

Supplementary material: Calculation of Fe(II) Half Lives

2 Sarthou, G., E. Bucciarelli, F. Chever, S. P. Hansard, M. Gonzalez-Davila, J. M. Santana-
6 Casiano, F. Planchon, S. Speich.

4

The calculation of Fe(II) half lives was done following the models of Santana-Casiano et
6 al. (2005, Model I) and Trapp and Millero (2007, Model II) at 4°C.

8 In Model I, the inorganic species taken into account are Fe^{2+} , $\text{Fe}(\text{OH})^+$, $\text{Fe}(\text{OH})_2$,
Fe(CO_3), $\text{Fe}(\text{CO}_3)_2$, and $\text{Fe}(\text{CO}_3)(\text{OH}^-)$.

10 In Model II, the inorganic species taken into account are Fe^{2+} , $\text{Fe}(\text{OH})^+$, $\text{Fe}(\text{OH})_2$, and
Fe(CO_3)₂.

12 Input variables include ionic strength (I), pH, and dissolved inorganic carbon, all obtained
by CTD or shipboard measurements. CO_3^{2-} is calculated using data of alkalinity and total
14 dissolved inorganic carbon and the set of constants by Mehrbach et al (1973) after
Dickson and Millero (1987). H_2O_2 concentrations were measured on board (Bucciarelli et
16 al., in prep.). The water dissociation constant K_w is calculated as a function of
temperature (T) and ionic strength (I) (Millero et al., 1987). The OH^- concentration (free
18 scale) is then given by $K_w [\text{H}^+]^{-1}$.

20 The overall rate of oxidation of Fe(II) is given by:

$$\frac{d[\text{Fe(II)}]}{dt} = -[\text{Fe(II)}] \left([\text{O}_2] \sum_i \alpha_i k_{i,\text{O}_2} + [\text{H}_2\text{O}_2] \sum_i \alpha_i k_{i,\text{H}_2\text{O}_2} + [\text{O}_2^-] \sum_i \alpha_i k_{i,\text{O}_2^-} \right) \quad (2)$$

22 for Model I. The superoxide concentrations are assumed to equal $[\text{O}_2]/1000$ (Santana-
Casiano et al., 2005).

And by:

$$2 \quad \frac{d[Fe(II)]}{dt} = -[Fe(II)] \left([O_2] \sum_i \alpha_i k_{i,O_2} + [H_2O_2] \sum_i \alpha_i k_{i,H_2O_2} \right) \quad (3)$$

for Model II. Here the oxidation by the anion superoxide is assumed inside the oxygen

4 contribution.

6 k_{i,O_2} , k_{i,H_2O_2} , and k_{i,O_2^-} are the oxidation rate constants of the individual species for
8 oxidation by oxygen, hydrogen peroxide (the stoichiometry factor of 2 is already
considered in data from Gonzalez-Dávila et al., 2005), and superoxide, respectively.

10

The distribution coefficient of each inorganic Fe(II) species in seawater is given by :

$$10 \quad \alpha_i = \frac{K'_i [i]}{\left(1 + \sum_i K'_i [i]\right)} \quad (1)$$

where [i] is the inorganic ligand concentration and K'_i is the conditional stability constant

12 for each species.

14 Finally, the Fe(II) half life is given by:

$$16 \quad t_{1/2} = \frac{\ln(2)}{\left(k'_{O_2} + k'_{H_2O_2} + k'_{O_2^-}\right)} \quad (4)$$

18 where $k'_{O_2} = [O_2] \sum_i \alpha_i k_{i,O_2}$, $k'_{H_2O_2} = [H_2O_2] \sum_i \alpha_i k_{i,H_2O_2}$, and $k'_{O_2^-} = [O_2^-] \sum_i \alpha_i k_{i,O_2^-}$

for Model I, and by:

$$18 \quad t_{1/2} = \frac{\ln(2)}{\left(k'_{O_2} + k'_{H_2O_2}\right)} \quad (5)$$

for Model II.

2 1. Calculation of K'_i

For both models, the conditional stability constants for each species (K'_i) are calculated
4 as a function of T and I using the equations given by Trapp and Millero (2007, corrected
via pers. com.):

$$6 \quad \log_{10} K_i^* = \log_{10} K_i + A I + B I^{0.5} + C I^2 + D \frac{1}{T} + E \ln(T) \quad (16)$$

with

	Fe(OH) ⁺	Fe(OH) ₂	Fe(CO ₃) ²⁻	Fe(CO ₃) ₂
Log Ki	-218.186	-267.22	26.2876	6.7908
A	0.5	0.47	0.7	0.029
B	-1.1	-1.93	-2	-2.287
C	-0.02	-0.03	-0.031	-0.026
D	10120.8	12411.4	-2029.8	-88.68
E	33.1239	40.8906	-2.4676	0.1116

For the species $\text{Fe}(\text{CO}_3)\text{OH}^-$, $\log K = 8.90$ at 25°C and the same temperature coefficient as for $\text{Fe}(\text{CO}_3)_2$ is used (González-Dávila et al., 2005).

12 2. Calculation of k_{i,O_2}

For Model I, the following equations are used (rate constants in $M^{-1} s^{-1}$).

$$14 \quad \log k_{Fe^{2+}, O_2} = 0.544 - 5861(\frac{1}{T} - \frac{1}{298.15}) \quad (5)$$

$$\log k_{FeOH, O_2} = 2.38 - 5861(\frac{1}{T} - \frac{1}{298.15}) \quad (6)$$

$$16 \quad \log k_{Fe(OH)_2, O_2} = 6.06 - 5861(\frac{1}{T} - \frac{1}{298.15}) \quad (7)$$

$$\log k_{Fe(CO_3), O_2} = 0.6 - 5861(\frac{1}{T} - \frac{1}{298.15}) \quad (7)$$

$$18 \quad \log k_{Fe(CO_3)_2, O_2} = 3.69 - 5861(\frac{1}{T} - \frac{1}{298.15}) \quad (8)$$

$$\log k_{Fe(CO_3)(OH), O_2} = 1.87 - 5861(\frac{1}{T} - \frac{1}{298.15}) \quad (9)$$

2

For Model II, the following equations are used (rate constants in $M^{-1} \text{ min}^{-1}$).

$$4 \quad \ln k_{Fe^{2+}, O_2} = 21 + 0.4I^{0.5} - 5562\frac{1}{T} \quad (5)$$

$$\ln k_{FeOH, O_2} = 17.1 + 1.5I^{0.5} - 2608\frac{1}{T} \quad (6)$$

$$6 \quad \ln k_{Fe(OH)_2, O_2} = -6.3 + 3.8I^{0.5} - 6211\frac{1}{T} \quad (7)$$

$$\ln k_{Fe(CO_3)_2, O_2} = 31.4 + 5.6I^{0.5} - 6698\frac{1}{T} \quad (8)$$

8

3. Calculation of k_{i, H_2O_2}

10 For both models, the following equations are used (rate constants in $M^{-1} \text{ s}^{-1}$) from Gonzalez-Davila et al (2005).

$$12 \quad \ln k_{Fe^{2+}, H_2O_2} = 38.0 - 9529\frac{1}{T} \quad (17)$$

$$\ln k_{FeOH, H_2O_2} = 24.2 - 2757\frac{1}{T} \quad (18)$$

$$14 \quad \ln k_{Fe(OH)_2, H_2O_2} = 44.4 - 6658\frac{1}{T} \quad (19)$$

$$\ln k_{Fe(CO_3), H_2O_2} = 33.2 - 6757\frac{1}{T} \quad (20)$$

$$16 \quad \ln k_{Fe(CO_3)_2, H_2O_2} = 65.6 - 14460\frac{1}{T} \quad (20)$$

These equations explicitly correct for the effects of temperature on decay rates and 18 because their experiments were done in seawater ($I=0.74$), no further corrections for relatively minor ionic strength differences were made. This treatment assumes that 20 competition between O_2 and H_2O_2 is negligible (cf. Gonzalez-Davila et al., 2006), and

that pseudofirst-order decay constants are additive. We further assume that aside from the
 2 effect of pressure on K_w , the effect of pressure on other equilibrium and rate constants is
 negligible.

4

4. Calculation of k_{i,O_2^-}

6 For Model I, the following equations are used (rate constants in $M^{-1} s^{-1}$).

$$\log k_{Fe^{2+}, O_2^-} = 3.84 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right) \quad (5)$$

$$8 \quad \log k_{FeOH, O_2^-} = 4.96 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right) \quad (6)$$

$$\log k_{Fe(OH)_2, O_2^-} = 12.18 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right) \quad (7)$$

$$10 \quad \log k_{Fe(CO_3)_2, O_2^-} = 2.94 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right) \quad (7)$$

$$\log k_{Fe(CO_3)_2, O_2^-} = 9.6 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right) \quad (8)$$

$$12 \quad \log k_{Fe(CO_3)(OH), O_2^-} = 2.54 - 282 \left(\frac{1}{T} - \frac{1}{298.15} \right) \quad (9)$$

14

References

2 Dickson, A.G. and Millero, F.J., A comparison of the equilibrium constants for the
dissociation of carbonic acid in seawater media, Deep-Sea Res. I, 34, 1733-1743,
4 1987.

6 Gonzalez-Davila, M., Santana-Casiano, J.M. and Millero, F.J., Oxidation of iron (II)
nanomolar with H₂O₂ in seawater, Geochim. Cosmochim. Acta, 69, 83-93, 2005.

8 Gonzalez-Davila, M., Santana-Casiano, J.M. and Millero, F.J., Competition between O₂
and H₂O₂ in the oxidation of Fe(II) in natural waters, J. Sol. Chem., 35, 95-111,
2006.

10 Mehrbach, C., Culberson, C.H., Hawlay, J.E. and Pytkowicz, R.M., Measurement of the
apparent dissociation constants of carbonic acid in seawater at atmospheric
12 pressure, Limnol. Oceanogr., 18, 897-907, 1973.

14 Millero, F.J., Sotolongo, S. and Izaguirre, M., The oxidation kinetics of Fe(II) in
seawater, Geochim. Cosmochim. Acta, 51, 793-801, 1987.

16 Santana-Casiano, J.M., Gonzalez-Davila, M. and Millero, F.J., Oxidation of nanomolar
levels of Fe(II) with oxygen in natural waters, Environ. Sci. Technol., 39, 2073-
2079, 2005.

18 Trapp, J.M. and Millero, F.J., The oxidation of iron(II) with oxygen in NaCl brines, J.
Sol. Chem., 36, 1479-1493, 2007.

20