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Abstract

A complete, well-preserved record of the Cenomanian/Turonian (C/T) Oceanic Anoxic
Event 2 (OAE-2) was recovered from Demerara Rise in the southern North Atlantic
Ocean (ODP site 1260). Across this interval, we determined changes in the stable car-
bon isotopic composition of sulfur-bound phytane (δ13Cphytane), a biomarker for pho-5

tosynthetic algae. The δ13Cphytane record shows a positive excursion at the onset of
the OAE-2 interval, with an unusually large amplitude (∼7 ‰) compared to existing
C/T proto-North Atlantic δ13Cphytane records (3–6 ‰). Overall, the amplitude of the ex-

cursion of δ13Cphytane decreases with latitude. Using reconstructed sea surface tem-
perature (SST) gradients for the proto-North Atlantic, we investigated environmental10

factors influencing the latitudinal δ13Cphytane gradient. The observed gradient is best
explained by high productivity at DSDP Site 367 and Tarfaya basin before OAE-2, which
changed in overall high productivity throughout the proto-North Atlantic during OAE-2.
During OAE-2, productivity at site 1260 and 603B was thus more comparable to the
mid-latitude sites. Using these constraints as well as the SST and δ13Cphytane-records15

from Site 1260, we subsequently reconstructed pCO2 levels across the OAE-2 inter-
val. Accordingly, pCO2 decreased from ca. 1750 to 900 ppm during OAE-2, consistent
with enhanced organic matter burial resulting in lowering pCO2. Whereas the onset
of OAE-2 coincided with increased pCO2, in line with a volcanic trigger for this event,
the observed cooling within OAE-2 probably resulted from CO2 sequestration in black20

shales outcompeting CO2 input into the atmosphere. Together these results show that
the ice-free Cretaceous world was sensitive to changes in pCO2 related to perturba-
tions of the global carbon cycle.

1 Introduction

The Mid-Cretaceous is characterized by an overall warm climate (Huber et al., 2002),25

punctuated by several colder periods (Forster et al., 2007; e.g., Bornemann et al.,
6192

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/6191/2011/bgd-8-6191-2011-print.pdf
http://www.biogeosciences-discuss.net/8/6191/2011/bgd-8-6191-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 6191–6226, 2011

Latitudinal
differences in the
amplitude of the

OAE-2

E. C. van Bentum et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2008). This overall warm climate probably resulted from elevated atmospheric green-
house gas concentrations, as atmospheric pCO2 levels are estimated to have been
3–8 times higher than pre-industrial values (Schlanger et al., 1987; Berner, 1992; Hu-
ber et al., 1999; Berner and Kothavala, 2001; Wilson et al., 2002; Barclay et al., 2010).
The most widely accepted explanations for these high atmospheric pCO2 levels are5

increased rates of seafloor spreading and enhanced plate margin volcanism (e.g. Kerr,
1998; Turgeon and Creaser, 2008; Jenkyns Hugh, 2010).

Superimposed on this period of high atmospheric pCO2 levels, several short lived
episodes of increased organic matter (OM) deposition, so-called oceanic anoxic events
(OAEs) (Schlanger and Jenkyns, 1976; Arthur et al., 1988), occurred. Generally, in ma-10

rine settings this enhanced OM burial during OAEs is thought to be the result of either
enhanced bioproductivity or increased anoxia or a combination of these two factors
(Kuypers et al., 2002b). One of the most pronounced and widespread OAEs is OAE-2,
which occurred at the Cenomanian/Turonian boundary (C/T; 93.5 Ma, Gradstein et al.,
2004) and which is also known as the Cenomanian Turonian Boundary Event (CTBE).15

A positive carbon isotopic excursion accompanying OAE-2 has been observed both
in marine carbonates and in marine and terrestrial OM. This excursion has been at-
tributed to enhanced OM burial (Arthur et al., 1988), as organism preferentially take up
light carbon 12C leaving the remaining carbon enriched in 13C.

Since phytoplankton fixes dissolved inorganic carbon (DIC) during photosynthesis20

the export of phytoplanktic biomass to deeper water and the subsequent burial act
as a biological carbon pump. Due to the exchange of CO2 between atmosphere and
ocean, this biological carbon pump effectively removes CO2 from the atmosphere. The
strength of this biological pump, therefore, modulates greenhouse climate (Arthur et
al., 1988; Berner, 1992; Royer et al., 2007). During OAE-2, the increased burial of25

OM likely resulted in a more efficient carbon pump, lowering pCO2 levels. Recently
a reconstruction based on the stomatal index of land plants demonstrated that during
OAE-2, two intervals of enhanced OM burial and associated pCO2 decreases occurred
(Barclay et al., 2010). This decrease in pCO2 within OAE-2 was initially demonstrated
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by the observed larger amplitude of the carbon isotopic excursion when measured on
organics compared to carbonates, since the rate of isotopic fractionation during car-
bon fixation by phytoplankton decreases at lower pCO2 values (Freeman and Hayes,
1992). A reduction in pCO2 of about 300 ppm during the OAE-2 interval was calculated
using the isotopic values of biomarkers for photosynthetic algae and cyanobacteria5

(Sinninghe Damsté et al., 2008). Such pCO2 reconstructions based on isotopic frac-
tionation rely on assumptions for paleoproductivity, temperature and equilibrium CO2
exchange between ocean water and atmosphere, and, therefore, should be considered
as estimates.

A short-lived cooling within OAE-2, called the Plenus event has been observed at10

several locations (Gale and Christensen, 1996; Voigt et al., 2004; Forster et al., 2007).
The Plenus cold event is probably related to lower pCO2 levels at that time (Sinninghe
Damsté et al., 2010), which would be in line with the two stomata based intervals of
lower pCO2 coinciding with maxima in the carbon isotope excursion (Barclay et al.,
2010). However, this carbon isotopic record was measured on bulk organic matter,15

which might have been affected by compositional changes as well. Preferably recon-
structed temperature and pCO2 records should be based on the same sedimentary
record.

Here we compare the observed change in the compound specific isotope record of
sulfur-bound phytane (δ13Cphytane) at Demerara Rise with other published δ13Cphytane20

records from the proto-North Atlantic along a latitudinal gradient. Observed differences
in the amplitude of the δ13Cphytane excursion during OAE-2 are subsequently discussed
in terms of variations in productivity and [CO2 (aq)]. The boundary conditions from
this comparison are used to reconstruct atmospheric pCO2 levels across the OAE-2
interval.25
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2 Setting and stratigraphy

During the Cenomanian-Turonian, Demerara Rise was situated in the tropical region of
the proto-North Atlantic off the coast of Suriname (Fig. 1). As Demerara Rise was a
submarine plateau at the time, the Cenomanian-Turonian sediments at ODP Site 1260
were most likely deposited at intermediate water depth, probably between 500–1500 m5

(Erbacher et al., 2004b; Suganuma and Ogg, 2006). The Cenomanian–Coniacian sed-
iments of the studied sequence are mostly dark, laminated, carbonaceous, calcareous
mud- to marlstones (black shales), interbedded with occasional thin calcareous layers
and sandy limestones (Erbacher et al., 2004a). OM from Demerara Rise is thermally
immature with organic carbon contents of up to 20 % and mainly of marine origin (Er-10

bacher et al., 2004a, b; Forster et al., 2004; Meyers et al., 2006). Since Demerara Rise
experienced anoxic bottom water conditions during most of the Cenomanian – Conia-
cian (Erbacher et al., 2004b; Suganuma and Ogg, 2006; van Bentum et al., 2009) the
OM is excellently preserved. Furthermore, in contrast to the previously drilled Demer-
ara Rise Site 144 (DSDP), where only part of the OAE-2 was recovered, the ODP Site15

1260 cores span the entire OAE-2 interval (Erbacher et al., 2004a).
The exact stratigraphic position of OAE-2 was determined using the positive isotope

excursion of organic carbon (Fig. 2a; Forster et al., 2007). This carbon isotope excur-
sion accompanying OAE-2 can be divided into three phases (cf. Kuypers et al., 2002a;
Tsikos et al., 2004; Forster et al., 2007). Phase A (426.41–426.21 mcd, Fig. 2a and20

b) consists of the onset of the excursion, up to the first isotopic maximum. Phase B
(426.21–425.27 mcd, Fig. 2a and b) starts with a decline in values of the stable carbon
isotopes of bulk organic carbon (δ13CTOC), followed by a second increase and ends
with an interval of steadily high δ13CTOC values. Finally, the gradual return to nearly
pre-excursion values is part of phase C (425.27–424.85 mcd, Fig. 2a and b). Phase25

A is equivalent to the “first build-up” phase of the proposed European reference sec-
tion at Eastbourne (Paul et al., 1999). The decline and second increase in phase B
correspond to the “through” and “second build-up” phase in Eastbourne, while the high
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values correspond to the “plateau” (Paul et al., 1999). Following earlier work (Kuypers
et al., 2002b; Tsikos et al., 2004; Kolonic et al., 2005) phases A and B together are
referred to as OAE-2, while phase C represents the recovery phase after the OAE-2
interval. Estimates for the duration of OAE-2 range from 200 ky to 700 ky (Arthur and
Premoli-Silva, 1982; Arthur et al., 1987; Sageman et al., 2006; Voigt et al., 2008),5

however, the recent record of Voigt et al. 2008 suggests a duration of 430–445 kyr for
OAE-2.

3 Materials and methods

Sediments used for this study were collected during Ocean Drilling Program (ODP)
Leg 207 at Site 1260 (holes A and B) on Demerara Rise (Erbacher et al., 2004a).10

Biomarkers were analyzed in sediment samples previously used to determine total
organic-carbon content (TOC), carbonate (CaCO3) content, stable carbon isotopes of
bulk organic carbon (δ13CTOC, Fig. 2a) and the TEX86 sea surface temperature proxy
(Forster et al., 2007). Sediment samples (3 to 5 g dry mass) were taken approxi-
mately every 10 cm above and below the OAE-2 black shales, while within the OAE-215

section, samples were taken every 2–5 cm. Sediments were freeze-dried, powdered
and subsequently extracted with an Accelerated Solvent Extractor (Dionex) using a
dichloromethane (DCM) – methanol mixture (9:1, v/v). Elemental sulfur was removed
from the extracts using activated copper. The extracts were then separated into apolar
and polar fractions using a column of activated alumina by elution with hexane/DCM20

(9:1, v/v) and DCM/methanol (1:1, v/v), respectively.
Raney Nickel desulfurization and subsequent hydrogenation (Sinninghe Damsté et

al., 1993) were used to release sulfur-bound biomarkers from polar fractions. To en-
sure sufficient yield this was only performed on samples that produced polar fractions
weighing >5 mg. The desulfurized fraction was separated further into apolar and polar25

fractions. The apolar fraction obtained from the desulfurized polar fraction was sepa-
rated into saturated aliphatic, unsaturated aliphatic and aromatic fractions by column
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chromatography using AgNO3-impregnated silica as the stationary phase and hexane,
hexane/DCM (9:1, v/v) and hexane/DCM (1:1, v/v) as eluents.

All fractions were analyzed on a HP gas chromatograph (GC) fitted with a flame ion-
ization detector (FID) and a sulfur-selective flame photometric detector (FPD). Sam-
ples were injected on-column, on a CP-Sil 5CB fused silica column (50 m×0.32 mm5

i.d.) with helium as carrier gas set at constant pressure (100 KPa). The oven program
started at 70 ◦C, was then heated by 20 ◦C min−1 to 120 ◦C and finally by 4 ◦C min−1 to
320 ◦C and kept at this temperature for at least 15 min. To identify compounds, samples
were measured on a GC-MS (Thermo Trace GC Ultra) with a mass range m/z 50–800
using a similar column and heating program as for the GC, however, with the carrier10

gas at constant flow.
Compound specific isotope ratios were measured using a GC isotope-ratio mass

spectrometer (HP GC coupled to a Thermo Delta-plus XL). For most GC-IRMs mea-
surements a similar column and oven program were used as for the GC and GCMS
measurements. Samples were all measured at least in duplicate and δ13C values15

are reported in the standard delta notation against the VPDB standard. IRM perfor-
mance was monitored with off line calibrated, co-injected, internal standards, standard
mixtures (both in house and Schimmelmann standard mixtures B and C) and through
the multiple analyses of samples. Accuracy and precision was around 0.3–0.6 ‰ for
phytane based on multiple analyses of samples and standards.20

4 Results and discussion

4.1 The OAE-2 carbon isotope excursion at Demerara Rise

The S-bound phytane carbon isotope (δ13Cphytane) record at Demerara Rise shows a

clear 7 ‰ excursion across the OAE-2 interval (Fig. 2b). The δ13Cphytane excursion fol-

lows the same trend as the bulk δ13CTOC record, except that δ13CTOC values are about25

2 ‰ higher than the δ13Cphytane values (Fig. 3a). Prior to the OAE-2 interval, δ13Cphytane
6197
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values are approximately −31 ‰. At the onset of the OAE-2 interval, δ13Cphytane values
rapidly rise to −26 ‰, maintaining this value until 426.2 mcd (Fig. 2b). Here a sudden
drop of more than 3 ‰ to −29 ‰, is observed, although limited to one data point. After
this, values increase again to around −26 ‰, subsequently dropping to about −28 ‰.
Due to the low OM content, δ13Cphytane could not be measured in the intercalated car-5

bonate layer between 425.96 and 425.57 mcd. Above this carbonate layer δ13Cphytane
values remain constant, at values around −24 ‰ until 425 mcd. Above the OAE-2 inter-
val, within the so-called phase C (cf. Kuypers et al., 2002a; Tsikos et al., 2004; Forster
et al., 2007) δ13Cphytane values gradually return to near pre-excursion values.

At Demerara Rise Site 1260, the bulk OM δ13C (δ13CTOC) record shows a positive10

excursion of 6.6 ‰ (Forster et al., 2007) during the OAE-2 interval. The predominantly
marine source of the OM and its low thermal maturity indicate that the rapid fluctu-
ations observed in the δ13CTOC record during the onset phase of the OAE-2 interval
(Fig. 2a) are most likely not caused by changes in OM preservation or thermal maturity
but by fluctuating inputs of terrestrial OM or, more likely, changes in the composition15

of marine OM at this location. Carbohydrates and proteins are for instance typically
enriched in 13C relative to lipids. Such variability could overprint the δ13CTOC record
(van Kaam-Peters et al., 1998; Sinninghe Damsté et al., 2002). Compound specific
isotope records, however, are unaffected by changes in the composition of OM, and
provide a more accurate representation of the true amplitude of the isotopic excursion20

during the OAE-2 interval (Fig. 2; Kuypers et al., 2002a, 2004).
At Demerara Rise, most biomarkers were sequestered in the sediment in macro-

molecular aggregates through incorporation of inorganic sulfur species during early
diagenesis (cf. Brassell et al., 1986; Sinninghe Damsté et al., 1989) as demonstrated
by the high yield after desulfurization. To measure the carbon isotopic value of these25

biomarkers, they were released by Raney Nickel desulfurization. In this way, amongst
other compounds S-bound phytane was recovered. Since S-bound phytane is derived
from marine photosynthetic algae and cyanobacteria (Koopmans et al., 1999), its sta-
ble carbon isotopic composition (δ13Cphytane) represents the weighted average of δ13C
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of marine primary producers and is not influenced by fluctuating inputs of terrestrial OM
or changes in the composition of marine OM. Preservation of isotopically heavy car-
bohydrates through sulfurization will result in more positive δ13CTOC than δ13Cphytane

values (Sinninghe Damsté et al., 1998). The observed 2 ‰ offset between δ13CTOC

and δ13Cphytane (Fig. 3) can hence be explained by the isotopic heterogeneity of ma-5

rine OM (Hayes, 1993; Schouten et al., 1998).

4.2 Latitudinal variations in the amplitude of the carbon isotope excursion

High atmospheric pCO2 levels during the Cretaceous resulted in stronger fractionation
between DIC and marine OM compared to today (Arthur et al., 1985a). Consequently,
Cretaceous OM is overall depleted in δ13C by 4–5 ‰ compared to present-day OM.10

Superimposed on this δ13C offset a positive excursion is observed, during OAE-2.
The observed amplitude of the positive δ13Cphytane excursion at Site 1260 is large in

comparison to other known OAE-2 δ13Cphytane records. Based on carbonate δ13C
records, approximately 2.5 ‰ of the OAE-2 excursion has been interpreted as the re-
sult of enhanced global OM burial, shifting the δ13C of the global carbon reservoir15

towards more positive values (Arthur et al., 1984; Schlanger et al., 1987; Jenkyns et
al., 1994; Kuypers et al., 2002b; Tsikos et al., 2004; Bowman and Bralower, 2005).
The remainder of the 6.6 ‰ excursion at Demerara Rise must, therefore, be due to
other processes. Possible causes include changes in [CO2 (aq)], changes in the δ13C
of the local inorganic carbon pool, changes in inorganic carbon speciation, changes in20

temperature and changes in marine productivity, which influence phytoplankton growth
rate and dimension (Takahashi et al., 1991; Hayes, 1993, 2001).

Carbon isotopic values of S-bound phytane from sites at four different latitudes (ODP
Site 1260, this study; sites 367 and 603B, Kuypers et al., 2002b; S57 Core, Tarfaya
Basin Tsikos et al., 2004, see Fig. 1 for paleo-locations) show that the amplitude of25

the δ13Cphytane OAE-2 excursion in the proto North Atlantic decreases towards higher

latitudes (Fig. 4). Prior to the OAE-2 interval, δ13Cphytane values at the different sites are
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rather similar (Fig. 4), with slightly more positive values at Tarfaya and more negative
values at Site 603B. During the OAE-2 excursion, all δ13Cphytane values decreased, but

all to a different extent. Consequently, the δ13Cphytane decreases by about 3 ‰ from
the equator to 30◦ N during OAE-2 (Fig. 4). With a global enrichment in the isotopic
composition of the DIC reservoir of about 2.5 ‰ (indicated by the dark grey arrow in5

Fig. 4), the latitudinal offset between the different sites has to be explained by one
of the possible additional effects mentioned previously, influencing the carbon isotopic
fractionation during algal photosynthesis.

Marine plankton in present-day oceans shows a similar, albeit more modest, de-
crease in δ13C values with increasing latitude (Rau et al., 1982, 1989; Goericke and10

Fry, 1994) (Fig. 4). To compare present day δ13CTOC values with OAE-2 δ13Cphytane
values the trend has to be offset by 1.5 ‰ (4 ‰ more negative for the offset between
total organic carbon and phytol (Schouten et al., 1998) and 2.5 ‰ towards more posi-
tive values due to the difference in the global DIC reservoir (Arthur et al., 1985b)). The
recent gradient in δ13CTOC values is thought to be primarily due to latitudinal changes15

in [CO2 (aq)] (Rau et al., 1982, 1989; Goericke and Fry, 1994), which, in turn, is mainly
controlled by the latitudinal decrease in sea surface temperatures (SST) and changes
in marine primary productivity and OM remineralization. Isotopic fractionation asso-
ciated with photosynthesis (εp) increases with increasing [CO2 (aq)]. Since CO2 dis-
solves better in colder water, OM produced by phytoplankton photosynthesis in colder20

and thus CO2 rich waters, is relatively 13C-depleted (Rau et al., 1989, 1992).

4.3 Reconstruction of changes in [CO2 (aq)] versus time and latitude within the
proto-North Atlantic

Based on δ13Cphytane records [CO2 (aq)] can be calculated, using reconstructed SSTs,

estimates for δ13C of DIC, and a factor related to primary productivity (b) (e.g.: Free-25

man and Hayes, 1992; Jasper et al., 1994; Bice et al., 2006; Sinninghe Damsté et
al., 2008). Following this approach, a theoretical gradient in [CO2 (aq)] was here
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reconstructed by calculating [CO2 (aq)] for four different locations in the northern proto-
Atlantic (Table 1; Figs. 1, 4 and 5). Since the meridional SST gradient changed during
OAE-2 (Sinninghe Damsté et al. 2010), we calculated [CO2 (aq)] for three different
time intervals with different temperature gradients: (1) prior to OAE-2 with no latitudinal
temperature gradient (Fig. 5b: “pre-OAE-2” – green line), (2) during the Plenus cold5

event, within OAE-2 when there was a temperature gradient (Fig. 5b: “cooling” – light
blue line) and, (3) during the maximum isotopic excursion within the OAE-2 interval
when there was again no temperature gradient (Fig. 5b: “plateau” – dark blue line).

Assuming a general 4 ‰ offset (∆δ) between phytol and biomass (Schouten et al.,
1998), δ13Cphytane values from the four different sites (Table 1) were used to estimate10

the isotopic composition of primary photosynthetic carbon (δp):

δp =δphytane+∆δ (1)

The isotopic composition of CO2 (aq) in the photic zone (δd ) can be calculated from
the stable carbon isotopic composition of planktonic foraminifera. Since biogenic car-
bonates were poorly preserved in the OAE-2 sediments, the average isotopic value15

of foraminifera from just below the OAE-2 interval at ODP Site 1260 was used (data
from Moriya and Wilson, as in Sinninghe Damsté et al., 2008). The isotopic value
of the foraminifera was corrected for calcite-bicarbonate enrichment according Eq. (2)
(1 ‰, Romanek et al., 1992). The temperature dependent carbon isotopic fractionation
(εb(a)) was corrected with respect to HCO−

3 according to Eq. (3) (Mook et al., 1974),20

with temperature (T , here equal to SST) given in K◦.

δd =δ13Cplank. foram−1+εb(a) (2)

εb(a) =24.12−9866/T (3)

Based on the 2–2.5 ‰ global carbon isotope excursion in bulk carbonate (Hayes et al.,
1989; Wilson et al., 2002; Tsikos et al., 2004; Jarvis et al., 2006) we assumed DIC to25

have been enriched by 2 ‰ during OAE-2. Although 2 ‰ is only an estimate, a different
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value for DIC would cause an overall shift of the reconstructions, rather than affecting
differences between sites and through time. Calculating sensitivity of the equations to
the input variables temperature, foraminiferal δ13C and biomarker δ13C demonstrated
that foraminiferal δ13C values overall do not appreciably impact calculated [CO2 (aq)]
values (Bice et al., 2006).5

The photosynthetic fixation of carbon (εp) was subsequently determined using the
following equation (Freeman and Hayes, 1992):

εp =103((δd +1000)/(δp+1000)−1) (4)

εp was accordingly used to calculate [CO2 (aq)] (Bidigare et al., 1997):

εp =εf−b/[CO2(aq)] (5)10

With εf being the maximum isotopic fractionation associated with the photosynthetic
fixation of carbon, which is 25 ‰ in the case of algae (Bidigare et al., 1997). Parameter
b is related to productivity and depends on growth rate and cell dimensions (Bidigare
et al., 1997; Popp et al., 1998).

From Eqs. (3) and (5) it is evident that [CO2 (aq)] calculations (and subsequently15

pCO2 calculations, see Eq. 6) are strongly affected by productivity (b) and SSTs
(Fig. 6). Although at high (> 3000 ppmv) pCO2 values εp has a limited sensitivity,
the 6 ‰ range in εp used for our calculations (gray rectangle Fig. 6) results in a rather
robust estimate of pCO2 changes. Hence, we calculated three different scenarios that
could potentially explain the observed latitudinal differences in the δ13Cphytane records20

by changing b and SST.

4.3.1 The “constant” productivity scenario (I):

To assess the impact of productivity changes across the North Atlantic we first re-
constructed the hypothetical [CO2 (aq)] needed to explain the observed δ13C values.
For constraining SST values, a detailed reconstruction exists for sites 1260 and 36725

based on TEX86 (Forster et al., 2007). However, no such temperature records exist
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for the other two sites. The latitudinal temperature gradients recently reconstructed
by Sinninghe Damsté et al. (2010) show that prior to OAE-2 no appreciable latitudinal
temperature gradient existed across the proto-north Atlantic and thus, SSTs were likely
similar for all four sites. During OAE-2 a cold interval, known as the Plenus Cold Event,
occurred (Jefferies, 1962; Gale and Christensen, 1996; Voigt et al., 2004; Forster et5

al., 2007). At this time, temperatures were cooler in the north (Site 1276) than at the
equator and a latitudinal temperature gradient was established (Sinninghe Damsté et
al., 2010). During the later warmer episodes of OAE-2, the SSTs gradient was absent
again in this part of the proto North Atlantic. These temperature gradients can be used
to estimate SSTs for the two other sites (Fig. 5b). Now that we have an SST estimate10

for all four sites we still need to restrain b.
In recent settings, b correlates positively with phosphate concentration. Since phos-

phate concentrations correlate with δ15N values, δ15N can be used to estimate b (An-
dersen et al., 1999). Using these correlations, b was previously estimated to have
been 170 ‰ µM at Demerara Rise during the Albian-Santonian (Bice et al., 2006). This15

value is relatively high, but within the range of values observed today in the South At-
lantic (80–250 ‰ µM) (Schulte et al., 2003 and references therein) and is in line with
the reconstructed high productivity at Site 1260 (Hetzel et al., 2009). In this scenario
(I), we applied this rather high b-value to all four sites (Fig. 5a).

Using this b value of 170 ‰ µM and the reconstructed temperature records [CO220

(aq)] was calculated (Fig. 5a–c). The latitudinal [CO2 (aq)] shows a strong increase
towards higher latitudes during the OAE-2 interval, which is needed to explain the
observed latitudinal δ13C offset (both during the plateau and the cooling phase, blue
lines) (Fig. 5c). Unlike the [CO2 (aq)] gradient observed today, the calculated [CO2 (aq)]
before OAE-2 shows lowest values at 15 degrees north (Tarfaya Basin). Moreover,25

the low [CO2 (aq)] at Tarfaya prior to OAE-2 is in contrast to the inferred strong local
upwelling conditions (Kolonic et al., 2005). Clearly latitudinal differences in sea surface
productivity must have played a major role in shaping the δ13C phytane gradients and
it is not realistic to assume productivity was similar for all four sites.
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4.3.2 The “CO2 equilibrium” scenario (II)

The small differences in [CO2 (aq)] today across the latitudinal transect studied (see
grey area in Fig. 5c), indicates that we may realistically assume atmospheric pCO2 to
be in equilibrium with the surface water. This was probably even more so during OAE-
2, when surface waters were probably strongly stratified (van Bentum et al., 2009).5

When we assume atmospheric pCO2 to be in equilibrium with the surface water we
can recalculate [CO2 (aq)] and use these new [CO2 (aq)] values to calculate the hy-
pothetical values for b that would explain the observed isotopic gradient. Using the
solubility constant K0 (Weiss, 1974), pCO2 is related to [CO2 (aq)] as follows:

pCO2 = [CO2(aq)]/K0 (6)10

In this scenario (scenario II, Fig. 5d, e and f) we calculated b values for the other 3 sites,
assuming that productivity at Demerara Rise remained more or less similar during all
three time slices and applying the same SST gradients as in scenario I (Sinninghe
Damsté et al., 2010). To explain the observed carbon isotopic trend, during the OAE-2
interval (see Fig. 4) productivity is here predicted to decrease with increasing latitude,15

while prior to the OAE-2 interval, b is higher at Tarfaya and Senegal Site 367 than at
Demerara Rise and Site 603B. The high productivity at Tarfaya and Site 367 agrees
well with previously inferred productivity values since Tarfaya and Site 367 are thought
to have experienced high productivity prior to the OAE-2 interval (Site 1260, this study;
Site 367, Kuypers et al., 2002b; Tarfaya, Tsikos et al., 2004; Site 603B, Sinninghe20

Damsté et al., 2008). It seems therefore that the offset in δ13Cphytane prior to the OAE-
2 interval at Tarfaya (Fig. 4) was mainly due to the higher productivity at that time when
compared to the other sites.

4.3.3 The “increasing productivity” scenario (III)

Scenario II assumed that productivity remained constant at Demerara Rise across the25

OAE-2 interval. However, evidence from nannofossils (Hardas and Mutterlose, 2007)
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points to enhanced productivity within OAE-2. Changes in productivity at Demerara
Rise would imply that productivity at the other sites must have changed as well in order
to explain the δ13C trends versus time and latitude as observed in Fig. 4.

In scenario III (Fig. 5g, h and i), we used the same SSTs as in scenarios I and II but
assumed now that factor b at Demerara Rise increased from 170 to 220 at the onset5

of the OAE-2 (Fig. 5g). The latitudinal changes in δ13Cphytane were subsequently used
to calculate b at the other 3 sites. This would imply that b increased at most sites
during OAE-2 (Fig. 5g). This scenario is in line with most existing reconstructions, as
enhanced productivity is often seen as an important cause of the increased OM burial
during OAE-2 (e.g. Kuypers et al., 2002b). Still, while productivity increased during10

OAE-2 over most of the proto-North Atlantic, this scenario suggests that productivity at
Tarfaya remained similar or even decreased somewhat.

An important observation comparing scenarios II and III is to what degree changes in
productivity impact the reconstruction of pCO2. Whereas scenario II, with productivity
kept constant at Demerara Rise, suggests a decrease in [CO2 (aq)] between pre-OAE-15

2 and during the OAE-2 plateau phase of 20 µmol l−1 (Fig. 5f), this difference is only
15 µmol l−1 in scenario III (Fig. 5i), with b increasing from 170 to 220. This provides an
uncertainty envelope for calculating downcore changes in pCO2

These reconstructions show that before OAE-2 productivity was probably higher at
Site 367 and at Tarfaya than at Sites 1260 and 603B. During OAE-2 productivity in-20

creased in most of the proto North Atlantic, resulting in more comparable productivity
within the proto-north Atlantic.

4.4 Changes in atmospheric pCO2–feedback mechanisms

Demerara Rise Site 1260 is an excellent location to reconstruct downcore pCO2 as
a detailed downcore SST record exist (Forster et al., 2007) and both the isotopic25

composition of CO2 (aq) in the photic zone and productivity values for b were recon-
structed here (Bice et al., 2006). Inserting these values, and the δ13Cphytane record
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into Eqs. (1) to (6), results in a pCO2 reconstruction across the OAE-2 interval. For
this reconstruction the value of the foraminiferal carbonate carbon was enriched in
0.25 ‰ increments in order to mimic the globally observed isotopic excursion more
accurately. By calculating pCO2 using three different values for b we generated an un-
certainty envelope. Although the trends of the pCO2 levels are similar for the different5

values of b, absolute values differ. The calculations show an initial increase in pCO2
levels at the start of the OAE-2 interval and then a steady decline (Fig. 7), with two su-
perimposed spikes of decreased pCO2 concentrations. These results are similar to the
pCO2 reconstruction of Barclay et al. (2010), which shows, two intervals of enhanced
OM burial and associated pCO2 decreases during OAE-2.10

The tentative increase in atmospheric pCO2 at the start of the OAE-2 interval
(Fig. 8) corresponds with an increase in osmium and zinc concentrations (Turgeon and
Creaser, 2008; van Bentum et al., 2009) in the Demerara Rise sediments. Increases
in osmium and zinc concentrations are probably related to magmatic activity, and are
therefore possible evidence for a pulse of magmatic activity at the start of OAE-2 (Tur-15

geon and Creaser, 2008). Enhanced magmatic activity would result in an increase
in CO2 and since CO2 is a greenhouse gas, this increase could be responsible for
the raised SSTs at the start of the OAE-2 interval (Fig. 8). High S-bound isorenier-
atane concentrations (van Bentum et al., 2009) during this warmer period reveal that
stratification was strong, which could be the result of the high SSTs. The increased20

stratification could also have decreased CO2 outgassing from the deep ocean to the
atmosphere (Toggweiler, 1999).

After a period of decreased pCO2, still during the OAE-2 interval, the constant, warm
temperatures become cooler and start to fluctuate (late phase A, Fig. 8c). This pe-
riod of cooling is likely the equivalent of the Plenus cold event observed in NW Eu-25

rope (Jefferies, 1962; Gale and Christensen, 1996; Voigt et al., 2004). This cooling
has previously been attributed to a drop in atmospheric pCO2 levels, which in turn
was caused by enhanced carbon sequestration by OM burial (Gale and Christensen,
1996; Hasegawa, 2003; Forster et al., 2007). The cooling lead to a stronger latitudinal
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temperature gradient in the proto-North Atlantic (Sinninghe Damsté et al., 2010) and
as a result, the colder waters at higher latitudes could have taken up more CO2. A
drop in isorenieratane concentrations (van Bentum et al., 2009) (Fig. 8) and a possible
benthic foraminifer repopulation event (Friedrich et al., 2006) reveal that stratification at
Site 1260 did indeed decrease during this cooler interval.5

At the start of phase B, another rise in osmium concentrations is followed by an in-
crease in pCO2. The higher atmospheric pCO2 again could explain the subsequent
temperature increase (lower part of phase B, Forster et al., 2007). Changes in nanno-
fossil assemblages indicate higher productivity at Demerara Rise at this time (Hardas
and Mutterlose, 2007). This increase in productivity could be related to enhanced10

continental weathering (e.g., Jenkyns, 2010) as a consequence of the second pulse
of magmatic activity and the subsequent increase in pCO2. Alternatively, enhanced
ocean mixing due to cooling could have resulted in the recycling of nutrients from
deeper water masses. A drop in isorenieratane concentrations during phase B does
reveal a decrease in stratification at this time (Fig. 8).15

The carbonate rich layer found directly above the period of high SSTs has been
interpreted as an ash layer (Hetzel et al., 2009). It, therefore, seems likely that an
additional, second magmatic pulse occurred at this time, raising atmospheric pCO2.
During this warmer period, the latitudinal temperature gradient was minimized again
and higher SSTs apparently intensified oceanic stratification, as both isorenieratane20

and chlorobactane concentrations increased again at the end of the OAE-2 period
(upper part of phase B, van Bentum et al., 2009).

The reconstructed pCO2 record increases after termination of the OAE-2 event. This
increase is, however, not matched by increasing TEX86-based SSTs. This could either
be due to a local effect, increased upwelling after OAE-2 for example might have pre-25

vented SSTs at Demerara Rise from increasing. Another possible explanation for this
observation could be due to the fact that temperature sensitivity to pCO2 decreases at
higher levels of pCO2 (Fig. 6).
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Climate during the Cretaceous seems to have rapidly responded to disequilibria in
carbon cycling. Increased magmatic CO2 outgassing resulted in an overall warmer
climate, which enhanced oceanic stratification, ocean anoxia and associated OM
preservation (Fig. 9). At the same time, increased weathering due to high atmospheric
pCO2 resulted in enhanced nutrient input into the proto-North Atlantic, which in turn5

increased productivity. Furthermore, primary productivity might have removed carbon
more efficiently from the atmosphere under high pCO2 conditions, as suggested by
mesocosm experiments showing that under higher pCO2 levels more inorganic carbon
was removed using less nutrients (Riebesell et al., 2007). The widespread enhanced
OM burial during OAE-2 withdrew CO2 from the atmosphere, cooling the Earth in the10

process (Snow et al., 2005; Bralower, 2008). At the same time, the increased stratifi-
cation could have decreased CO2 outgassing from the deep ocean to the atmosphere
(Toggweiler, 1999). This implies that OAEs acted as a global negative feedback mech-
anism in response to massive CO2 inputs (Barclay et al, 2010; Turgeon and Creaser,
2008).15

5 Conclusions

The observed positive isotope excursion of phytane (∼7 ‰) at Demerara Rise is un-
usually large compared to other C/T phytane records (3–6 ‰) from locations in the
proto-North Atlantic. Using reconstructed SST gradients we demonstrated that before
OAE-2 productivity was probably higher at Site 367 and at Tarfaya than at Sites 126020

and 603B. During OAE-2 productivity increased in most of the proto North Atlantic, re-
sulting in more comparable productivity between the sites in the proto–North Atlantic.

Magmatic activity, atmospheric pCO2 and temperature during OAE-2 are linked
through both positive and negative feedback mechanisms. Enhanced magmatic
episodes seem to have raised pCO2, increasing global temperatures. Higher SSTs25

and stratification, together with enhanced nutrient input due to more intense weather-
ing, resulted in a more efficient carbon pump as OM burial increased. Organic matter
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burial lowered pCO2 again, cooling the greenhouse climate. When at the end of OAE-2
carbon burial rates were reduced, pCO2 increased again. This implies that Cretaceous
climate was sensitive to small changes in the (internal) feedbacks in the global carbon
cycle.
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nighe Damsté, J. S.: Transient Middle Eocene Atmospheric CO2 and temperature variations,
Science, 330, 819–821, 2010.

Bornemann, A., Norris, R. D., Friedrich, O., Beckmann, B., Schouten, S., Sinninghe Damsté,
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Table 1. Summary of data from the four used sites. Photic zone anoxia (PZA) based on the
occurrence of isorenieratane or its derivatives. Temperatures are SSTs in ◦C (based on: Forster
et al., 2007 and Sinninghe Damst et al. 2010), isotope values of S-bound phytane (δ13Cphytane)
in ‰ VPDB (Site 1260, this study; Site 367, Kuypers et al., 2002b; Tarfaya, Tsikos et al., 2004;
Site 603B, Sinninghe Damsté et al., 2008).

Site period Productivity PZA Temperature δ13Cphytane

603B

Pre OAE-2 Low/normal No 39 −31.5
Cooling 31 −29

OAE-2 plateau Higher Yes 43 −27

Tarfaya S57

Pre OAE-2 High Occasional 39 −30
Cooling More often 35 −27.5

OAE-2 plateau Even higher More often 43 −26.2

Senegal 367

Pre OAE-2 High Occasional 39 −30.5
Cooling More often 37 −26.5

OAE-2 plateau Even higher More often 43 −24.5

1260

Pre OAE-2 Normal/strong Occasional 39 −30.8
Cooling Normal/strong Strong 37 −26.2

OAE-2 plateau Normal/strong Strong 43 −24
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Fig. 1. Reconstruction of the proto-Atlantic Ocean during the Cenomanian/Turonian created
with GEOMAR map generator; www.odsn.de/odsn/services/paleomap/paleomap.html. Circles
indicate the paleo-location of the discussed records. For each site the amplitudes of the OAE-
2 δ13Cphytane excursion (in ‰) is indicated in black numbers (Site 1260, this study; Site 367,
Kuypers et al., 2002b; Tarfaya, Tsikos et al., 2004; Site 603B, Sinninghe Damsté et al., 2008).
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Fig. 2. Stable carbon isotope and biomarker data for OAE-2 at Demerara Rise, ODP Site 1260.
(A) isotope values of organic carbon (δ13CTOC) in ‰ VPDB (Forster et al., 2007). (B) isotope
values of S-bound phytane (δ13Cphytane) in ‰ VPDB (this study). Grey shaded areas mark
phases A, B and C of OAE-2 (see text for details). Scale in meters composite depth (mcd).
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Fig. 3. Sulfur-bound δ13Cphytane values plotted versus δ13CTOC. Error bars are based on repli-

cate analyses. Line indicates lineair regression, with an r2 of 0.93.
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Fig. 4. Latitudinal gradient in δ13Cphytane prior to OAE-2 and during OAE-2 (Site 1260, this
study; Site 367, Kuypers et al., 2002b; Tarfaya, Tsikos et al., 2004; Site 603B, Sinninghe
Damsté et al., 2008) compared to the gradient observed in the δ13C of recent OM (from Rau
et al., 1982). The arrows indicate the size of δ13Cphytane excursion at the location.
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Fig. 5. Scenario I) where [CO2 (aq)] is calculated using b=170 (A) for all time slices. Sea surface temperatures are
based on Sinninghe Damsté et al. (2010) (B). Values of [CO2 (aq)] in µmol l−1 (C) (gray area indicates recent values
from Goericke and Fry, 1994). Scenario II) where b is allowed to vary (D). Sea surface temperatures are based on
Sinninghe Damsté et al. (2010) (E). Values of [CO2 (aq)] in µmol l−1 (F). Scenario III) where b is allowed to vary, with
b increasing at the onset of OAE-2 (G). Sea surface temperatures are based on Sinninghe Damsté et al. (2010) (H).
Values of [CO2 (aq)] in µmol l−1 (I).
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Fig. 6. The relationship between εp and pCO2 (figure modified from: Pagani, 2002; Bijl et al.,
2010). The SST ranges are bases on the SSTs reconstructed with TEX86 for the Cenomanian-
Turonian. Values for b are based on values reconstructed for b at Demerara Rise (Bice et al.,
2006) and on the values for b calculated in this paper. The grey area indicates the values for
εp calculated across the OAE-2 interval.
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Fig. 7. Plots of pCO2 levels across the OAE-2 interval at Demerara Rise Site 1260. Calculated
with low (b=120), normal (b=170) and high (b=220) productivity.
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Fig. 8. (A) Osmium concentrations from Turgeon and Creaser (2008) (B) pCO2 in ppm with the
black line calculated using b=170, the light grey area denotes the pCO2 uncertainty calculated
with b between 120 and 220 (C) Sea surface temperatures (SST) in ◦C as reconstructed by
TEX86 (Forster et al., 2007; using the calibration of Kim et al., 2008) (D) S-bound isorenieratane
concentrations in µg/TOC (van Bentum et al., 2009) (E) Zn/Al in (ppm ‰−1). Grey areas indicate
the OAE-2 interval, stippled grey lines indicate possible magmatic pulses.
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Fig. 9. Conceptual model of positive and negative feedback mechanisms of the Earth’s oceans
and climate system related to changes in atmospheric pCO2 concentrations induced by vol-
canism and OM burial.
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