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N. Brüggemann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

,
Biogeosciences Discuss., 8, 3619–3695, 2011
www.biogeosciences-discuss.net/8/3619/2011/
doi:10.5194/bgd-8-3619-2011
© Author(s) 2011. CC Attribution 3.0 License.

Biogeosciences
Discussions

This discussion paper is/has been under review for the journal Biogeosciences (BG).
Please refer to the corresponding final paper in BG if available.

Carbon allocation and carbon isotope
fluxes in the plant-soil-atmosphere
continuum: a review
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3619

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/3619/2011/bgd-8-3619-2011-print.pdf
http://www.biogeosciences-discuss.net/8/3619/2011/bgd-8-3619-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 3619–3695, 2011

Plant-soil-
atmosphere C
isotope fluxes
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Abstract

The terrestrial carbon (C) cycle has received increasing interest over the past few
decades, however, there is still a lack of understanding of the fate of newly assimi-
lated C allocated within plants and to the soil, stored within ecosystems and lost to the
atmosphere. Stable carbon isotope studies can give novel insights into these issues. In5

this review we provide an overview of an emerging picture of plant-soil-atmosphere C
fluxes, as based on C isotope studies, and identify processes determining related C iso-
tope signatures. The first part of the review focuses on isotopic fractionation processes
within plants during and after photosynthesis. The second major part elaborates on
plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel,10

seasonal, interannual), including the speed of C transfer and time lags in the coupling
of assimilation and respiration, as well as the magnitude and controls of plant-soil C
allocation and respiratory fluxes. Plant responses to changing environmental condi-
tions, the functional relationship between the physiological and phenological status of
plants and C transfer, and interactions between C, water and nutrient dynamics are15

discussed. The role of the C counterflow from the rhizosphere to the aboveground
parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported
sugars, is highlighted. The third part is centered around belowground C turnover, fo-
cusing especially on above- and belowground litter inputs, soil organic matter forma-
tion and turnover, production and loss of dissolved organic C, soil respiration and CO220

fixation by soil microbes. Furthermore, plant controls on microbial communities and
activity via exudates and litter production as well as microbial community effects on C
mineralization are reviewed. The last part of the paper is dedicated to physical inter-
actions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution
processes within the soil profile. From the presented evidence we conclude that there25

exists a tight coupling of physical, chemical and biological processes involved in C cy-
cling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research
using information from C isotopes allows an integrated view of the different processes
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involved. However, complex interactions among the range of processes complicate or
impede the interpretation of isotopic signals in CO2 or organic compounds at the plant
and ecosystem level. This is where new research approaches should be aimed at.

1 Introduction

The flux of carbon dioxide between the atmosphere and the terrestrial biosphere and5

back is ≈15–20 times larger than the anthropogenic release of CO2 (IPCC, 2007). This
large bidirectional biogenic CO2 flux has a significant imprint on the carbon isotope sig-
nature of atmospheric CO2 (Randerson et al., 2002), which in turn helps to understand
the controls of CO2 fluxes and to predict how they will respond to global change. There
is a lack of knowledge on how plant physiological as well as soil biological, physical and10

chemical processes interact with and affect ecosystem processes, such as net ecosys-
tem primary production and carbon sequestration as well as the larger scale carbon
balance. The vegetation is not only the original source of soil organic matter, thus
contributing to long-term carbon accumulation in the organic soil layers, but it also de-
termines belowground processes such as soil respiration over the short term through15

transport of photosynthates to the roots and to the soil (Bahn et al., 2010; Mencuc-
cini and Hölttä, 2010a; Högberg et al., 2010). For an assessment of the adaptability
of stands and ecosystems as well as for the development of strategies for forest and
landscape management that aims at minimizing the negative effects of the predicted
climate change and maintaining the carbon sequestration potential, we have to deepen20

our knowledge on the processes determining plant-carbon relations.
Due to the slight difference in atomic mass, physical and chemical properties of sub-

stances containing different stable isotopes (isotopologues, such as 12CO2 and 13CO2)
vary, resulting in different reaction kinetics and thermodynamic properties. These result
in the “preference” of chemical and physical processes for one isotopologue, usually25

the lighter one, over the other (e.g. preference for 12CO2 over 13CO2) and hence in so-
called fractionation events. Two major fractionation types can be distinguished, which
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are kinetic fractionation and equilibrium fractionation. Kinetic fractionation occurs dur-
ing an irreversible process, either during physical events, like diffusion of CO2 in air or
phase transitions with constant removal of one phase, or during chemical reactions, like
the conversion of a substance to another, e.g. CO2 into plant carbohydrates. Equilib-
rium fractionation occurs when a chemical reaction or a physical process is reversible5

and continues to occur in both directions, and the different isotopes accumulate on ei-
ther side of the reaction or process according to their mass-dependent binding energies
in substrate(s) and product(s) or aggregate states, e.g. evaporation and condensation
of H2O. As a result of the different isotope fractionation processes along the pathway
of carbon from the atmosphere through the plant into the soil, associated with phase10

transition, diffusion and enzyme activities in leaves, non-green plant parts and soil,
the natural abundance of carbon isotopes at different stages of the pathway is the key
to understanding and integrating the complexity of plant-soil interactions in the global
terrestrial carbon cycle and to predicting future atmospheric carbon dioxide levels un-
der global change. The analysis of temporal variations in the isotopic composition of15

different chemical compounds in different ecosystem compartments provides tools to
assess the fate of carbon in plant, soil and atmosphere. In addition, the physiological
information encoded in the isotope signature due to fractionation processes allows in
principle to link whole ecosystem carbon dynamics with changes in carbon metabolism
on the biochemical scale. The aim of this review is to aggregate the state-of-the-art20

knowledge of carbon isotope fluxes and fractionation patterns in terrestrial ecosys-
tems with a special emphasis on plant-soil interactions and their impact on soil carbon
turnover and storage capacity.

2 Carbon isotope fractionation in plants

Mainly due to historical reasons carbon isotope fractionation in plants has been sep-25

arated into photosynthetic carbon isotope fractionation, including CO2 diffusion, car-
boxylation, as well as dark and photorespiration (Farquhar et al., 1982), and into
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post-photosynthetic fractionation (von Caemmerer et al., 1997). However, if the dis-
tinction between the main fractionation step by RubisCO activity and all downstream
fractionation steps should be made, the latter can be collectively addressed as post-
carboxylation fractionation (Gessler et al., 2008), the terminology applied in the fol-
lowing. Figure 1 summarises photosynthetic and post-carboxylation carbon isotope5

fractionations (and some other processes such as mixing of sugars during phloem
transport), which affect the carbon isotope composition of plant organic matter and
respired CO2. In the following sections we will explore these particular processes, their
effects on δ13C as well as the environmental and physiological information encoded in
the isotopic signals.10

2.1 Photosynthetic carbon isotope fractionation and its temporal variation

Generally, carbon isotope fractionation during photosynthesis (1 in Fig. 1) is described
according to the following equation (Farquhar et al., 1982):

∆13C = ab
pa−ps

pa
+a

ps−pi

pa
+ (es+al)

pi−pc

pa
+b

pc

pa
−
(

eRd/k
pa

+
fΓ∗

pa

)
(1)

where pa, ps, pi and pc are the CO2 partial pressures in ambient air, at the leaf surface,15

in the leaf intercellular airspace and in the chloroplasts, respectively. ab and a describe
the carbon isotope fractionation during diffusion through the boundary layer (2.9‰)
and into the leaves through the stomata (4.4‰), respectively. es is the fractionation
occurring as CO2 enters an aqueous solution (1.1‰ at 25 ◦C) and al the fractionation
during diffusion through the liquid phase (0.7‰ at 25 ◦C), k is the carboxylation effi-20

ciency and b the net fractionation during carboxylation. Rd is the respiration rate in the
light, Γ∗ is the CO2 compensation point in the absence of day respiration, and e and
f are the fractionation factors during day respiration and photorespiration. The mech-
anisms of photosynthetic carbon isotope fractionation have been reviewed elsewhere
(Farquhar et al., 1989; Brugnoli and Farquhar, 2000), so that only some central points25

are discussed here.
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In literature, often a simplified model of Eq. (2), assuming a two-stage model (diffu-
sion through the stomata followed by carboxylation), is applied to estimate photosyn-
thetic carbon isotope fractionation:

∆i =a+ (b−a)
pi

pa
(2)

Due to the relationship between photosynthetic carbon isotope fractionation and the5

ratio of intercellular airspace and ambient CO2 partial pressures (pi/pa), which is of-
ten expressed as a CO2 concentration ratio (ci/ca), newly assimilated organic matter
can be generally used to characterise environmental effects on the physiology of pho-
tosynthesis. Stomatal closure due to water deficit generally reduces ci, leading to an
increase in δ13C (e.g., Farquhar et al., 1982; Korol et al., 1999). As light limitation10

of photosynthesis increases ci, δ
13C can also depend on radiation (Leavitt and Long,

1986; McCarroll and Pawellek, 2001) under particular conditions, but also combined
influences of water and light availability have been observed (Gessler et al., 2001).

Von Caemmerer and Evans (1991) established the relation between assimilation rate
(A) and mesophyll (internal) CO2 transfer conductance (gm) as follows:15

A=
gm(pi−pc)

P
(3)

where P is the atmospheric pressure. However, only recently it was observed that gm
and its reaction to environmental conditions can vary among functional plant groups
(Warren, 2008), and also within cultivars of a particular species (Flexas et al., 2008),
not strictly related to A. In addition, gm of a given species and/or cultivar might change20

with plant and leaf age. Such changes in gm might partially constrain the application of
the simplified carbon isotope fractionation models (Warren and Adams, 2006; Gessler
et al., 2008). Since mesophyll conductance is not included in the widely used two-
step model (Eq. 2) for photosynthetic carbon isotope fractionation (Farquhar et al.,
1982), and pi and not the CO2 partial pressure inside the chloroplast (pc) is used as25

a basis for calculation, any variation in gm will constrain the classical way of calculating
3626
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carbon isotope fractionation (Seibt et al., 2008) when the relationship between gm and
assimilation rate is not constant (Warren and Adams, 2006).

Similarly, it has been shown by several authors (see Gillon and Griffiths, 1997; Igam-
berdiev et al., 2004; Tcherkez, 2006) that the isotope effect associated with photores-
piration can be quite high (f ≈ 10‰) and thus can have a significant impact given that5

Γ∗/pa equals ≈ 0.1. In contrast, the day respiratory fractionation, e, is thought to be
less significant because the factor Rd/(kpa) is much smaller (typically 0.02).

Recent direct online measurements under field conditions, applying novel laser spec-
troscopy techniques, revealed high variations of photosynthetic carbon isotope frac-
tionation over the day, between days and over the growing season (Wingate et al.,10

2010). Over the whole growing season, photosynthetic carbon isotope fractionation
for branches of maritime pine amounted to 10 to 35‰. These values well agree with
the range of photosynthetic carbon isotope fractionation under various light conditions
determined for wheat and bean under controlled conditions (Gillon and Griffiths, 1997).
The highest values typically occurred at dusk throughout the growing season, but also15

in the early morning of June and July and throughout the day during the winter months.
During summer, diel variations of photosynthetic fractionation amounted to more than
15‰ (Wingate et al., 2010). Changes in weather conditions among days also caused
clear variations in δ13C, which then could be traced in the newly produced organic
matter transported through the plant. On the basis of day-to-day variations in the pho-20

tosynthetic carbon isotope fractionation, the transport of new assimilates through the
plant and within the ecosystem has been tracked as soil respired CO2 (Ekblad and
Högberg, 2001; Knohl et al., 2005; Mortazavi et al., 2005; Brandes et al., 2006; Gessler
et al., 2007) and transport times have been assessed (Mencuccini and Hölttä, 2010a)
(see Sect. 3.5). As demonstrated by Brandes et al. (2007) and Wingate et al. (2010),25

such techniques can be applied throughout the whole growing season and have the
additional advantage – compared to 13C pulse labeling experiments – that the informa-
tion on leaf physiology encoded in δ13C can be additionally analysed. As mentioned
above and discussed by Warren and Adams (2006), it might, however, not be possible

3627
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N. Brüggemann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

to directly relate δ13C to pi/pa or water-use efficiency due to potential variations in gm.
Despite this potential constraint, δ13C of basipetally transported assimilates have been
successfully applied to characterise variation in stomatal conductance in different tree
species (e.g., Cernusak et al., 2003; Keitel, 2003; Scartazza et al., 2004; Keitel et al.,
2006).5

However, it also has to be stated that the natural abundance technique failed tracking
the fate of new assimilates in particular species mainly when environmental conditions
were not very different among days (Kodama et al., 2008, 2011). It has been sug-
gested that post-carboxylation fractionation and mixing of sugars of different metabolic
history during phloem transport might blur the rather weak initial isotopic signal from10

photosynthetic fractionation in these cases.

2.2 Post-carboxylation fractionation

Post-carboxylation isotopic fractionation is defined as all isotope effects associated with
the metabolic pathways downstream RubisCO carboxylation and with export of organic
matter out of particular tissues (Hobbie and Werner, 2004; Badeck et al., 2005). Frac-15

tionation due to equilibrium and kinetic isotope effects results in differences in isotopic
signatures between metabolites and in intramolecular isotopic distribution (Schmidt,
2003; Tcherkez and Farquhar, 2005). Post-carboxylation fractionation is also thought
to be responsible for differences in δ13C between plant organs (for a recent review see
Cernusak et al., 2009). Beside photosynthetic also post-carboxylation carbon isotope20

fractionation might account for diel variations in the isotopic composition of carbon ex-
ported from the leaves to heterotrophic tissues (Tcherkez et al., 2004; Brandes et al.,
2006) and of respired CO2 (Tcherkez et al., 2003; Werner and Gessler, 20011). The
following section will give an overview of the main fractionation mechanisms and the
consequences for research on plant and ecosystem carbon balances.25

One of the first post-carboxylation fractionation steps occurs in the Calvin cycle
during aldolase condensation (i.e. synthesis of fructose 1,6-bisphosphate from triose

3628
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phosphates), enriching 13C in the C3 and C4 atom positions of hexoses while leav-
ing behind the light triose phosphates (Rossmann et al., 1991; Gleixner and Schmidt,
1997). A model developed by Tcherkez et al. (2004) and based on the isotope ef-
fects of both aldolase, reported by Gleixner and Schmidt (1997), and transketolase
(estimated values), fits well the reproducible non-statistical 13C distribution in hexose5

molecules reported by Rossmann et al. (1991). The intra-molecular carbon isotope
distribution in Calvin cycle hexoses also depends on the relative activity of the gly-
oxylate cycle (photorespiration) because of decarboxylation of a 13C-rich carbon atom
position and fractionation during glycine decarboxylation (Tcherkez et al., 2004). This
intra-molecular 13C pattern in hexose and thus in pyruvate molecules is considered to10

be the main origin of the so-called “fragmentation fractionation” (see Tcherkez et al.,
2004) during dark respiration, which will be discussed below.

Another effect of the fractionation by aldolase and transketolase is the 13C-
enrichment in transitory starch in the chloroplasts (2 in Fig. 1) and 13C-depletion in
cytosolic sucrose (Schmidt and Gleixner, 1998). Indeed, as explained above, the frac-15

tionations of these enzymes in the Calvin cycle favour 13C in hexoses and thus in tran-
sitory starch in the chloroplasts while leaving behind 13C-depleted trioses, which will
form sucrose in the cytosol. Accordingly, the phloem sugars are 13C-enriched during
night-time (originating from transitory starch degradation), while the daytime sugars in
the phloem originating from the trioses left behind by aldolase/transketolase reactions20

are 13C-depleted. Such a diel change in 13C content of phloem sugars modelled by
Tcherkez et al. (2004) was observed experimentally by Gessler et al. (2008) in Ricinus
plants.

Data available in the literature on the carbon isotope difference between starch and
sugars (mainly sucrose) are scarce, and experimental protocols for their determination25

still need to be scrutinized (Richter et al., 2009). However, expected technical progress
will open new avenues for studies of the variability of fractionation due to transitory
starch synthesis with the rate of starch synthesis and with environmental conditions
(Tcherkez et al., 2004). Thus, measurements of intra-molecular patterns of δ13C and
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diel variation in sugar δ13C can potentially be used in ecological studies as indicators
of assimilate allocation.

Carbon isotope fractionation during plant respiration (3 and 7 in Fig. 1) is a widely
observed phenomenon (see reviews by Ghashghaie et al., 2003; Badeck et al., 2005;
Bowling et al., 2008). There are several enzyme-catalyzed reactions involved in respi-5

ratory metabolism that can lead to isotope fractionation.
Due to the non-statistical 13C distribution in glucose, the δ13C of respired CO2 highly

depends on the intra-molecular position of the C atom used for decarboxylation. Con-
sequently, CO2 produced during different respiratory processes is often relatively en-
riched or depleted in 13C compared to the associated substrate (Ghashghaie et al.,10

2003). This fragmentation fractionation (Tcherkez et al., 2004) may occur at a number
of metabolic branching points along plant respiratory pathways (Barbour and Hanson,
2009).

Coupled to the glycolysis pathway, decarboxylation of pyruvate by the pyruvate de-
hydrogenase complex (PDH) releases relatively 13C-enriched CO2, using the C3 and15

C4 atoms of glucose (DeNiro and Epstein, 1977; Melzer and Schmidt, 1987). Con-
sequently, acetyl-CoA is relatively depleted in 13C, as are fatty acids or CO2 released
during the tricarboxylic acid cycle (TCA). Partitioning acetyl-CoA to fatty acid synthesis
and TCA leads to an overall higher contribution of PDH than TCA activity to total CO2

efflux, which may explain the often-observed 13C-enrichment of CO2 efflux compared20

to respiratory substrate (Ghashghaie et al., 2003). Imbalances between TCA and PDH
may also account for diel changes in δ13C of plant respiration (Kodama et al., 2008;
Priault et al., 2009; Kodama et al., 2011). In addition, fractionation by PDH and TCA cy-
cle enzymes may further change the isotopic signature of respired CO2 (Tcherkez and
Farquhar, 2005). These effects depend on the relative flux strengths at the associated25

metabolic branching points.
Another decarboxylation reaction of glucose takes place within plastids during the

oxidative stage of the pentose phosphate pathway (PPP). The PPP releases 13C-
depleted C1 atoms of glucose as CO2 (Dieuaide-Noubhani et al., 1995; Bathellier et al.,
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2009). Moreover, this decarboxylation reaction fractionates against 13C by about 9.6‰
(kinetic isotope effect; Rendina et al., 1984) or against 12C by 4‰ (equilibrium isotope
effect; Rendina et al., 1984). Accordingly, the δ13C of CO2 produced during PPP is rel-
atively depleted in 13C compared to respiratory substrate. High PPP activity reported
for roots could explain the 13C depletion in root-respired CO2 (Bathellier et al., 2008)5

compared to 13C-enriched CO2 respired by leaves (Duranceau et al., 1999; Tcherkez
et al., 2003).

High activity of phosphoenolpyruvate carboxylase (PEPc) is also known to occur in
roots (8 in Fig. 1) and has recently been detected also in aboveground C3 plant tissues
(Berveiller and Damesin, 2008; Gessler et al., 2009a). PEPc carboxylates PEP using10

HCO−
3 as substrate (stemming either from respiratory or external CO2) to malic acid (via

oxaloacetate), which may enter the mitochondria to sustain TCA activity. This so-called
“anaplerotic” supply is assumed to refill the TCA when citrate intermediates of the
TCA are used, e.g. for amino acid synthesis (Tcherkez and Hodges, 2008; Bathellier
et al., 2009). PEPc discriminates against 12C by 5.7‰ (Farquhar, 1983), leading to15
13C enrichment of plant CO2 efflux (Gessler et al., 2009a), as long as malic acid is
not immediately decarboxylated again (Cernusak et al., 2009). Consequently, the high
13C enrichment of respiratory CO2 evolved from leaves shortly after darkening may be
explained by rapid decarboxylation of highly enriched malic acid pools, derived from
PEPc during illumination (light-enhanced dark respiration – LEDR; see Barbour et al.,20

2007). However, the overall quantitative effect of the before-mentioned fractionation
processes in combination with temporal changes in the respiratory substrates on δ13C
of plant CO2 efflux is still a matter of debate (Tcherkez, 2010; Werner, 2010).

It is now well established that plant organs differ in their isotopic signature. Sev-
eral recent reviews (Badeck et al., 2005; Bowling et al., 2008; Cernusak et al., 2009)25

have shown that heterotrophic organs (branches, stems and roots) are enriched in
13C compared to autotrophic organs, which supply them with carbon. Branches and
woody stems of C3 species are on average 1.9‰ enriched in 13C compared to leaves
(Badeck et al., 2005), whereas roots show an average enrichment varying between
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1.1‰ (Badeck et al., 2005) and 2‰ (Bowling et al., 2008). Several mechanisms have
been proposed to explain these differences in isotopic signatures of plant organs and
respired CO2 (cf. Badeck et al., 2005, and Cernusak et al., 2009, for detailed review
of these processes). One of the reasons for differences in 13C content between dif-
ferent plant organs is that the metabolites used for export (e.g. sucrose) are enriched5

in 13C with respect to the photosynthetic products, leading to differences in 13C con-
tent of heterotrophic tissues compared with leaves. Fragmentation of molecules with
heterogeneous intra-molecular 13C distribution and kinetic isotope effects at metabolic
branching points associated with the enzymatic reactions leading to the respective
products are known to cause compound-specific differences (4 and 9 in Fig. 1). When10

compounds, which become 13C-depleted as a consequence of such processes (e.g.
lipids), remain in the leaves, whereas relatively 13C-enriched compounds are exported,
the inter-organ differences will then be related to the chemical composition of organs.

Other potential reasons for organ-specific differences might be seasonal asynchrony
of growth of photosynthetic and heterotrophic tissues, with corresponding variation in15

photosynthetic discrimination against 13C due to different environmental and ontoge-
netic conditions (Bathellier et al., 2008; Salmon et al., 2011), and developmental vari-
ation in photosynthetic fractionation against 13C during leaf expansion. In addition,
seasonal variations in starch storage and remobilisation (6 in Fig. 1) and the preferen-
tial use of 13C-enriched, starch-derived organic matter in a particular organ might be20

responsible for more positive δ13C values. As, however, also 13C enrichment of par-
ticular compounds (e.g. phloem sucrose) was detected in basipetal direction (Gessler
et al., 2009b), independent of ontogeny or development, other additional factors must
be responsible for this observation. These might include differential use of daytime vs.
night-time sucrose between leaves and sink tissues, with daytime sucrose being rela-25

tively 13C-depleted and night-time sucrose 13C-enriched (Tcherkez et al., 2004), as well
as fractionation associated with the transport of assimilates. The transport processes
(such as phloem loading or phloem transport; 5 in Fig. 1) are not likely to discriminate
against 13C. It is rather assumed that repeated sugar unloading along the phloem
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transport path, metabolic conversion of part of this sugar pool, and reloading of the
remaining unreacted sugars into the sieve tubes might contribute to the basipetal 13C
enrichment (for details see Gessler et al., 2009b). In addition, differences in fraction-
ation during dark respiration in heterotrophic vs. autotrophic tissues (Bathellier et al.,
2008), and higher carbon fixation by PEP carboxylase in roots might explain the inter-5

organ differences. The organ-specific spatial variation of the carbon isotope signal,
i.e. the basipetal enrichment, which is not necessarily constant over the growing sea-
son (Gessler et al., 2009b), challenges the calculation of intrinsic water-use efficiency
or pi/pa from organic material of heterotrophic organs (e.g. in tree rings). However,
temporal variations in δ13C of organic matter and respired CO2 as a consequence of10

post-carboxylation isotope fractionation have been related to starch synthesis and re-
mobilization (e.g., Tcherkez et al., 2004) and other switches between metabolic path-
ways (Priault et al., 2009) and may, therefore, provide a way to identify changes in
metabolic processes related to changes in carbon allocation patterns in plants and
ecosystems.15

In conclusion, post-carboxylation fractionation produces additional changes and vari-
ations in carbon isotope signals on top of the original photosynthetic signal. On the one
hand, this complicates the tracking of the fate of carbon within the plant-soil system and
might partially uncouple the isotope composition in heterotrophic tissues from leaf level
processes. On the other hand, the post-carboxylation isotope fractionation processes20

are likely to give additional information on processes in heterotrophic tissues. It is,
however, crucial to disentangle particular processes and quantify their contribution to
post-carboxylation isotope fractionation and to link the plant-level processes, assessed
with isotope techniques, with processes at the ecosystem level.

3 Carbon allocation in the plant-soil system25

As reviewed in Sect. 2, stable carbon isotope ratios of recently assimilated C contain
valuable information about environmental conditions which can be tracked through the
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plant-soil system and are imprinted in respired CO2. However, temporal changes in C
allocation can strongly affect this relationship between environmental conditions and
δ13C. In the following section, studies are reviewed and discussed that document how
C allocation in the plant-soil system varies on diel, seasonal and annual to interannual
time scales and how it influences isotope signals in plant biomass and soil respiration.5

3.1 Plant-internal C allocation

Carbon transport through the phloem and xylem, and the underlying physiological
mechanisms as affected by environmental and plant-internal factors, are a major point
of uncertainty in understanding the patterns of assimilate distribution within plants and
of plant-soil C coupling. Partitioning of the newly assimilated carbohydrates within the10

plant occurs via loading of sugars into the phloem, transport in the sieve tube system
and unloading at the sites of demand. The pressure-driven mass flow system of the
phloem allows C compounds to be transported over long distances in the plant from
source to sink tissues (Van Bel, 2003). Consequently, the C partitioning is controlled by
the supply of assimilates via photosynthesis, but also depends on the ability of different15

organs to utilise the available supply (Wardlaw, 1969). While these general principles
are well known, the molecular background of the regulation of carbohydrate partitioning
and of the transporters involved is less understood (Slewinski and Braun, 2010). Re-
dox control of sugar transport and sugar plus phytohormone signalling seem to be at
least involved in coordinating carbohydrate partitioning (Rolland et al., 2006). In such20

a manner, whole plant physiology can also exert a feedback sink control over leaf level
photosynthesis, even overriding direct control by light and CO2 (Paul and Foyer, 2001).

Considering the phloem just as a static tube for organic matter transport is inappro-
priately simplified (Fisher, 2002). The modified dynamic version of the Münch mass
flow model (Münch, 1930), as reviewed by Van Bel (2003), assumes that assimilates25

are translocated in the plant via the phloem through “leaky pipes” – a metaphor for the
sieve tube companion cell complexes. According to this model, the solute content in
the phloem – and as a consequence the pressure – are controlled by release/retrieval
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mechanisms in the sieve element/companion cell complexes. During transport, sugars
are released from the sieve tubes and part of them are retrieved again (Minchin and
Thorpe, 1987). The differential release/retrieval balances not only control the net influx
or efflux of sugars, but also the flux of water in different phloem zones. In the collec-
tion phloem in source tissues, the influx of sugars and water will dominate, whereas5

in the release phloem in the sink tissues the efflux of sugars and water will prevail. In
summary, as in the original Münch model, the driving force to control phloem trans-
port is the source-sink turgor difference. In contrast, Thompson (2006) assumes that
the “inability of decentralized organisms such as plants to control phloem transloca-
tion centrally disqualifies such [pressure] differentials as control variables”. In addition,10

the author argues that the maximum efficiency of phloem transport is achieved if the
pressure differentials are small, and that homogeneous turgor and rapid long-distance
distribution of local disturbances in turgor and solute concentration are a prerequisite
for the sieve element/companion cell complexes to operate in a non-centralized manner
and to serve both long distance transport and local supply of surrounding tissues.15

Mencuccini and Hölttä (2010a) advanced towards a mechanistic understanding of
the phloem as a “bottleneck” to C flow below ground. They provide evidence that spe-
cific phloem properties (path length, specific conductivity and turgor pressure differ-
ences) and transport velocities are crucial to explain the linkage between canopy pho-
tosynthesis and belowground processes. Furthermore, they put forward the hypothesis20

of Ferrier et al. (1975) and Thompson and Holbrook (2004) that pressure/concentration
waves travelling through the phloem are responsible for a very fast transfer of informa-
tion, coupling assimilation to belowground processes. Pressure wave fronts are as-
sumed to travel several orders of magnitude faster than the phloem solution and the
solutes within, thus creating a signal that is rapidly transferred through the plant via25

the phloem. If pressure concentration waves completely mediated the coupling be-
tween (canopy) carbon assimilation and soil respiration, the tracking of isotope signals
– either as natural abundance isotope composition or as highly enriched 13C label –
would not be suited to characterize this link (Mencuccini and Hölttä, 2010a; Sect. 3.5).
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Soil respiration as an example would already be up-regulated hours or days before
the newly assimilated substrate arrives belowground and could imprint its δ13C signa-
ture upon the respired CO2. Kayler et al. (2010a) postulated, however, that the time
of arrival of carbon molecules belowground conveys more important information than
a hypothetic pressure concentration wave. This is because the time it takes for a car-5

bon molecule to pass through the plant indicates the status of plant storage pools, the
impact of water availability on biological activity and plant nutrient status. The authors
thus concluded that the time-lag between carbon fixation during photosynthesis and
its loss through respiration belowground carries real physiological information about
the carbon use within plants as well as about the degree to which plants and soil are10

coupled and that this information is exactly the one derived from studies of the isotopic
composition of recent assimilates, other short- or long-lived carbon pools and respired
CO2.

3.2 Carbon transfer to soil biota

A large fraction of C fixed by plant photosynthesis is allocated belowground, where15

C can be: (1) invested into biomass or respired by roots; (2) released as exudates
and respired during or allocated to growth of soil microorganisms in the rhizosphere
(Kuzyakov and Domanski, 2000; Kuzyakov et al., 2000; Walker et al., 2003); or (3) in-
corporated as litter into soil organic matter that may be respired by heterotrophic soil
microorganisms. In this section we focus on pathways 1 and 2. Pathway 3 will be20

discussed in Sect. 4.
Carbon allocated to roots can stimulate exudation, which in turn increases micro-

bial respiration in the rhizosphere (Kuzyakov and Cheng, 2001; Bowling et al., 2002;
Tang et al., 2005). Up to 40% of photosynthates are exudated by roots and are
rapidly respired or invested in biomass by rhizosphere microorganisms (Whipps, 1990;25

Meharg, 1994; Kuzyakov and Cheng, 2001). The rhizosphere is a narrow zone in the
vicinity of the roots characterized by the presence of mycorrhizal fungi and other rhizo-
sphere microorganisms that depend on root exudates as a C substrate source (Cheng
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et al., 1996; Jones et al., 2009). Among rhizosphere microorganisms, mycorrhizal fungi
are of great relevance to plant-soil C interactions (Finlay and Söderström, 1992; Stuart
et al., 2009; Jones et al., 2009). Several studies indicate that mycorrhizal fungi can
use up to 30% of recent plant photosynthates (Högberg and Högberg, 2002; Johnson
et al., 2002; Leake et al., 2006; Heinemeyer et al., 2007; Chapin et al., 2009). It has5

been shown that C turnover in mycorrhyzal fungi ranges from 5 to 9 days, indicating
that there is a very rapid flux of C through mycorrhizal hyphae (Staddon et al., 2003;
Goldbold et al., 2006; Vandenkoornhuyse et al., 2007). The C turnover in microbial
biomass ranges from 7 to 95 days, indicating a slower turnover compared to mycor-
rhizal fungi (Ocio et al., 1991; Ostle et al., 2003; Kaštovská and Šantrůčková, 2007).10

The large variability in C turnover times of soil microorganisms could be associated with
a switch between different functional groups of microbes, as e.g. rhizosphere bacteria
and mycorrhizal mycelium can be used as C substrates by other soil microorganisms
(Jones et al., 2009).

Soil macrofauna (e.g. earthworms) are dependent on plant exudates as a C source15

in addition to above- and belowground plant litter inputs as shown by Ostle et al. (2007),
using 13C-pulse labeling. Turnover times of C in earthworms range from 12 to 37 days
(Bouche, 1984; Dyckmans et al., 2005). Also collembola (springtails) were found to
feed on very recently assimilated C in contrast to Acari (e.g. mites) and Enchytraeidae
(Högberg et al., 2010).20

Overall, the C flux to soil biota in the rhizosphere is large and C is typically lost
from the system within days to months. Environmental conditions imprinted in δ13C of
photosynthates are thus translated through organisms in the rhizosphere and remain
detectable in the autotrophic part of soil respiration (Ra; see Sect. 3.3).

3.3 Carbon losses via plant and rhizosphere respiration and BVOC emissions25

Respiration of plant tissues and rhizosphere microorganisms constitutes a major C
loss in terrestrial ecosystems and can make up to 80% of gross primary production
(Janssens et al., 2001). Also the emission of biogenic volatile organic C compounds

3637

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/3619/2011/bgd-8-3619-2011-print.pdf
http://www.biogeosciences-discuss.net/8/3619/2011/bgd-8-3619-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 3619–3695, 2011

Plant-soil-
atmosphere C
isotope fluxes
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(BVOCs) can be a considerable drain of C from the vegetation, especially under
stress conditions such as drought, continuing even when net assimilation has ceased
(Brüggemann and Schnitzler, 2002). However, BVOC emission rates differ strongly
among plant species and thus only play a role for the C budget of particular species
(Sharkey et al., 2008).5

Plant respiration and BVOC emissions are normally not fuelled by a homogeneous
substrate, but by several C pools with different turnover times and metabolic histo-
ries (Schnyder et al., 2003; Ghirardo et al., 2011; Kuptz et al., 2011a). Lehmeier
et al. (2008) identified three major C pools distinguishable by their half-life, which fed
dark respiration in shoots and roots of perennial rye grass. Only 43% of respiration10

was directly driven by current photosynthates, thus pointing to the importance of short-
term storage pools with half-lives of a few hours to more than a day. This finding is in
agreement with observations made by Nogués et al. (2004) for French bean, showing
that the leaf respiratory substrate is a mixture in which current photosynthates are not
the main components. Changes in the N supply (Lehmeier et al., 2010), but presum-15

ably also in other environmental conditions, can change the mean residence time of
the respiratory substrate pool mainly due to different contributions from storage.

In summary, plant respiratory CO2 losses are largely, but not exclusively fuelled by
recently assimilated C with valuable information imprinted in its δ13C. However, tem-
poral changes in substrate use (e.g., Hymus et al., 2005; Nogués et al., 2006) and20

post-carboxylation isotope fractionation in leaves and heterotrophic tissues can par-
tially uncouple the isotope composition of CO2 from assimilates (Sect. 2.2). Further-
more, measurements in tall stature plants are technically challenging, explaining why
field studies are scarce.

Soil CO2 efflux is dominated by two major sources of soil respiration: an autotrophic25

component (Ra, roots, mycorrhizal fungi and other root-associated microbes depen-
dent on recent C photosynthates) and a heterotrophic component (Rh, organisms de-
composing soil organic matter; see Sect. 4). A large array of methods for partitioning
Ra and Rh exists, the advantages and disadvantages of which have been extensively
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reviewed elsewhere (Hanson et al., 2000; Kuzyakov, 2006; Subke et al., 2006; Trum-
bore, 2006). On average, Ra and Rh contribute equal amounts to total soil respiration,
ranging from 10 to 90% in single studies (Hanson et al., 2000), with the contribution of
Ra increasing with annual soil CO2 efflux (Subke et al., 2006; Bond-Lamberty, 2010).

While many experiments suggest that Ra strongly depends on recent photosynthates5

as indicated by rapid and pronounced declines in soil respiration after clipping, shading
or phloem girdling (Craine et al., 1999; Högberg et al., 2001; Wan and Luo, 2003),
other studies have reported only minor effects (Hibbard et al., 2005; Zhou et al., 2007;
Bond-Lamberty and Thomson, 2010). These latter studies indicate that root C stores
might serve as respiratory substrates for Ra and allow to maintain respiration rates at10

least temporarily (Bahn et al., 2006). This is supported by radiocarbon analysis of root
respired CO2, which showed that roots partly respire older C (Cisneros-Dozal et al.,
2006; Czimczik et al., 2006; Schuur and Trumbore, 2006). In contrast, respiration by
microbes in the rhizosphere is not buffered by carbohydrate reserves and may decline
more rapidly after interruption of assimilate supply (Bahn et al., 2006).15

In strongly seasonal ecosystems at high latitudes, dramatic increases in Ra have
been found in late as opposed to early summer (Högberg et al., 2010), indicating that
Ra is dependent on plant phenology and/or the season. Higher Ra is likely dominated
by increased growth respiration, while maintenance respiration is assumed to undergo
less seasonal change (Wieser and Bahn, 2004). Although higher temperatures in late20

summer undoubtedly play a role in the observed increase in Ra, the occurrence of
hysteresis, expressed as different respiration rates measured at the same soil temper-
atures (Bhupinderpal-Sing et al., 2003; Olsson and Johnson, 2005; Högberg et al.,
2009), suggests that additional factors, such as phenology, control Ra. Yet, changes in
physical transport processes of CO2 and heat hold an alternative explanation for the25

occurrence of hysteresis (Subke and Bahn, 2010; Phillips et al., 2011).
Nutrient availability can also exert a strong control on Ra. In N-poor systems, ad-

dition of N fertilizer reduces Ra (Högberg et al., 2010), associated with an increase in
aboveground C allocation (Olsson et al., 2005). Responses in total soil respiration rates
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have been found to increase, decrease or remain unaltered as reviewed by Janssens
et al. (2010). The discrepancy in these results may reflect the combined responses of
plants and soil to N fertilization.

Many studies show a pronounced effect of soil moisture on Ra relative to total soil
respiration. During a dry summer, the amount of recent C respired decreased in an5

evergreen forest (Andrews et al., 1999), possibly as a result of a reduction in C sup-
ply from above ground. Similarly, Ruehr et al. (2009) found less labeled C respired in
drought experiments (see also Sect. 3.6). In contrast, an increase in the fraction of
recent C was measured in soil CO2 during an exceptionally dry summer in a temperate
deciduous forest (Keel et al., 2006). These different results might be explained by in-10

teracting effects of soil moisture and temperature on C supply for respiration (Davidson
et al., 2006) or changes in CO2 transport rates in the soil (Phillips et al., 2011).

Despite the importance of rhizospheric respiration to the terrestrial C cycle, little is
known about the biotic and abiotic factors that regulate their activity (Högberg and
Read, 2006; Chapin et al., 2009). Carbone et al. (2007) showed that 14C-labeled15

assimilates respired by rhizosphere microorganisms had a mean residence time of
15 days, but 30 days after the labeling, the signal was still detectable in soil respi-
ration. Moyano et al. (2008) suggested that factors controlling mycorrhizal respira-
tion are similar to those that control root respiration. However, recent studies indicate
that mycorrhizal respiration may be less sensitive to temperature than root respiration20

(Heinemeyer et al., 2007; Moyano et al., 2007; Nottingham et al., 2010).
Overall, the autotrophic component of soil respiration is closely coupled to assimilate

supply and is sensitive to factors that control C uptake (e.g. phenology, N availability,
and shading) and C allocation patterns. Root respiration can also be supplied by stored
C, if assimilate supply is interrupted. How C stores contribute to Ra under normal25

conditions will affect the plant-soil respiratory δ13C linkage. It can be concluded that
the link should be tightest during periods of high C supply and in plant species with
small C stores.
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3.4 Temporal C allocation patterns

From correlation-based flux studies it is not consistently clear and currently debated
to which extent commonly observed diel variations in soil respiration are temperature-
(and moisture) independent and thus possibly related to rapid allocation of C from re-
cent photosynthesis to respiration (Tang et al., 2005; Bahn et al., 2008; Subke and5

Bahn, 2010; Vargas et al., 2010; Philipps et al., 2011). Also δ13C of soil CO2 efflux has
been shown to exhibit diel variations (e.g., Kodama et al., 2008; Bahn et al., 2009; but
see Betson et al., 2007), which may reflect a number of processes including: changes
in vapor pressure deficit that affect photosynthetic discrimination against 13C (Brugnoli
et al., 1988; Farquhar et al., 1989; see Sect. 2.1), changes in respiratory C isotope frac-10

tionation as demonstrated for CO2 respired by leaves (Hymus et al., 2005) as well as
trunks (Kodama et al., 2008), diurnal changes in respiratory carbon source (Tcherkez
et al., 2004; Gessler et al., 2007; Bahn et al., 2009) and diffusion processes (Moyes
et al., 2010). For a detailed mechanistic analysis of the origin of diel variations in the
δ13C see Werner and Gessler (2011).15

In both annual and perennial plants, initial growth and respiration are supplied from
storage C in seeds (Bathellier et al., 2008). Carbon isotope ratios of young plants will
thus be dominated by storage compounds (e.g. 13C-depleted lipids or 13C-enriched
carbohydrates; see Sect. 2.2). Similarly, leaf growth in deciduous trees relies on stored
C (mainly starch) during the first phase of leaf development (Lacointe et al., 2004;20

Kagawa et al., 2006a; Asaeda et al., 2008), which in some species can be rather short
(Keel and Schädel, 2010). Damesin and Lelarge (2003) have documented the switch
from 13C-enriched starch to more 13C-depleted assimilates for young beech leaves. In
contrast, new foliage of evergreen species is typically considered to be made almost
entirely of recent assimilates (Hansen and Beck, 1994; Cerasoli et al., 2004).25

Early radial growth of stems is often supplied by reserves as well (Helle and Schleser,
2004; Kagawa et al., 2006b; Skomarkova et al., 2006). However, distinct differences in
the use of recent vs. stored C for radial growth have been documented for deciduous
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trees, with some species incorporating negligible amounts of reserves (Keel et al.,
2006). During summer, photosynthates are allocated mainly above ground (Mordacq
et al., 1986; Olsrud and Christensen, 2004), supplying shoot elongation (Schier, 1970;
Hansen and Beck, 1994), radial growth (Gordon and Larson, 1968), further foliage
development (Dickson et al., 2000; Lamade et al., 2009) and flowering and fruiting5

(Mor and Halevy, 1979; Hoch and Keel, 2006). Possibly as a result of rapid mixing
between old and new C (Keel et al., 2007) there is a carry-over of stores for wood
growth in most species (Kagawa et al., 2006b; Keel et al., 2006; von Felten et al.,
2007), which may impair the use of isotope tree-ring data as proxy for environmental
processes.10

Changes in the relative contributions of different C sources throughout phenological
plant development entail remarkable seasonal variations in the δ13C of different plant
organs (Damesin and Lelarge, 2003; Helle and Schleser, 2004). Such variations may
hinder the interpretation of δ13C in plants as indicator for environmental conditions
(Cavender-Bares and Bazzaz, 2000; Helle and Schleser, 2004). The contribution of15

new C to foliage production is highly variable in deciduous species (Keel et al., 2006),
but on average close to the c. 70% reported for evergreen Pinus uncinata trees (von
Felten et al., 2007). The amount of new C used for stem growth ranges from 35%
(Quercus petraea saplings; Palacio et al., 2011) to 71% (average of 5 deciduous tree
species, Keel et al., 2006). Diffuse porous species allocate significantly higher amounts20

of new C to wood than ring-porous species (52% vs. 35%, respectively; Palacio et al.,
2011). Thus, differences between evergreen and deciduous species may be smaller
than initially thought and, in some cases, overridden by inter-species variability.

Carbon allocation patterns are known to vary not only throughout the life cycle of
plants but also with the age of the different plant organs (Kozlowski, 1992). These25

changes are particularly relevant for long-lived perennial species. In general, older
plants tend to decrease allocation belowground, and to increase allocation to mainte-
nance (increased standing biomass and respiration) (Kozlowski, 1971), storage pools
(Lusk and Piper, 2007; Genet et al., 2010), defense mechanisms (Boege, 2005; Boege
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and Marquis, 2005) and reproduction (Genet et al., 2010). Changes in C allocation to
plant organs entail quantitative and qualitative differences in their C composition with
age. Consequently, the C isotope composition of plant respiratory CO2 (Maunoury
et al., 2007; Kuptz et al., 2011b) or of bulk material (Helle and Schleser, 2004; Sko-
markova et al., 2006; Salmon et al., 2011) may change with season and ontogeny. For5

example, leaves of adult plants tend to be enriched in 13C, showing higher δ13C than
leaves of young plants (Donovan and Ehleringer, 1994; Cavender-Bares and Bazzaz,
2000; Fessenden and Ehleringer, 2002). Information on the age-related variations of
δ13C in the different organs of plants (including not only leaves but also roots or stems
for which data are mostly absent) is crucial for scaling δ13C results on young plants to10

mature individuals.
Belowground plant parts are supplied by both recent photosynthates and C reserves

(Joslin et al., 2006; Carbone et al., 2007). Recent investigations estimated that up
to 55% of fine root C comes from storage, although such stored C is of young age
(≈0.4 years) (Gaudinski et al., 2009). Belowground allocation of newly fixed C in-15

creases dramatically towards the end of the growing season (Smith and Paul, 1988;
Stewart and Metherell, 1999; Högberg et al., 2010), competing with storage accumula-
tion in aboveground parts for winter dormancy and frost hardiness (Hansen and Beck,
1990; Skomarkova et al., 2006; Kuptz et al., 2011a). In evergreen species, a second
maximum of belowground allocation is often observed in early spring, shortly before20

bud break (Shiroya et al., 1966; Ziemer, 1971). During winter, deciduous species
maintain their living tissue mainly from reserve pools (Dickson, 1989; Maunoury et al.,
2007), whereas evergreen trees may produce new substrate for respiration (mainly
maintenance respiration) by active photosynthesis during warmer periods within the
cold season (Hansen et al., 1996; Hu et al., 2010; Kuptz et al., 2011b). Similar to the25

cold season, summer drought might induce a seasonal allocation pattern with regularly
occurring favorable and unfavorable growth conditions, leading to seasonal changes in
growth and in the contribution of growth and maintenance respiration to Ra. Such
phases are likely to be associated with variations in δ13C of plant respired CO2. If
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assimilate supply decreases, 13C-enriched stores can serve as substrates for respira-
tion leading to increases in δ13C of released CO2.

Compared to the wealth of studies on seasonal changes in C allocation, relatively
little is known about interannual variations. Carbon allocation to radial stem growth is
typically correlated with climatic conditions such as precipitation and air temperature,5

a relationship used for climate reconstructions by dendrochronologists. Interestingly,
Rocha et al. (2006) found no correlation between gross ecosystem production (a mea-
sure for photosynthesis at the stand scale) with tree ring width, suggesting that radial
growth is not directly related to the availability of recent C, but also depends on the
amount of carbohydrate stored.10

Although significant advances have been made in recent years to characterize the
use of stored C in plants, there are still important knowledge gaps to fill. For example,
the relationship between the age of plant stores and remobilization is still not fully
understood, raising the question of how much of the C stored by plants can actually be
remobilized (Millard et al., 2007), and how long these stores can be remobilized before15

they are ultimately sequestered in plant tissues or lost as CO2 or BVOC. It is also not
known how stores are mobilized in relation to the time (phenology and age) they were
built up (but see initial results by Lacointe et al., 1993), or how these processes are
affected by environmental stress and disturbance. These key questions have to be
answered before the role of plants in ecosystem C cycling can be fully understood.20

3.5 Time lags between CO2 assimilation, C allocation and respiration

The time lag caused by C translocation from aboveground sites of assimilation (leaves)
to belowground sites of respiration (Ra and Rh) has been extensively reviewed (David-
son and Holbrook, 2009; Kuzyakov and Gavrichkova, 2010; Mencuccini and Hölttä,
2010a) since photosynthesis has been identified as a key driver of soil respiration25

(Högberg et al., 2001). There is ongoing controversy about the main mechanism de-
scribing the speed of link between assimilation and respiration (Kayler et al., 2010a;
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Mencuccini and Hölttä, 2010b; see also Sect. 3.1). The information is either directly
conveyed by the phloem sugar concentration change or by the propagation of pres-
sure/concentration waves within the phloem (Thompson and Holbrook, 2004; Kayler
et al., 2010a; see Sect. 3.1). However, empirical evidence in support of the latter hy-
pothesis is still pending. Generally, time lags determined as propagation of fluctuations5

in δ13C at natural abundance increase with tree height, showing transport rates be-
tween 0.07 and 0.5 m h−1 (Kuzyakov and Gavrichkova, 2010; Mencuccini and Hölttä,
2010a). Carbon isotope labeling experiments suggest a longer transport time in gym-
nosperms compared to angiosperm trees (Kuzyakov and Gavrichkova, 2010), due to
structural differences in the phloem. The differences between the two groups can be10

considerable, despite the heterogeneity in environmental conditions the experiments
were conducted at. The observed patterns suggest a separate consideration of gym-
nosperm and angiosperm tree species in the future. Furthermore, also time lag studies
in grasses need to be considered independently, as – in contrast to tree species – time
lags generally decreased with plant height at least in Lolium perenne (Kuzyakov and15

Gavrichkova, 2010).
Carbon translocation velocities are often higher in tall plants (Lang, 1979; Thomp-

son and Holbrook, 2003; Van Bel and Hafke, 2005; Mencuccini and Hölttä, 2010a),
potentially due to stronger root C sinks associated with a larger belowground biomass.
However, considerable seasonal changes in belowground C allocation did not affect20

time lags (Horwath et al., 1994; Högberg et al., 2010), suggesting that phloem path
length and structural differences are the main determinants of C transfer velocity.

3.6 Sensitivity of C allocation to environmental stress

The general responses of plant ecophysiology to environmental stress (e.g. resource
limitations in light, water or nutrients) have been well known for many years (Larcher,25

2003). Ecophysiological responses often involve changes at different organizational
levels, ranging from cellular mechanisms to whole plant carbon-water or carbon-
nutrient relations to sustain plant performance and plant fitness under stress. Stable
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carbon isotopes have been shown to be sensitive indicators of leaf stress responses in-
volving stomatal regulations, changes in mesophyll conductance and (photo)respiration
(Farquhar et al., 1989; Dawson and Siegwolf, 2007, and references therein). For exam-
ple, leaf carbon discrimination was shown to increase under light stress for C3 (Brugnoli
and Farquhuar, 2000) and C4 plants (Buchmann et al., 1996), but decrease under wa-5

ter limitations (Dawson et al., 2002).
Recently, studies demonstrated that drought stress not only reduced C assimilation

but often also increased the mean residence time of recently assimilated C in leaf
biomass. Furthermore, the C transfer velocity was reduced in saplings and the trunk of
some tree species, leading to a reduced coupling between canopy photosynthesis and10

belowground processes under water stress (Ruehr et al., 2009; Dannoura et al., 2011).
Similarly, shading has been shown to reduce the speed of link between photosynthesis
and soil respiration in grassland (Bahn et al., 2009). Mechanisms underlying these
short-term responses to stress are possibly related to source-sink relationships, as at
low photosynthetic rates a decrease of phloem loading at the collection phloem end will15

lower the pressure gradient and hence decrease the downward transport rates (Lee,
1981). Furthermore, soil moisture influences the quantity of water supplied by the
xylem to the collection phloem, affecting the turgor pressure differences between two
phloem ends. Potentially, all environmental factors which affect photosynthesis (vapor
pressure deficit, radiation, CO2 concentration, etc.) might have similar consequences.20

However, more studies, including also compound-specific carbon isotope analyses, are
needed to further elucidate the biochemical and physiological mechanisms responsible
for these patterns.

While application of the widespread isotope ratio mass spectrometry technique for
analyzing time series of carbon isotopic signatures in plant materials and respired CO225

is costly and labor-intensive, new cutting-edge technologies for stable isotope analy-
sis of 13C and 18O in CO2, like isotope-specific infrared laser absorption spectroscopy,
provide great opportunities to measure changes in carbon and oxygen isotopic signa-
tures in CO2 at the chamber and ecosystem level at high temporal resolution in situ
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(Bowling et al., 2003; Bahn et al., 2009; Plain et al., 2009). This will help improve our
understanding of environmental effects on C uptake and storage capacity of terrestrial
ecosystems, which will be particularly important in the future with higher frequency and
magnitude of extreme events (IPCC, 2007).

3.7 Bi-directional C transport processes5

Efflux of CO2 from the soil to the atmosphere is not the only escape way of carbon
out of the soil. It has been shown with isotopically labeled CO2 that roots can take up
CO2 and deliver it to aboveground parts of the plant via the transpiration stream (Ford
et al., 2007; Moore et al., 2008). It is known since many years that CO2 concentrations
in the xylem sap of plants can be up to three orders of magnitude higher than in the10

atmosphere (Eklund, 1990; Hari et al., 1991; Levy et al., 1999; Teskey et al., 2008 and
citations therein). In addition to root uptake of soil CO2, root respiration adds CO2 to
the xylem water, followed by stem respiration, i.e. in the inner bark (consisting of the
periderm and the phloem), in the cambium and in the ray cells of the xylem (Teskey
et al., 2008). As especially the cambium, but also the cell walls of the xylem are strong15

diffusion barriers, very high CO2 partial pressure (pCO2) can build up inside the stem.
The high xylem pCO2 has significant effects on stem, branch and leaf CO2 exchange.

Martin et al. (1994) found temperature-independent fluctuations in stem CO2 efflux in
loblolly pine (Pinus taeda L.) seedlings, with flux rates being 6.7% lower during periods
of high transpiration associated with high temperatures, as compared with periods of20

low transpiration. They could identify transport of respiratory CO2 in and diffusive loss
from the transpiration stream as the most likely cause of this unexpected observation.
Levy et al. (1999) calculated a contribution of xylem-transported CO2 to leaf photosyn-
thetic rates of 0.5 to 7.1%, and a contribution of up to 12% to apparent stem respiration
rates. Teskey and McGuire (2002, 2005) observed a linear relationship between stem25

CO2 efflux and xylem sap CO2 concentrations. They could evoke rapid and reversible
changes of stem CO2 efflux by manipulating xylem sap CO2 concentrations, explaining
up to 77% of the stem efflux variation. The negative relationship of xylem sap pCO2
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with xylem sap velocities or volume flow presents an explanation for the frequently ob-
served midday depression of stem CO2 efflux, when xylem sap flow is highest and,
hence, xylem CO2 concentration is lowest (Teskey and McGuire, 2002; Aubrey and
Teskey, 2009). Overall, it has to be acknowledged that xylem-mediated CO2 transport
from the soil to the atmosphere can be substantial, in some cases equaling soil CO25

efflux (Aubrey and Teskey, 2009).
By far not all of the xylem CO2, be it soil-, root- or stem-derived, is released via

stem efflux. It was shown already a long time ago that not only leaves, but also woody
tissue can assimilate CO2 via photosynthesis (e.g., Wiebe, 1975; Foote and Schaedle,
1976; Pfanz et al., 2002). Albeit this corticular photosynthesis usually does not lead10

to a net CO2 uptake, it can compensate for most of the respiratory loss during the
light period (Foote and Schaedle, 1976; Pfanz et al., 2002; Cernusak and Marshall,
2000; Wittmann et al., 2006). Given the high xylem pCO2, it is likely that most of the
CO2 fixed by the woody tissue is derived from the stem-internal CO2 pool, as could be
shown in a 13CO2 labeling study with sycamore (McGuire et al., 2009). However, as the15

transpiration stream ends in the leaves of a plant, the remaining CO2 will be subject
to photosynthetic fixation here, which was demonstrated in a labeling study with a 1
mM 14C-bicarbonate solution fed to excised leaves of Populus deltoides (Stringer and
Kimmerer, 1993). If soil CO2 taken up by the roots is fixed during photosynthesis, this
will have implications for the carbon isotopic signature of photosynthates due to the20

much lower δ13C of the soil-derived CO2, depending on the amount of CO2 transported
with the transpiration stream.

Beside phloem transport, large amounts of C can also be transported via the tran-
spiration stream, even in periods when leaves are fully developed and re-mobilization
of C from storage pools is unlikely to occur. In pedunculate oak (Quercus robur L.)25

saplings, Heizmann et al. (2001) found a contribution of xylem-transported carbohy-
drates, mainly sucrose, glucose and fructose, to the total C budget of leaves of up to
91%, with the highest values occurring during midday depression of photosynthesis
at high temperature. In grey poplar, xylem transport of carbohydrates contributed 9%
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to 28% to the total C delivered to the leaves (Mayrhofer et al., 2004). This xylem-
transported C can form a major constituent of leaf C metabolism, as was shown in
labeling experiments with 13C-glucose in pedunculate oak (Kreuzwieser et al., 2002)
and in grey poplar (Schnitzler et al., 2004; Ghirardo et al., 2011). The cycling of C
within the plant through the phloem down to the roots and back to the aboveground5

parts of the plants via the xylem makes the supply of carbohydrates to heterotrophic
tissues independent of short-term fluctuations of photosynthetic performance of the
plants, as hypothesized by Heizmann et al. (2001), but also leads to a dampening of
photosynthetic carbon isotope signals sent from the leaves down to the roots.

4 Belowground C turnover10

Stable isotopes have proven to be a technique to address the complex carbon trans-
formations in the soil (Kuzyakov et al., 2000; Bowling et al., 2008; Paterson et al.,
2009; Kayler et al., 2010a). Here, we extend the view of isotopes in belowground re-
search beyond methodology, but limit the scope of our discussion of carbon isotopes
to the investigation of plant-soil interactions with a specific emphasis on plant direct15

and indirect controls on microbial metabolism, organo-mineral interactions, dynamic
soil carbon pools, and microbial markers.

4.1 Heterotrophic soil respiration

Heterotrophic soil respiration (Rh) is mainly affected by soil temperature and moisture.
However, recent studies have shown the importance of soil C availability as a driver20

of heterotrophic respiration (Vance and Chapin, 2001; Trueman and Gonzalez-Meler,
2005; Scott-Denton et al., 2006). There is evidence that fresh C input into soil can
increase, decrease or have little or no effect on Rh (Kuzyakov et al., 2000; Fontaine
et al., 2007). This variability of the Rh response to soil C availability may arise in part
because soil organic matter (SOM) consists of several functional C pools with different25
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levels of protection and recalcitrance (Six and Jastrow, 2002). Furthermore, the diver-
sity found in soil microbial communities may result in different preferential usage of soil
organic carbon (SOC) sources contributing to the difficulty in correlating changes in Rh
in response to soil C availability.

4.2 Patterns of SOM δδδ13C isotopic enrichment with soil depth5

Bulk soil organic matter (SOM) is a large-scale representation of belowground biogeo-
chemistry in that isotopic values of SOM integrate processes over a large scale of both
space and time. Across many ecosystems SOM becomes increasingly 13C-enriched
(1 to 3‰) with depth. Ehleringer et al. (2000) offered four hypotheses to describe this
pattern: (1) the Suess effect – i.e. the decrease in δ13C of atmospheric CO2 due to10

the admixture of anthropogenic, isotopically depleted CO2 – which accounts for about
1‰ from the litter to about 6 cm depth (Boström et al., 2007); (2) microbial fraction-
ation; (3) preferential microbial decomposition of litter and SOM; and (4) soil carbon
mixing. Wynn et al. (2005) included microbes as precursors of SOM and variable mo-
bility and sorption of DOC with variable isotopic values. Identification of which of these15

hypotheses correctly explains the variation of δ13C with depth will potentially reveal
important biogeochemical mechanisms of carbon flow that are common to all ecosys-
tems. Yet, part of the difficulty in validating these different hypotheses is the relatively
small change of the vast pool of SOM over a short period of time. However, recent
experiments have been carried out that provide direct and indirect evidence of the im-20

portance of each process in describing patterns of SOM enrichment with depth.
Studies using the Rayleigh distillation equation (Fry, 2008) have shown some suc-

cess towards explaining the patterns in SOM δ13C enrichment (Accoe et al., 2002;
Wynn et al., 2005, 2006; Diochon and Kellman, 2008). In this case, the Rayleigh dis-
tillation equation describes kinetic isotope fractionation (i.e. unidirectional reactions) in25

an open substrate reservoir and a product (Wynn et al., 2006). The distillation model
is a first order reaction that describes the change in δ13C of SOM as a function of
the initial SOM carbon content at the surface, the fraction of SOM remaining in the
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soil with depth, and the ratio of the decomposition of 12C substrate to 13C substrate.
The Rayleigh distillation equation is a function of fractionation resulting from two pro-
cesses: microbial metabolism or differential sorption of organic components to mineral
surfaces. From these studies (Wynn et al., 2005, 2006; Diochon and Kellman, 2008),
it is apparent that the pattern of 13C enrichment of SOM with depth is dependent on5

the fractionation parameter in the Rayleigh model which is limited in the ability to dis-
tinguish between the two fractionation mechanisms.

4.3 Fractionation due to microbial metabolism

The carbon metabolism of microbes is crucial to understanding autotrophic and het-
erotrophic contributions of soil respiration. Thus, if isotopes are to be an effective10

tool to estimate heterotrophic respiration then we need to quantify the fractionation by
microbes to back-calculate the isotopic source that is respired (i.e. old vs. new car-
bon sources or, more precisely, soil organic matter or root exudates). Microbial 13C
fractionation is a challenge to measure, but is nonetheless very important to accu-
rately quantify because it can confound the interpretation of results from experiments15

using 13C pulse labeling or natural 13C abundance. Fractionation is commonly calcu-
lated by quantifying the difference between the isotopic signature of microbial biomass
and the isotopic signature of the substrate (i.e. SOM, DOC, culture) and products (i.e.
CO2) (Fry, 2008). There is a wide range of estimates of fractionation by microbes
from studies implementing this approach (Fig. 5). However, Lerch et al. (2011) found20

fractionation to vary over time when calculated in this manner, and while changes in
substrate could account for this pattern it is also likely that the active microbial com-
munity is changing. Fast changes in microbial composition have been documented
after addition of labile substrate (Cleveland et al., 2007), rapidly changing environmen-
tal conditions (Gordon et al., 2008), and other environmental stresses (Schimel et al.,25

2007). The question arises whether this variation in microbial fractionation is real, or
whether estimates of fractionation are possibly confounded by different soil substrates
or microbial community composition.
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N. Brüggemann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

A recent review of belowground fractionation (Werth and Kuzyakov, 2010) suggests
that fractionation occurs during both microbial uptake and respiration of carbon. The
specific processes associated with each are: (1) uptake, associated with enzymatic
breakdown of organic matter and transport of monomers into cell walls; and (2) respi-
ration associated with kinetic 13C fractionation. The authors listed variation in the avail-5

ability and molecular composition of substrates as a possible fractionation mechanism
during uptake, but this is better defined by mixing processes and microbial community
dynamics. Mixing, because soil organic matter is a mixture of chemical compounds,
representing different stages of decomposition and availability, which is dependent on
the activity and the composition of the microbial community present (see below). They10

also suggested that preferential substrate utilization of easily degraded compounds re-
sults in fractionation during respiration, which may well result in differences between
the 13C signature of substrate and products (microbial biomass, remaining SOC or
CO2). However, the mechanisms behind this are not well defined or understood. Per-
haps, microbial substrate selectivity is a function of the enzymes available to break15

down substrate.
As discussed above, organic matter sources that contain multiple carbon moieties

confound accurate estimates of fractionation resulting from microbial metabolism. Ex-
periments that observe biochemical pathways within microbes by utilizing a controlled
substrate provide a more precise picture of fractionation. Hayes (2001) compiled20

a comprehensive review of carbon fractionation in biosynthetic processes. In this
review, he shows how fractionation occurring in chemical reactions, pathways and
branch points within a cell results in the isotopic composition of carbohydrates, amino
acids, nucleic acids, and lipids among different organisms. The often cited study
on Escherichia coli by Blair et al. (1985) documented fractionation between the ac-25

etate and fatty acid synthesis, most likely with the conversion of acetyl phosphate to
acetyl-CoA as regulated by phosphotransacetylase. Building on previous studies on
plants (Ghashghaie et al., 2003), two mechanisms of fractionation, leading to δ13C
values of CO2 that are different from the initial substrate or microbial biomass, were
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hypothesized: (1) the non-uniform distribution of 13C within hexose molecules (or other
substrate) (Hobbie and Werner, 2004), which leads to 13C-enriched CO2; and (2) frac-
tionation during the pyruvate dehydrogenase reaction (Blair et al., 1985), which leads
to 13C depletion of CO2.

Microbial metabolism type will also affect the magnitude and direction of isotopic5

fractionation. Differences in biosynthetic pathways result in a diverse isotopic compo-
sition of extracted soil microbial biomass. For example, oxygen availability determines
in part the level of anaerobic versus aerobic respiration by microbes, which in turn af-
fects the isotopic composition of microbial biomass and fatty acids (Teece et al., 1999;
Cifuentes and Salata, 2001). Carbon fixation by heterotrophs, which is estimated to be10

4% to 7% of net microbial respiration (Miltner et al., 2004, 2005), is another pathway
that leads to different isotopic composition of amino acids and fatty acids (Feisthauer
et al., 2008) and could have a significant impact on the overall isotopic signal of mi-
crobial biomass and the CO2 respired. Methodologies to study microbial biosynthesis
and metabolomics are becoming increasingly more sophisticated (Tang et al., 2009),15

and studies using these techniques may provide a clear basis from which isotopic dif-
ferences between substrate and microbial biomass and overall microbial fractionation
could be understood.

Studies that assess the isotopic composition of soil microbial biomass usually treat
soil microbes as a single C pool without differentiating between metabolically active20

and dormant microorganisms (Šantrůčková et al., 2000; Lerch et al., 2011). Soil mi-
crobial biomass is composed of both active and dormant microorganisms, yet, CO2
respired from microorganisms derives solely from those that are metabolically active
(Stenstrom et al., 2001; Werth and Kuzyakov, 2008, 2009; Millard et al., 2010; Werth
and Kuzyakov, 2010). Hence, comparing isotopic composition of soil microorganisms25

as a single C pool to soil CO2 respired could lead to a misinterpretation of the real
isotopic effects of fractionation during soil respiration. Furthermore, soil microorgan-
isms as well as roots accumulate C reserves (Plateau and Blanquet, 1994; Ekblad and
Högberg, 2000; Sylvia et al., 2005). This is especially true as soil microorganisms
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have the capacity to undergo dormancy in sudden adverse environmental conditions.
To cope with these conditions, accumulated C in soil microorganisms can be replaced
and released by adding readily available C (Bremer and van Kessel, 1990; Wu et al.,
1993; Ekblad and Högberg, 2000; Ekblad et al., 2002). Therefore, due to the internal
C reserves of microbes, a mixing occurs between available and stored C respiratory5

substrate, and, consequently, a flawed interpretation of kinetic fractionation during soil
microbial respiration may result.

When fractionation of belowground carbon pools is calculated, the uncertainty in-
creases with an increasing degree of metabolic separation between the actual sub-
strate respired and the specific organism respiring. In fact, researchers have already10

recognized the limitation in defining fractionation as the difference between SOC and
microbial biomass by referring to the estimate as “apparent fractionation”. This term
implies an unknown level of ambiguity and perhaps it is best to avoid its use in favor
of discussing potential fractionation due to biogeochemistry and microbial metabolism.
Ultimately, the research question asked will drive the level of detail to which fraction-15

ation is discussed. For example, in research describing patterns at the ecosystem
scale the difference in δ13C between the actual C respired (detected in δ13C of CO2)
and SOM may suffice to understand belowground C dynamics in soils at larger scales.
However, if the research requires a high degree of precision in estimating microbial
fractionation, in partitioning studies for example, then a more sophisticated methodol-20

ogy and quantification is required.

4.4 Interactions with mineral surfaces

As found in studies of SOM δ13C patterns with depth, isotopic enrichment occurs with
an increase in fine soil particles (Solomon et al. 2002; Bird et al., 2003). Moreover,
Wynn et al. (2005) found that in coarse textured soils Rayleigh fractionation did not ac-25

count for patterns of SOM 13C enrichment with depth, raising the question of the effect
of soil texture, soil mineralogy and chemistry on the pattern of SOM 13C enrichment
with depth. Soil texture also plays a predominant role in carbon stabilization in soil for
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which the mechanisms are not entirely understood (Plante et al., 2006). However, sta-
bilization studies using δ13C have shed light on the carbon dynamics of organo-mineral
association (Kayler et al., 2011) and the role plants play in carbon stabilization below
ground.

Analysis of stable isotopes in soil fractions has given some insight into the mecha-5

nisms behind SOM stabilization. Studies that have analyzed the isotopic signature of
SOM fractions (beyond C3/C4 labeling techniques) have found patterns of enrichment
of δ13C and δ15N with increasing density of sequentially separated SOM fractions
(Huygens et al., 2008; Sollins et al., 2009; Marin-Spiotta et al., 2009). Using sev-
eral chemical techniques including isotopes, Mikutta et al. (2006) showed that organo-10

mineral interactions accounted for over 70% of the carbon stabilized in the soils they
analyzed. Organo-mineral interactions refer to the bonding of organic matter via poly-
valent cations to mineral surfaces (von Lützow et al., 2006). Using isotopes, Mikutta
et al. (2006) also substantiated the role of microbial exudates and biomass provid-
ing coatings over minerals allowing for more efficient sorption (Kleber et al., 2005) as15

well creating chemically resistant organic matter. The authors also found that recently
deposited organic material can be stabilized with mineral surfaces, suggesting that
plant-soil interactions can also directly lead to carbon stabilization, long thought of as
a slow process driven by decomposition only.

While changes in soil organic matter appear slow, because the pool is so vast, the20

processes of carbon loss and stabilization occur relatively rapidly. Questions still re-
main concerning how strongly organic matter is bonded to the mineral surface and to
surrounding layers of the organo-mineral complex (Kleber et al., 2005). However, this
research does suggest that plants may play a pivotal role in the fast cycles of carbon
stabilization (Trumbore, 2006). Isotopes used toward identification of carbon stabiliza-25

tion mechanisms belowground are just in their infancy, and with the help of models
(Kleber et al., 2007) and soil properties, we will be able to explain not only patterns of
the δ13C of SOM with depth, but also questions regarding carbon accumulation and
stabilization (Kleber et al., 2011).
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4.5 Transfer of C from leaf litter and DOC to soil and microbes

Apart from the primary flux of C from plant assimilates into soil, plant litter degradation
and the subsequent C distribution into soil carbon pools and microbial communities pro-
vide an important secondary flow of carbon into the soil (Elfstrand et al., 2008). For ex-
ample, soil microbial dynamics are controlled through complex interactions with plants5

and are influenced by a range of organic compounds added to soils from plants as root
exudates and as litter inputs (Butler et al., 2004; Bardgett et al., 2005; Kaštovská and
Šantrůčková, 2007; Elfstrand et al., 2008; Denef et al., 2009; Esperschütz et al., 2009).
Thus, a key issue in studies investigating soil carbon dynamics has been tracing the
carbon input into soil from leaf litter decomposition (Liski et al., 2002; Dungait et al.,10

2010).
Litter decomposition is the breakdown of highly organized plant tissue to complex

organic compounds that is regulated by both biotic and abiotic processes. Since de-
composition is slow, the litter layer of an ecosystem is composed of a continuum of
fresh litter to unrecognizable organic matter and serves as a bottleneck for a signifi-15

cant portion of primary productivity sent belowground. But there still remain a series
of questions of (1) how the carbon in the litter layer reaches the mineral soil, (2) how
the biogeochemical processes determine the fate of organic matter, either remaining
in the litter layer or being transported into the soil profile, and (3) which mechanisms
control litter-microbe interactions and dynamics. These questions have important ram-20

ifications for the carbon cycling of ecosystems and for the use of isotopes to elucidate
the complex chemical nature of litter decomposition and incorporation into soil organic
matter.

Mechanisms behind the isotopic patterns in leaf litter are considered to be (1) se-
lective preservation of recalcitrant compounds that are depleted in 13C, (2) preferential25

consumption of 12C by microbes, (3) incorporation of exogenous organic matter, and
(4) transport of dissolved organic matter within the soil profile (Nadelhoffer and Fry,
1988). Preston et al. (2009) found that patterns in the isotopic signal of leaf litter
located on the soil surface depend on the degree of decomposition. The decomposing
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leaf litter tended to become more 13C-depleted with a decrease in the amount of the
original litter mass. Only after about <30% of the original litter material was remaining,
the isotopic composition shifted towards an enriched signal. They attributed this shift
to sorption of older soil organic carbon to the remaining leaf litter. Osono et al. (2008),
found a similar depletion of litter over a three-year period of decomposition. However,5

they inferred isotopic patterns of leaf litter were a result of selective C loss as a func-
tion of lignin concentration. Thus, patterns in the isotopic signature of leaf litter are
a function of decomposition and the degree to which it is integrated with mineral soil,
an important consideration when using litter carbon as a tracer source for studies of
carbon belowground.10

Isotopic studies of the role of leaf litter input into the mineral soil has yielded a better
understanding of carbon cycling and stabilization at the soil surface and carbon trans-
ported to deeper soil horizons. Bird et al. (2008) found more than half of the needle car-
bon had been lost from the top 5 cm of soil after 1.5 years, similar to loss rates reported
by Müller et al. (2009). Furthermore, the 13C of decomposed leaf litter remained in the15

light fraction of pools and was not physically protected within soil aggregates. Similarly,
Rubino et al. (2010) found in a decomposition experiment with 13C-labeled litter that
up to one third of the litter mass was lost as CO2, while the rest was transported into
the mineral soil. Within the mineral soil, Kramer et al. (2010) found that microbes used
<10% of leaf litter carbon for respiration or growth and did not utilize dissolved organic20

carbon (DOC) from the organic horizon as a carbon source.
The carbon in the leaf litter can be characterized to have three fates: initial mineral-

ization by microbes and soil fauna, stored as readily available substrate in the upper
mineral horizons, and transported to deeper horizons (Froegberg et al., 2007; Sander-
man and Amundson, 2008; Kindler et al., 2011).25

Carbon compounds from aboveground litter are one source of DOC (Kindler et al.,
2011), and roots are a significant, if not the predominant, contributor as well (Kramer
et al., 2010). Up to 70% of the DOC originating from leaf litter can be degraded within
four weeks (Müller et al., 2009), which illustrates how fast this pool turns over and
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supports the notion that DOC production is the rate-limiting step of soil respiration
(Bengtson and Bengtsson, 2007; Cleveland et al., 2007). Because of the high turnover
of DOC (2 to 3 times per day; Bengtson and Bengtsson, 2007; Giesler et al., 2007;
Kalbitz et al., 2000) it is difficult to measure concentrations and isotopic composition in
the litter layer, though general patterns have been observed. Sanderman et al. (2008)5

found a pattern of DOC 13C enrichment with depth. Using batch adsorption experi-
ments, they found that the 13C enrichment of DOC with depth was best explained by
exchange of organic matter between the liquid and the solid phase, as the soil solu-
tion moves through the soil profile, independent of net adsorption or net desorption of
DOC. This finding substantiates the hypothesis that the mechanism behind DOC 13C10

enrichment with depth is a continuous exchange of carbon in the soil solution and older
organic matter in the soil. Regardless whether the carbon originates from aboveground
or belowground litter, DOC is an important driver of rapid carbon cycling belowground
and also a fast moving pool of old and new carbon that contributes to the isotopic
signature of stabilized soil carbon.15

Microbial communities are also regulated by litter input (Eilers et al., 2010), and com-
munities can change rapidly depending on the available substrate (Cleveland et al.,
2007). Through stable isotope probing it is now possible to characterize microbial
communities utilizing carbon from litter. Using 13C-enriched litter in a poplar plantation,
Rubino et al. (2010) have shown that Gram-positive bacteria are primarily involved in20

litter degradation compared to other microbial groups (Gram-negative bacteria, actino-
mycetes and fungi). This finding was based on detection of significant levels of 13C in
all PLFAs, indicating high amounts of litter C incorporated into the whole soil microbial
biomass. Gram-positive bacteria were the dominant group in the soil and contained
around 75% litter-derived C assimilated by the soil microbial biomass after one year.25

However, after 11 months, similar δ13C values across all the microorganisms illustrated
either (1) a similar litter C incorporation by all microbial communities, or (2) that the sys-
tem had been at steady state after 11 months such that incorporated litter C was being
recycled within the soil microbial biomass.
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Uncertainty still remains in microbial community analysis and potential carbon
sources. For example, Kramer et al. (2010) showed that the source of carbon in the
biomarkers present in their incubation studies did not originate from litter or SOM,
leaving only roots as the primary source. Using fatty acid methyl ester isotopic compo-
sition, Lerch et al. (2011) found a switch in the active microbial community from Gram-5

negative bacteria initially, which consumed the easily degradable and water-soluble
substrates, to Gram-positive bacteria and fungi later. Based on their isotopic measure-
ments, Lerch et al. (2011) also suggested that there is a potential lag between changes
in the bacteria actually consuming carbon belowground, and the community structure
as a whole.10

5 Physical interactions in soil-atmosphere CO2 exchange

Section 4 illustrates the complexity of carbon sources belowground; yet, understanding
how C is released from a stabilized state in soil and released as CO2 is a priority to
determine soil as a net source or sink of C to the global greenhouse budget. Mea-
suring soil respiration is arguably the best method to quantify the release of active C15

from these belowground organic and mineral sources. Thus, the C isotopic signature
of soil respiration (δ13CRs

) can be a promising tool to partition C sources of soil respi-
ration, monitor belowground biological activity, and potentially identify and quantify the
mechanisms of C stabilization and release. One of the inherent limitations of isotopic
partitioning of respiration is the similar isotopic composition of potential sources, thus,20

achieving precise estimates of the δ13C of soil CO2 efflux (δ13CRs
) requires the reduc-

tion of measurement artifacts as well as validation of measurement assumptions. This
is why it is important to recognize the potential physical interactions of δ13CRs

with the
soil and the potential outcomes which can manifest in isotopic fractionation, time lags
from production sources, and non-steady-state events.25

There are several physical processes that occur along the pathway of soil CO2 from
soil to surface which can lead to fractionation including physical and chemical effects on
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gas transport as well as CO2 production rates and near-surface atmospheric bound-
ary conditions (Severinghaus et al., 1996; Bowling et al., 2009; Nickerson and Risk
2009a,b; Kayler et al., 2010b; Moyes et al., 2010; Gamnitzer et al., 2011). Gaseous
diffusion of CO2 can lead to the most 13C-enriched signal when Knudsen diffusion
(where diffusive transport is dominated by the collision of CO2 molecules with pore5

walls instead of other gas molecules) dominates, or it can lead to incorrect estimates
of fractionation if transport is not at steady state (Bowling et al., 2009; Kayler et al.,
2010b). Correctly or not (Clifford and Hillel, 1986), gaseous diffusion is assumed to
dominate soil gas transport. However, estimates of the diffusion coefficient (Ds) are
often a parameter of high uncertainty. In a detailed analysis of soil production esti-10

mates made from profile CO2 measurements, Koehler et al. (2010) demonstrated that
the models used to interpolate diffusion over soil depth are highly dependent on the
functions used to describe the distribution of Ds. Furthermore, they suggest that water
within soil aggregates may result in CO2 storage that is not accounted for in current
models. Models of diffusion that incorporate the van Genuchten function of soil hy-15

draulic conductivity (van Genuchten, 1980) have shown initial success in accounting
for soil moisture effects on diffusion (Resurreccion et al., 2008). However, these strate-
gies have yet to be developed for isotopic fractionation and mixing.

Transport of CO2 to the soil surface induced by pressure pumping during fluctuations
in wind speed or background atmospheric conditions can be a considerable compo-20

nent of total surface flux (Lewicki et al., 2003; Takle et al., 2003, 2004; Poulsen and
Møldrup, 2006). Only a few studies exist that describe δ13C behavior of CO2 during
advective gas transport. A sustained bulk flow, due to advection, will transport 13CO2
and 12CO2 at the same rate leading to a δ13C of CO2 at the surface that is similar
to the soil gas (Camarda et al., 2007). However, advection due to small pressure25

perturbations associated with chamber placement on the surface could also result in
a higher representation of 13C-enriched CO2 from the soil pore space in the mixture
that arrives in the surface chamber leading to biased estimates of δ13CRs

(Kayler et
al,. 2010b; Phillips et al., 2010). A difficult challenge is quantifying and modeling soil
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surface concentrations (Moyes et al. 2010; Kayler et al., 2011). The dynamics at the
surface can be attributed to potential evening concentration build-up, or fluctuations in
surface wind speed. Indeed, in a well-controlled study, Moyes et al. (2010) found the
physical dynamics at the soil surface to drive the diel fluctuations at their site. Evidence
also exists of bias in estimates of δ13CRs

due to advection from wind events in snow in5

a subalpine forest (Bowling et al., 2009). However, there are very few isotopic studies
that have observed and quantified the effects of alternative gas transport mechanisms
in soil nor, for that matter, have corrections been developed.

It is clear that gas transport can have a strong impact on the relative gradient be-
tween 13CO2 and 12CO2 in the soil profile, but gradients in soil temperature and water10

vapor can also result in changes in the concentration gradient, independent of diffu-
sive or advective transport mechanisms. In the case of temperature, the lighter isotope
tends to move toward the warmer end of the gradient, while the heavier isotope moves
toward the cooler end (Grew and Ibbs, 1952). Likewise, an enrichment in soil gas iso-
topic composition occurs with an increase in water vapor flux from soil (Severinghaus15

et al., 1996) and has been calculated to 13C fractionation of CO2 of 0.12‰ (Kayler
et al., 2011). Moreover, in the same study, several estimates of δ13CRs

were driven out
of steady state by the soil temperature gradient, which can be corrected for (Severing-
haus et al., 1996). These findings are based on discrete measurement of δ13CRs

and
the dominant factors that impact isotope fractionation during 13CO2 efflux may be fur-20

ther resolved when continuous measurements of both δ13CRs
and soil physical factors

are analyzed.
Although it has been known that these fractionation mechanisms exist, the problem

remains how to recognize them in the field. This is difficult to overcome when rely-
ing solely on the flux off the soil surface, as with chamber measurements, because25

the information contained in this flux is the end-product of many processes occurring
belowground, processes that are assumed to be at steady-state during the measure-
ment period (Livingston et al., 2005). To account for this black box approach, dy-
namic production-transport models are used, but these do not account for most of the
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potential fractionation mechanisms described previously, nor do they include the un-
certainty surrounding the parameters (e.g. diffusion) used to model soil gas isotopic
fractionation and transport. Subsurface gas measurements have shown promise for
achieving robust estimates of δ13CRs

, and allowing analysis for fractionation and val-
idation of steady-state assumptions (Andrews et al., 2000; Steinmann et al., 2004;5

Kayler et al., 2008, 2010b; Moyes et al., 2010; Kayler et al., 2011). However, questions
still remain concerning this approach. Is, for instance, the flux from the litter layer well
represented? Or, is the assumption of a homogenously mixed source gas realistic?
Related to this latter point is the use of isotopic mixing models. Kayler et al. (2010c)
have shown that respiration measurements, such as from soil, tend to be more accu-10

rate and precise when the Miller-Tans model used with the geometric mean regression
is applied to the data, because of the relatively large measurement error that occurs
with measuring high CO2 concentration gas. The Keeling mixing models used with
chambers have also been shown to have a bias that results in enriched estimates
of δ13CRs

with increasing sampling time (Nickerson and Risk, 2009b). Until a robust15

method for measuring δ13CRs
is developed that accounts for these physical processes,

future studies will need to incorporate all three approaches: soil chamber, CO2 profile
and transport-production models (e.g., Moyes et al., 2010).

Physical isotopic fractionation and mixing processes do not occur independently, and
they often interact with changes in soil biological processes posing a further challenge20

to studies of δ13CRs
. For example, changes in rates of production also alter the isotopic

signal at the soil surface, the faster diffusing 12CO2 isotopologue arrives at equilibrium
first, thus, an increase in production results in a depleted signal and a decrease in
production results in an enriched signal (Amundson et al., 1998; Nickerson and Risk,
2009a). The way forward in δ13CRs

research is to account for these effects associated25

with soil physical properties, so that biological phenomena related to the soil-plant-
atmosphere continuum can be characterized accurately.
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6 Conclusions and outlook

This review has aggregated the complex meshwork of carbon transformation and trans-
port processes in the plant-soil-atmosphere continuum and their implications for carbon
isotopic signatures of the different compounds at different stages and locations (Fig. 4).
It has given evidence of the tight coupling of processes in the plant-soil system, which5

calls for more integrated multidisciplinary approaches towards understanding plant and
ecosystem C dynamics, combining the fields of (eco)physiology, microbiology and soil
sciences. Furthermore, this review has demonstrated that research using information
from C isotopes is a powerful tool permitting both tracing of C molecules and an in-
tegrated view of physical, chemical and biological processes in ecosystems across10

space and time. However, the review has also shown the current limitations and fron-
tiers in the field, indicating that multiple interactions between biochemical processes at
the cellular level, whole-plant physiology including plant-internal C translocation, biotic
interactions as well as physiological and physical fractionation steps may complicate
the interpretation of isotopic signatures at the plant and ecosystem scale. Here, tracer15

experiments using highly 13C-enriched or depleted substrates have provided and will
yield novel insights, especially when combined with the recent developments in in-
strumentation, including laser absorption spectroscopy, compound-specific C isotope
analysis and nanoSIMS, i.e. sary ion mass spectrometry, which allows determination
of stable isotope ratios at the nanometer scale.20

Amongst the emerging research questions that may need to be addressed in the
near future we highlight the following:

1. How do environmental factors and plant physiology affect post-carboxylation C
isotope fractionation? How do changes in these fractionation processes translate
into metabolic flux information?25

2. How do changes in metabolic fluxes scale to ecosystem C fluxes?

3. What is the relationship between the age of plant C stores and their remobilization
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potential, and how is it affected by plant age, phenology, and environmental con-
ditions?

4. What processes determine the coupling of photosynthesis and respiration, es-
pecially between canopy and soil? What is the role of the transfer of C via
sugars in the phloem versus indirect signaling effects (including pressure con-5

centration waves)? Are such effects universal or do they differ between plant
species/functional types and seasons?

5. What is the role of physical (diffusion, dissolution) and physiological (re-fixation)
processes as co-determinants of δ13C measured in plant- and soil-respired CO2
and how do these processes affect isotopic time lags between photosynthesis10

and respiration?

6. How does environmental stress affect C fluxes in the plant-soil system?

7. How pronounced is the upward CO2 transport from roots to aboveground plant
organs across plant species/functional types and seasons, and how does it affect
plant and ecosystem C dynamics and C isotope signatures?15

8. How strongly do plant-microbe interactions and related priming effects influence
SOM turnover, C retention in microbial biomass and SOC isotope composition?
How much are they determined by vegetation composition and how are they mod-
ified by changing environmental conditions?

Addressing these questions with the emerging technologies will likely permit major20

progress towards our understanding of environmental effects on C uptake, allocation,
storage and release in the plant-soil system and thereby contribute to improving our
projections of the C cycle in a rapidly changing environment.
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N. Brüggemann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

etry in cattle dung carbon cycling studies, Rapid Commun. Mass Sp., 24, 495–500, 2010.
Duranceau, M., Ghashghaie, J., Badeck, F., Deleens, E., and Cornic, G.: δ13C of CO2 respired

in the dark in relation to delta 13C of leaf carbohydrates in Phaseolus vulgaris L. under
progressive drought, Plant Cell Environ., 22, 515–523, 1999.

Dyckmans, J., Scrimgeour, C. M., and Schmidt, O.: A simple and rapid method for labelling5

earthworms with 15N and 13C, Soil Biol. Biochem., 37, 989–993, 2005.
Ehleringer, J. R., Buchmann, N., and Flanagan, L. B.: Carbon isotope ratios in belowground

carbon cycle processes, Ecol. Appl., 10, 412–422, 2000.
Eilers, K. G., Lauber, C. L., Knight, R., and Fierer, N.: Shifts in bacterial community structure

associated with inputs of low molecular weight carbon compounds to soil, Soil Biol. Biochem.,10

42, 896–903, 2010.
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Lehmeier, C., Lattanzi, F., Schäufele, R., Wild, M., and Schnyder, H.: Root and shoot respiration10

of perennial ryegrass are supplied by the same substrate pools: assessment by dynamic
13C labeling and compartmental analysis of tracer kinetics, Plant Physiol., 148, 1148–1158,
2008.
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N. Brüggemann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

iol., 113, 469–477, 1997.
Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M.: Root exudation and rhizosphere

biology, Plant Physiol., 132, 44–51, 2003.
Wan, S. Q. and Luo, Y. Q.: Substrate regulation of soil respiration in a tallgrass prairie:

results of a clipping and shading experiment, Global Biogeochem. Cy., 17, 1054,5

doi:10.1029/2002gb001971, 2003.
Wardlaw, I.: Effect of water stress on translocation in relation to photosynthesis and growth, II.

Effect during leaf development in Lolium temulentum, Aust. J. Biol. Sci., 22, 1–16, 1969.
Warren, C. R.: Stand aside stomata, another actor deserves centre stage: the forgotten role of

the internal conductance to CO2 transfer, J. Exp. Bot., 59, 1475–1487, 2008.10

Warren, C. R. and Adams, M. A.: Internal conductance does not scale with photosynthetic
capacity: implications for carbon isotope discrimination and the economics of water and
nitrogen use in photosynthesis, Plant Cell Environ., 29, 192–201, 2006.

Werner, C.: Do isotopic respiratory signals trace changes in metabolic fluxes?, New Phytol.,
186, 569–571, 2010.15

Werner, C. and Gessler, A.: Diel variations in the carbon isotope composition of respired CO2
and associated carbon sources: a review of dynamics and mechanisms, Biogeosciences
Discuss., 8, 2183-2233, doi:10.5194/bgd-8-2183-2011, 2011.

Werth, M. and Kuzyakov, Y.: Root-derived carbon in soil respiration and microbial biomass
determined by 14C and 13C, Soil Biol. Biochem., 40, 625–637, 2008.20

Werth, M. and Kuzyakov, Y.: Three-source partitioning of CO2 efflux from maize field soil by
13C natural abundance, J. Plant Nutr. Soil Sc., 172, 487–499, 2009.

Werth, M. and Kuzyakov, Y.: 13C fractionation at the root-microorganisms-soil interface: a re-
view and outlook for partitioning studies, Soil Biol. Biochem., 42, 1372–1384, 2010.

Whipps, J. M.: Carbon economy, in: The Rhizosphere, edited by: Lynch, J. M., Whiley, Chich-25

ester, 59–97, 1990.
Wiebe, H. H.: Photosynthesis in wood, Physiol. Plantarum, 33, 245–246, 1975.
Wieser, G. and Bahn, M.: Seasonal and spatial variation of woody tissue respiration in a Pinus

cembra tree at the alpine timberline in the Central Austrian Alps, Trees-Struct. Funct., 18,
576–580, 2004.30

Wingate, L., Ogée, J., Burlett, R., Bosc, A., Devaux, M., Grace, J., Loustau, D., and Gessler, A.:
Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope sig-
nals of stem, soil and ecosystem respiration, New Phytol., 188, 576–589, 2010.

3690

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/3619/2011/bgd-8-3619-2011-print.pdf
http://www.biogeosciences-discuss.net/8/3619/2011/bgd-8-3619-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2002gb001971


BGD
8, 3619–3695, 2011

Plant-soil-
atmosphere C
isotope fluxes
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N. Brüggemann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 1. Summary of the plant-related processes that potentially influence the carbon isotopic
composition of organic matter and CO2. Carbon isotope fractionation and other processes
(i.e. mixing of pools), which influence the isotope composition are listed on the right side of
the figure. In addition to the listed fractionation processes, the carbon isotope composition
of atmospheric CO2 influences δ13C of organic matter. The figure is adapted from Gessler
et al. (2009b).
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Fig. 2. Seasonal changes in time lag measured by tracing variations in δ13C at natural abun-
dance level (Wingate et al., 2010; Kuptz et al., 2011a) or after 13CO2 pulse-labeling (Plain et al.,
2009) in soil respiration and trunk respiration (at 1 m height; Kuptz et al., 2011a). Average val-
ues were calculated based on monthly ranges reported in Wingate et al. (2010).
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Fig. 3. Estimates of respiration fractionation from different experimental approaches (grey bars:
from C3 plants; dark grey bars: Rayleigh distillation methods, black bars: C4 plants). The
dashed line is the mean of all estimates. Data sources: Werth and Kuzyakov (2010); Wynn
et al. (2005, 2006); Diochon and Kellman (2008).
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Fig. 4. Overview of processes and factors determining the isotope signature of C pools and
fluxes in space and time in the plant-soil-atmosphere continuum. White boxes represent pools,
gray boxes show fractionation or other processes determining the C isotope composition of the
involved compounds, and orange boxes depict control factors. The numbers in parentheses
refer to the respective chapters of the review.
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