indicates saturated soil conditions
due the presence of a water table; no water table (i.e., unsaturated conditions) was observed
during the “Dry” period from 13 September 2009–25 September 2009.
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Fig. 9. Factor analysis (n = 727) and conceptual model of nitrous oxide (N2O) produc-
tion/consumption relative to aerobic and anaerobic respiration processes across different soil
types. Quadrant I: N2O production under marginally anoxic and/or anoxic conditions. Quad-
rant II: N2O production under oxic conditions. Quadrant III: no N2O production and/or N2O
consumption under oxic conditions. Quadrant IV: N2O consumption under marginally anoxic
and/or anoxic conditions.
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