- **1** Supplementary Material for the manuscript:
- 2 Biogeography in the air: fungal diversity over land and

3 oceans

- 4
- 5 Janine Fröhlich-Nowoisky^{1,2}, Susannah M. Burrows³, Zhouqing Xie^{1,4}, Guenter
- 6 Engling^{5,6}, Paul A. Solomon⁷, Matthew P. Fraser⁸, Olga L. Mayol-Bracero⁹, Paulo
- 7 Artaxo¹⁰, Dominik Begerow¹¹, Ralf Conrad¹², Meinrat O. Andreae¹, Viviane R.
- 8 Després^{2,13} and Ulrich Pöschl^{1,2}
- 9 ¹Biogeochemistry Department, Max Planck Institute for Chemistry, P.O. Box 3060, 55020
- 10 Mainz, Germany
- ¹¹ ²Earth System Science Center, Institute of Geosciences, Johannes Gutenberg University, Joh.-
- 12 Joachim- Becher-Weg 21, 55128 Mainz, Germany
- ³Atmospheric Chemistry Department, Max Planck Institute for Chemistry, P.O. Box 3060, 55020
 Mainz, Germany
- ⁴Institute of Polar Environment, University of Science and Technology of China, Hefei, Anhui,
- 16 230026, China
- ⁵Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua Uni versity, Hsinchu 300, Taiwan
- ⁶Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan
- ⁷Office of Research and Development, National Exposure Laboratory, US EPA Las Vegas, 944
- 21 E. Harmon Ave, Rm. 235 Las Vegas, Nevada 89119, USA
- ⁸Global Institute of Sustainability, Arizona State University, PO Box 875402, Tempe, AZ 85287-
- 23 5402, USA
- ⁹Institute for Tropical Ecosystem Studies, University of Puerto Rico, PO Box 70377, San Juan,
- 25 PR 00936-8377, USA
- ¹⁰Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, 05508-900 SP, Brazil

- 1 ¹¹Department of Evolution and Biodiversity of Plants, Geobotany Section, Ruhr-Universität Bo-
- 2 chum, Universitätsstraße 150, 44780 Bochum, Germany
- ¹²Max Plank Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße, Marburg 35043,
 Germany
- ¹³Institute of General Botany, Johannes Gutenberg University, Johannes-von-Müller-Weg 6,
 55128 Mainz, Germany
- Correspondence to: J. Fröhlich-Nowoisky (j.frohlich@mpic.de) and V. R. Després (despres@uni mainz.de)
- 9
- 10 To complement the information given in the main manuscript, the following sections provide
- 11 Supplementary Text, Supplementary Figures S1-S4 and Legends, Supplementary Tables S1-S12,
- 12 and Supplementary References.

1 Supplementary Text

Blank and Background samples. Whereas no DNA could be detected in the filter blanks (baked and unbaked), fungal DNA was detected in 4% of the extraction or PCR blank reactions, indicating that contaminations occurred rarely during analysis in the laboratory. The PCR products obtained from blank samples were cloned and sequenced, whereas PCR products of filter extracts obtained in these PCRs were excluded completely from the cloning reactions. However, the obtained sequences of blank samples and identical sequences obtained from the air filter samples were excluded from further analysis.

9 PCR is a powerful technique and the high sensitivity of this technique bears the risk of 10 amplifying trace amounts of DNA with which the analysis material (e.g., reagents) may have 11 been contaminated in the course of material production and analysis. Several studies described 12 bacterial and fungal DNA contaminations in Taq Polymerase and commercially available 13 reagents like lysis enzymes (Hughes et al., 1994; Loeffler et al., 1999; Meier et al., 1993). In our 14 study the initially observed contaminations in the PCR blanks could not be detected anymore 15 after performing the experiments with new reagents (new lot number). The detection of DNA in 16 extraction blanks was likely due to contaminations originating from the PCR. Six species, e.g., 17 Brettanomyces bruxellenis and Candida tropicalis were only detected in extraction blanks. 18 Possibly, they were laboratory contaminations of the extracts or contaminations occurred during 19 extraction or PCR preparation in the laboratory (material used, extraction procedure). In total 11 20 different OTUs (mostly yeast species, e.g., Candida sake, Candida deformans, Candida 21 tropicalis, Cryptococcus longus) were identified as possible contaminants.

As described in Fröhlich-Nowoisky et al. (2009), no DNA was detected in the blank samples from Mainz, Germany, indicating that no contaminations occurred during sample handling and analysis in the laboratory. However, four of the OTUs identified as possible contaminants in the other sets of filter samples were detected in the samples from Mainz (*Candida deformans, Candida tropicalis, Nectria sp., Alternaria sp.*). To avoid any bias in the comparison with other sample sets, we excluded the possible contaminations also from the statistical analysis of the Mainz samples.

29

1 Impact of different sampling methods and conditions. As described under materials and 2 methods, the samples from different locations were collected with different types of samplers. 3 cut-off diameters, and filter substrates. In addition, the sampled air volumes, sampling periods (year, season) and sample storage conditions were different (Tabs. S2-S9, material and method 4 5 section and references therein). These differences may have influenced the results obtained for different measurement locations as follows. Depending on sampler type and cut-off diameter, 6 large spores or fungal tissue fragments are likely to be discriminated in certain types of samples 7 8 (e.g., PM2.5 samples from Taiwan) and in others the inlet cut-off is wind speed dependant 9 possibly varying from ~ 30 to 100 µm. The sampling height can influence the impact of the surrounding area and vegetation. Larger particles as well as particles from fungi growing near the 10 11 sampler may be preferentially collected by samplers at ground level, whereas sampling on 12 elevated platforms, masts or towers are likely to be less influenced by local sources. Rare species 13 are less likely to be found in case of short sampling times and low air volumes. The detection and apparent frequency of occurrence of different species can also be affected by the efficiency of 14 15 DNA extraction from different kinds of filter material. Further investigations will be required to 16 quantify such effects. Nevertheless, this study confirms that a wide range of filter materials can 17 be used for DNA analysis of air samples (Després et al., 2007). Different climates might also influence recovery of DNA from air samples, because DNA starts to degrade as soon as an 18 19 organism dies. Spores resist environmental stress and atmospheric transport and are thus unlikely 20 to degrade during sampling (Griffin, 2004, Griffin and Kellog, 2004). Fungal tissue fragments, however, may be more rapidly degraded in tropical climates because DNA is best preserved 21 under dry and cool conditions (Després et al., 2007; Pääbo at al., 2004). Furthermore, different 22 23 storage times and conditions might have led to different degrees of DNA degradation in the investigated sets of samples. Thus, different sampling and storage conditions should be kept in 24 25 mind when comparing the different sets of filter samples investigated in this study. The 26 comparability of absolute values of species richness determined for different sampling locations and regions is also limited by the different numbers of investigated samples. Nevertheless, the 27 28 experimental results do not indicate any bias of the applied methods with regard to the relative 29 proportions between AMC and BMC. The consistency of major trends and similarities observed 30 over all types of samples suggests that the main findings and conclusions of this study (gross differences AMC/BMC in continental and marine air, major classes of AMC and BMC, etc.) are
 not significantly affected by the uncertainties outlined above.

3

4 Emisson and transport of fungal spores. Air is the primary medium for the dispersal of fungal 5 spores, which can be transported over long distances depending on spore properties and atmos-6 pheric conditions (Brown et al., 2002; Hirst et al., 1967). An essential condition for widespread 7 dispersal is that the spores have to leave the laminar boundary layer at the surface and enter into 8 turbulent air flow in the atmosphere (Gregory, 1973; Lacey, 1996; Madelin, 1994). This can be achieved through a range of active and passive discharge and liberation processes of spores 9 10 (Lacey, 1996; Ingold, 1971; Elbert et al., 2007). The residence time of fungal spores in air de-11 pends on their size and decreases with increasing aerodynamic diameter (Gregory, 1973; Lacey, 1996). Because the spores of many BMC (~5-10 µm) are typically larger than those of prominent 12 airborne AMC (~2-5 µm) (Fröhlich-Nowoisky et al., 2009; Ingold, 2001; Lacey, 1996; Muilen-13 14 berg, 1995; Stenlid, 2008), they are expected to be deposited more rapidly and are less likely to 15 undergo long-range transport, as also indicated by global atmospheric transport model results 16 (Fig. S4).

Atmospheric loss processes can be conceptualized in an idealized manner as an exponential decay over time of the total particle mass remaining in the atmosphere. For particles emitted instantaneously at time *t*=0, the remaining mass *M* is given by $M(t) = M_0 \exp(-t/\tau)$, with M_0 the initial mass and τ the size-dependent atmospheric residence time. In Figure S4, we show how this idealized conceptualization of atmospheric loss processes would result in an increase in the abundance of the smaller AMC relative to the larger BMC over time, in an air parcel that had lost contact with the source.

Due to varying discharge mechanisms and meteorological conditions, the concentration and diversity of airborne fungal spores are likely to vary with the time of day and altitude above ground. These effects should have no influence on the systematic differences between continental and marine sampling sites observed in this study. To develop a comprehensive understanding of temporal and spatial variability of the atmospheric biogeography and transport of fungi, however,

- 1 we propose and intend to pursue further studies and experiments including air samples collected
- 2 at different altitudes and distances from the coast.

Supplementary Figures S1-S4

Figure S1. Species richness of airborne fungi: relative proportions of different phyla at different sampling sites in Puerto Rico (forest, urban, coast) and United Kingdom (UK; Inland = Chelmsford, Essex, Coast = Weybourne).

Figure S2. Species richness of airborne fungi: relative proportions of different classes of *Ascomycota* at different sampling sites in Puerto Rico (forest, urban, coast) and United Kingdom (UK; Inland = Chelmsford, Essex, Coast = Weybourne).

Figure S3. Species richness of airborne fungi: relative proportions of different classes of *Basidiomycota* at different sampling sites in Puerto Rico (forest, urban, coast) and United Kingdom (UK; Inland = Chelmsford, Essex, Coast = Weybourne).

Ascomycota were assumed to have an aerodynamic diameter of 3 μ m, while Basidiomycota aerodynamic diameter was assumed to be 5 μ m, 7 μ m or 10 μ m, as noted in the figure legend.

Supplementary Tables S1-S12

Table S1. Overview and diversity parameters of aerosol filter samples and detected fungi. Tropical (0-25°), mid-latitude (25-55°) and sub-polar (55-70°) sampling regions (continental, coastal – within 100 km of shoreline, marine); number of air samples and obtained DNA sequences; species richness (S measured, S* estimated), Shannon index (H'), Shannon Evenness (E), and Simpson's index (D) **(a)**, and the median and mean values for continental, coastal, and marine samples **(b)**.

a)

Tropical, 0°-25°					Mid-Latitude, 25°-55°				Sub-Polar, 55°-70°		
Sampling Region	Arizona	Brazil	China	Taiwan	Puerto Rico	Pacific/Indian Ocean	Austria	Germany	UK	Indian/Atlantic Ocean	Southern Ocean
Location	continental	continental	coastal	coastal	coastal	marine	continental	continental	coastal	marine	marine
Samples	10	13	14	13	11	5	4	42	12	2	10
Sequences	93	193	267	142	199	81	90	1316	156	32	85
S	31	100	90	56	124	31	60	364	57	18	33
S*	135	436	255	268	988	162	239	1120	183	163	259
H'	3.2	4.4	4.2	3.8	4.7	3.4	4	5.2	3.9	2.9	3.4
E	0.93	0.95	0.93	0.96	0.98	0.99	0.98	0.89	0.96	0.99	0.99
D	0.039	0.010	0.017	0.015	0.004	0.005	0.02	0.009	0.015	0.006	0.008

Median/Mean	continental	coastal	marine
Samples	12/17	13/13	5/6
Sequences	143/423	162/166	81/66
S	80/139	74/82	31/27
S*	338/483	262/424	163/195
H′	4.2/4.2	4.1/4.15	3.4/3.2
E	0.94/0.94	0.96/0.96	0.99/0.99
D	0.015/0.020	0.015/0.013	0.006/0.006

Table S2. Austria. Overview of air samples. Sample ID (running number, AT1,2: urban, AT3,4: suburban); sampling period; sampled air volume; number of DNA sequences; number of different species (OTU) of all fungi and of *Ascomycota* (AMC), and *Basidiomycota* (BMC), detected in the air sample.

Sample ID	Sampling Period	Sampled air volume (m ³)	Sequences	Species		
				Fungi	AMC	BMC
AT1	07.07.2005	730	14	12	9	2
AT2	07.07.2005	752	33	24	4	19
AT3	19.07.2005	739	21	18	6	11
AT4	19.07.2005	747	22	19	9	9

Table S3. Arizona. Overview of air samples. Sample ID (running number; c = coarse, f = fine); sampling period; sampled air volume; number of DNA sequences, number of different species (OTU) of all fungi and of *Ascomycota* (AMC), and *Basidiomycota* (BMC), detected in the air sample.

Sample ID	Sampling Period	Sampled air volume (m³)	Sequences	Species		
				Fungi	AMC	BMC
ARZ1c	18.02.2009 - 19.02.2009	1296	8	6	5	1
ARZ2c	18.02.2009 - 19.02.2009	1296	14	8	2	6
ARZ3f	18.02.2009 - 19.02.2009	1296	11	3	3	0
ARZ4f	18.02.2009 - 19.02.2009	1296	15	4	3	1
ARZ5f	18.02.2009 - 19.02.2009	1296	11	5	4	1
ARZ6c	24.02.2009	6.3	0	0	0	0
ARZ7c	24.02.2009 - 25.02.2009	1296	9	8	3	5
ARZ8f	24.02.2009 - 25.02.2009	1296	9	6	3	3
ARZ9c	02.03.2009	6.3	3	2	2	0
ARZ10f	02.03.2009 - 03.03.2009	1296	13	8	3	5

Table S4. Brazil. Overview of air samples. Sample ID (running number, sampling period; sampled air volume; number of DNA sequences; number of different species (OTU) of all fungi and of *Ascomycota* (AMC), and *Basidiomycota* (BMC), detected in the air sample.

Sample ID	Sampling Period	Sampled air volume (m ³)	Sequences	Species		
				Fungi	AMC	BMC
BR1	16.09.2002 - 17.09.2002	19	20	13	2	11
BR2	22.09.2002 - 22.09.2002	17	6	4	4	0
BR3	22.09.2002 - 23.09.2002	21	14	10	7	3
BR4	28.09.2002 - 28.09.2002	16	23	14	7	6
BR5	02.10.2002 - 03.10.2002	21	19	11	1	10
BR6	06.10.2002 - 07.10.2002	20	14	8	3	5
BR7	07.10.2002 – 07.10.2002	16	9	10	10	0
BR8	09.10.2002 – 10.10.2002	38	17	9	2	7
BR9	18.10.2002 – 19.10.2002	38	12	9	0	9
BR10	01.11.2002 – 04.11.2002	64	12	12	4	8
BR11	01.11.2002 – 04.11.2002	80	23	19	5	14
BR12	10.11.2002 – 12.11.2002	66	24	22	3	18

Table S5. China. Overview of air samples. Sample ID (running number); sampling period; sampled air volume (n.a. = not available); number of DNA sequences; number of different species (OTU) of all fungi and of *Ascomycota* (AMC), and *Basidiomycota* (BMC), detected in the air sample.

Sample ID	Sampling Period	Sampled air volume (m ³)	Sequences	Species		
				Fungi	AMC	BMC
CN1	4.07.2006	334	40	27	13	14
CN2	7.07.2006	800	13	6	6	0
CN3	9.07.2006 - 10.07.2006	1158	8	6	4	2
CN4	10.07.2006 - 11.07.2006	n.a.	15	7	7	0
CN5	11.07.2006 - 12.07.2006	1158	12	3	2	1
CN6	12.07.2006 - 13.07.2006	1435	25	20	14	6
CN7	13.07.2006 - 14.07.2006	1431	23	13	8	5
CN8	14.07.2006 - 15.07.2006	1431	18	6	6	0
CN9	15.07.2006 - 16.07.2006	1598	15	6	6	0
CN10	16.07.2006 - 17.07.2006	1506	8	5	5	0
CN11	17.07.2006 - 18.07.2006	1197	34	9	6	3
CN12	25.07.2006	146	18	12	12	0
CN13	28.07.2006 - 29.07.2006	1424	22	12	11	1
CN14	29.07.2006 - 30.07.2006	1363	16	10	10	0

Table S6. Puerto Rico. Overview of air samples. Sample ID (running number; PR1-4 = forest, PR5-7 = urban, PR 8-11 = coast, N = Nuclepore, Q = quartz fiber filter); sampling period; sampled air volume; number of DNA sequences; number of different species (OTU) of all fungi and of *Ascomycota* (AMC), and *Basidiomycota* (BMC), detected in the air sample.

Sample ID	Sampling Period	Sampled air volume (m³)	Sequences	Species		
				Fungi	AMC	BMC
PR1N	06.07.2007 - 09.07.2007	160	21	17	5	11
PR2Q	25.07.2007 - 27.07.2007	110	32	22	1	20
PR3N	25.07.2007 - 27.07.2007	110	37	30	5	25
PR4N	31.07.2007 - 02.08.2007	78	24	21	10	8
PR5N	01.07. 2007 - 03.07.2007	269	4	3	2	1
PR6Q	27.07.2007 – 29.07.2007	269	2	1	1	0
PR7N	29.07.2007 - 31.07.2007	269	20	15	8	7
PR8Q	02.07.2007 – 03.07. 2007	56	13	2	0	2
PR9N	02.07.2007 - 03.07. 2007	56	10	10	6	4
PR10N	31.07.2007 - 02.08.2007	101	21	17	3	11
PR11N	01.07. 2007 - 02.07.2007	58	15	12	6	5

Table S7. Taiwan. Overview of air samples. Sample ID (running number, TW1-2: Yunlin County, TSP; TW3-11: Taipei (Nangang), PM2.5; TW12,13: Liouguei Shanping, PM2.5); sampling period; sampled air volume; number of DNA sequences; number of different species (OTU) of all fungi and of *Ascomycota* (AMC), and *Basidiomycota* (BMC), detected in the air sample.

Sample ID	Sampling Period	Sampled air volume (m ³)	Sequences	Species		3
				Fungi	AMC	BMC
TW1	06.10.2006 - 08.10.2006	3109	18	6	6	0
TW2	29.03.2007 - 30.03.2007	1533	20	10	10	0
TW3	20.04.2007 - 21.04.2007	753	7	4	1	3
TW4	23.05.2007 - 24.05.2007	748	11	5	2	3
TW5	20.06.2007 - 20.06.2007	9	6	3	2	1
TW6	24.08.2007 - 25.08.2007	673	24	18	10	8
TW7	26.09.2007 - 27.09.2007	703	11	8	3	5
TW8	11.12.2007 - 12.12.2007	741	6	3	2	1
TW9	29.11.2007 - 29.11.2007	752	0	0	0	0
TW10	26.03.2008 - 27.03.2008	766	0	0	0	0
TW11	11.06.2008 - 11.06.2008	655	24	11	8	3
TW12	26.02.2008 - 26.02.2008	552	15	7	7	0
TW13	27.03.2008 - 27.03.2008	575	0	0	0	0

Table S8. United Kingdom. Overview of air samples. Sample ID (running number, UK1-9: Weybourne; UK10-12: Chelmsford, Essex); sampling period; sampled air volume (n.a. = not available); number of DNA sequences; number of different species (OTU) of all fungi and of *Ascomycota* (AMC), and *Basidiomycota* (BMC), detected in the air sample.

Sample ID	Sampling Period	Sampled air volume (m ³)	Sequences	Species		
				Fungi	AMC	BMC
UK1	06.05.2004 - 13.05.2004	2168	32	15	5	10
UK2	06.05.2004 - 13.05.2004	2168	10	7	5	2
UK3	06.05.2004 - 13.05.2004	2168	17	12	8	4
UK4	15.05.2004 - 21.05.2004	2372	10	10	9	1
UK5	15.05.2004 - 21.05.2004	2372	15	5	3	2
UK6	06.05.2004 - 13.05.2004	2168	29	11	9	2
UK7	06.05.2004 - 13.05.2004	2168	2	1	1	0
UK8	06.05.2004 - 13.05.2004	2168	5	3	3	0
UK9	23.05.2004 - 25.05.2004	1868	0	0	0	0
UK10	31.07.2003 - 01.08.2003	932	10	9	3	6
UK11	31.07.2003 - 01.08.2003	932	10	8	0	8
UK12	31.07.2003 - 01.08.2003	932	16	6	0	6

Table S9. Ocean. Overview of air samples. Sample ID (running number; t = tropical, m = mid-latitude, s = sub-polar); sampling period; sampled air volume; number of DNA sequences; number of different species (OTU) of all fungi and of *Ascomycota* (AMC), and *Basidiomycota* (BMC), detected in the air sample.

Sample ID	Latitude and Longitude (Start, Stop)	Sampling Period	Sampled air volume (m³)	Sequences	Species		
					Fungi	AMC	BMC
	6°01.834'N						
	126°08.646'E	20.11.2007 –					
Ocean1t	2° 09.753'N	21.11.2007	1489	16	10	5	5
	121°23.469'E						
	7° 28.502'S						
Occan2t	116°12.211'E	23.11.2007 –	1420	22	0	9	0
Oceanzi	12° 55.520'S	24.11.2007	1430	23	9		0
	115°02.886'E						
	58° 54.304'S						
0000020	118°22.719'E	05.12.2007 –	1346	37	10	15	3
Oceanos	61° 59.844'S	06.12.2007			10		
	108°27.573'E						
	62° 08.983'S						
a	84° 24.899'E	08.12.2007 –					
Ocean4s	69° 10.874'S	11.12.2007	1495	3	1	1	0
	76° 27.475'E						
	69° 09.422'S						
	74° 28.306'E	24.12.2007 –		1	1	0	1
Ocean5s	65° 17.598'S	25.12.2007	771				
	66° 31.963'E						

	65° 17.598'S						
Ocean6s	66° 31.963'E	25.12.2007 -	0.08	11	3	2	1
Occanos	65° 17.598'S	25.12.2007	0.00		5	2	
	66° 31.963'E						
	60° 47.493'S						
	3° 54.103'E	30.12.2007 –					
Ocean7s	60° 25.741'S	31.12.2007	1506	0	0	0	0
	8° 28.707'W						
	62° 12.696'S						
	58° 50.063'W	08.01.2008 -					
Ocean8s	62° 13.681'S	11.01.2008	2762	19	8	8	0
	58° 55.845'W						
	62° 13.727'S						
	58° 55.634'W	14.01.2008 –					
Ocean9s	62° 13.727'S	17.01.2008	2498	0	0	0	0
	58° 55.634'W						
	35° 10.156'S						
	56° 43.431'W	30.01.2008 –					
Ocean10m	39° 55.270'S	31.01.2008	1457	26	17	11	6
	56° 48.748'W						
	62° 12.711'S						
	58° 49.786'W	05.02.2008 -					
Ocean11s	62° 12.998'S	08.02.2008	2349	9	4	4	0
	58° 47.837'W						
	67° 15.738'S						
Ocean12s	5° 59.665'E	15.02.2008 -	1471	2	1	1	0
		16.02.2008					

68° 44.103'S

Ocean13s	68° 32.667'S 74° 09.847'E 69° 19.562'S 76° 24.163'E	05.03.2008 – 10.03.2008	3343	3	1	1	0
Ocean14m	38° 02.528'S 102°30.047'E 34° 59.579'S 108°58.767'E	19.03.2008 – 20.03.2008	1453	6	2	2	0
Ocean15t	20° 33.840'S 113°49.027'E 14° 18.054'S 114°50.985'E	31.03.2008 – 01.04.2008	1509	13	3	3	0
Ocean16t	2° 45.389'N 122°07.267'E 6° 30.222'N 126°34.222'E	04.04.2008 – 05.04.2008	1508	29	12	8	5
Ocean17t	17° 49.631'N 125°59.808'E 24° 14.915'N 126°00.153'E	07.04.2008 – 08.04.2008	1512	0	0	0	0

16° 23.771'E

Table S10. Selected species. Class attribution and relative frequency of occurrence of species that can act as ice nuclei for different sampling regions (*RFO* = Proportion of samples in which the species were detected).

species	class	RFO (%)								
		Austria	Arizona	Brazil	China	Germany	Puerto Rico	Taiwan	UK	Ocean
Cladosporium spp.	Dothideomycetes	50	60	15	86	98	27	54	42	18
Fusarium spp.	Sordariomycetes	-	-	-	-	2	9	-	-	-
Microdochium spp.	Sordariomycetes	25	-	8	-	-	-	-	8	-
Penicillium spp.	Eurotiomycetes	50	-	-	50	57	36	-	-	59

Table S11. PCR primer combinations. Forward and reverse primer names, annealing temperature, and references. The amplified region was the 5.8S rRNA gene and both internal transcribed spacer regions (ITS1, ITS2).

Primer pair	Forward	Reverse	Temperature (°C)	References		
First PCR						
A	ITS5	ITS4A	55	Nikolcheva and Bärlocher., 2004; White et al., 1990		
В	ITS5	ITS4B	58	Nikolcheva and Bärlocher., 2004; White et al., 1990		
С	Glom1	Glom2	54	Renker et al., 2003		
Second PCR						
D	ITS5	ITS4	54	White et al., 1990		
E	ITS1	ITS4B	58	Nikolcheva and Bärlocher., 2004; Fierer et al., 2005		
F	ITS1	ITS4A	55	Nikolcheva and Bärlocher., 2004; Fierer et al., 2005		

Table S12. Statistical parameters.

Symbol	Quantity/Definition
D	Simpson's index (Hill et al., 2003), $D = \sum_{i=1}^{S} \frac{n_i(n_i - 1)}{N(N - 1)}$
Ε	Shannon evenness, $E=H'/\ln S$
H'	Shannon index, $H' = -\sum_{i=1}^{S} P_i \ln P_i$
n _i	Frequency of occurrence of an individual species <i>i</i> (number of samples in which species <i>i</i> was detected)
N	Cumulative frequency of occurrence of investigated species, $N = \sum_{i=1}^{S} n_i$
P_i	Relative proportion of an individual species <i>i</i> , $P_i = n_i / N$
S	Species richness measured (number of detected species)
S*	Species richness estimated with the Chao-1 approach (Chao et al., 1984; Hill et al., 2003), $S^* = S + a^2 / (2 b)$, <i>a</i> = number of species detected only once (singletons), <i>b</i> = number of species detected twice (doubletons)

Supplementary References

- Brown, J. K. M. and Hovmøller, M. S.: Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease, Science, 297, 537–541, 2002.
- Chao, A.: Nonparametric-Estimation of the Number of Classes in a Population, Scand. J. Stat., 11, 265-270, 1984.
- Després, V. R., Nowoisky, J. F., Klose, M., Conrad, R., Andreae, M. O., and Pöschl, U.: Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes, Biogeosciences, 4, 1127-1141, 2007.
- Elbert, W., Taylor, P. E., Andreae, M. O., and Pöschl, U.: Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions, Atmos. Chem. Phys., 7, 4569–4588, 2007.
- Fierer, N., Jackson, J. A., Vilgalys, R., and Jackson, R. B.: Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays, Appl. Environ. Microbiol., 71, 4117-4120, 2005.
- Fröhlich-Nowoisky, J., Pickersgill, D. A., Despres, V. R., and Pöschl, U.: High diversity of fungi in air particulate matter, Proc. Natl Acad. Sci. USA, 106, 12814-12819, 10.1073/pnas.0811003106, 2009.
- Gregory, P. H.: The microbiology of the atmosphere, 2nd ed., Plant Science Monographs, edited by: Polunin, N., Leonard Hill Books, Aylesbury, 377 pp., 1973.
- Griffin, D. W.: Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere, Aerobiologia, 20, 135-140, 2004.
- Griffin, D. W., and Kellogg, C. A.: Dust storms and their impact on ocean and human health: dust in Earth's atmosphere, Ecohealth, 1, 284–295, 2004.
- Hill, T. C. J., Walsh, K. A., Harris, J. A., and Moffett, B. F.: Using ecological diversity measures with bacterial communities, FEMS Microbiol. Ecol., 43, 1-11, 2003.
- Hirst, J. M., Stedman, O. J., and Hurst, G. W.: Long-distance spore transport Vertical sections of spore clouds over sea, Journal of General Microbiology, 48, 357-377, 1967.
- Hughes, M. S., Beck, L. A., and Skuce, R. A.: Identification and elimination of DNA sequences in Taq DNA polymerase, J. Clin. Microbiol., 32, 2007-2008, 1994.
- Ingold, C. T.: Fungal spores. Their liberation and dispersal, Clarendon Press, Oxford, 1971.
- Ingold, C. T.: Range in size and form of basidiospores and ascospores, Mycologist, 15, 165–166, 2001.
- Lacey, J.: Spore dispersal its role in ecology and disease: the British contribution to fungal aerobiology, Mycol Res, 100, 641-660, 1996.

- Loeffler, J., Hebart, H., Bialek, R., Hagmeyer, L., Schmidt, D., Serey, F.-P., Hartmann, M., Eucker, J., and Einsele, H.: Contaminations Occurring in Fungal PCR Assays, J. Clin. Microbiol., 37, 1200-1202, 1999.
- Madelin, T. M.: Fungal aerosols: A review, J. Aerosol Sci., 25, 1405-1412, 1994.
- Meier, A., Persing, D. H., Finken, M., and Bottger, E. C.: Elimination of contaminating DNA within polymerase chain reaction reagents: implications for a general approach to detection of uncultured pathogens, J. Clin. Microbiol., 31, 646-652, 1993.
- Muilenberg ML. The outdoor aerosol. In: Burge HA, ed. Bioaerosols, Boca Raton: CRC Press, 1995:163-204.
- Nikolcheva, L. G., and Bärlocher, F.: Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream, Mycol. Prog., 3, 41-49, 2004.
- Pääbo, S., Poinar, H., Serre, D., Jaenicke-Després, V., Hebler, J., Rohland, N., Kuch, M., Krause, J., Vigilant, L., and Hofreiter, M.: Genetic analysis from ancient DNA, Ann. Rev. Genet., 38, 645-679, doi:10.1146/annurev.genet.37.110801.143214, 2004.
- Renker: Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field, Mycorhiza, 13, 191-198, DOI 10.1007/s00572-002-0214-5, 2003.
- Rimek, D., Garg, A. P., Haas, W. H., and Kappe, R.: Identification of Contaminating Fungal DNA Sequences in Zymolyase, J. Clin. Microbiol., 37, 830-831, 1999.
- Stenlid J.: Population biology of forest decomposer basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic basidiomycetes. Academic Press, Amsterdam, pp 105–122, 2008.
- White, T. J., Bruns, T., Lee, S., and Taylor, J.: Amplification and Direct Sequencing of Fungal Ribosomal RNA genes for Phylogenetics, in Pcr Protocols: a Guide to Methods and Applications. eds. Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White. (Academic Press, Inc., New York), pp. 315-322, 1990.