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Abstract

In view of its potential significance for soil organic matter (SOM) cycling, the vertical
SOM distribution in the profile should be considered in models. To mechanistically pre-
dict the SOM profile, three additional processes should be represented compared to
bulk SOM models: (vertically distributed) rhizodeposition, mixing due to bioturbation,
and movement with the liquid phase as dissolved organic matter. However, the convo-
lution of these processes complicates parameter estimation based on the vertical SOM
distribution alone. Measurements of the atmospherically produced isotope 21°Pbex may
provide the additional information needed to constrain the processes. Since 210PbeX
enters the soil at the surface and bind strongly to organic matter it is an effective tracer
for SOM transport. In order to study the importance of root input, bioturbation, and
liquid phase transport for SOM profile formation we performed Bayesian parameter es-
timation of the previously developed mechanistic SOM profile model SOMPROF. 13
parameters, related to decomposition and transport of organic matter, were estimated
for the soils of two temperate forests with strongly contrasting SOM profiles: Loobos
(the Netherlands) and Hainich (Germany). Measurements of organic carbon stocks
and concentrations, decomposition rates, and 21°Pbex profiles were used in the opti-
mization. For both sites, 3 optimizations were performed in which stepwise 210PbeX
data and prior knowledge were added. The optimizations yielded posterior distribu-
tions with several cases (modes) which were characterized by the dominant organic
matter (OM) pool: non-leachable slow OM, leachable slow OM, or root litter. For Loo-
bos, the addition of 21°Pbex data to the optimization clearly indicated which case was
most likely. For Hainich, there is more uncertainty, but the most likely case produced
by the optimization agrees well with other measurements. For both sites the most likely
case of the final optimization was one where leachable slow OM dominates, suggest-
ing that most organic matter is adsorbed to the mineral phase. Liquid phase transport
(advection) of OM was responsible for virtually all organic matter transport for Loobos,
while for Hainich bioturbation (diffusion) and liquid phase transport were of comparable
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magnitude. These results are in good agreement with the differences between the two
sites in terms of soil texture and biological activity.

1 Introduction

To reduce the uncertainty of terrestrial carbon exchange predictions, it is crucial to im-
prove understanding of soil carbon cycling, and to transfer this knowledge to numerical
models (Heimann and Reichstein, 2008; Trumbore, 2009; Reichstein and Beer, 2008).
Increasing evidence indicates that soil organic matter decomposition and stabilization
is controlled by a range of mechanisms that depend on physical, chemical, and biolog-
ical factors (von Lutzow et al., 2006). While these factors vary laterally at landscape
scale in relation to climate, vegetation and soil type, they change over centimeters to
meters, within the vertical soil profile. Since most drivers (e.g. wetting, heating, organic
matter input) are exerted on the soil at the surface, most soil properties have strong
depth gradients. Consequently, the conditions that determine soil carbon cycling are
highly depth-dependent and different mechanisms may be operating in different lay-
ers within one profile (Rumpel et al., 2002; Salomé et al., 2010; Rumpel and Kogel-
Knabner, 2011). Therefore, aggregation of properties and processes over the profile,
as is currently done in most SOM models (e.g. Parton et al., 1987; Schimel et al.,
1994), is likely an oversimplification, inadequate to support new parameterizations of
relevant processes.

Awareness of this problem has spurred recent efforts to develop models that predict
the vertical distribution of SOM, based on explicit descriptions of carbon deposition pro-
cesses in the profile (Jenkinson and Coleman, 2008; Koven et al., 2009; Braakhekke
et al., 2011). In most soils there are three mechanisms by which organic carbon can
be input at any given depth in the profile: (i) Organic matter may be deposited in situ by
rhizodeposition: root exudation, sloughing off of root tissue and root turnover. (ii) Mo-
bile (mainly dissolved and to a lesser degree colloidal) organic matter fractions may
be transferred within the profile due to movement with the liquid phase. This type of
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transport is of advective nature, although the transport rate likely varies with depth in
the profile, depending on average water fluxes and soil texture. (iii) Downward dis-
persal of organic matter occurs due to mixing of the soil matrix. Soil mixing is mostly
caused by bioturbation (the reworking activity of soil animals and plant roots) and its
effects on organic matter may be simulated mathematically as diffusion, provided the
time and space scale of the model are sufficiently large (Boudreau, 1986; Braakhekke
etal., 2011).

The processes involved in SOM deposition in the profile — rhizodeposition, liquid
phase transport, and bioturbation — are fundamentally different, not only in a physical
and mathematical sense, but also in terms of their relationship with environmental fac-
tors. Therefore, in order for a SOM profile model to be robust over different ecosystems
and soil types, and over changing environmental conditions, the relevant processes
should be explicitly represented, and their rates individually constrained. Unfortunately,
the different processes have been poorly quantified to this date. Published results are
inconsistent and past studies have generally focused on a single mechanism, rather
than comparing all three (Rasse et al., 2005; Kaiser and Guggenberger, 2000; Ton-
neijck and Jongmans, 2008). The extremely low rates, as well as practical problems
impede direct measurements of these processes in the field. Furthermore, the fact
that the mechanisms are acting simultaneously complicates inference from SOM pro-
file measurements. Diffusion and advection of decaying compounds such as organic
matter, often produce very similar concentration profiles, despite the different natures
of these processes. At the same time, root litter input closely follows the root biomass
distribution, which often strongly resembles the SOM profile. Hence, it is generally not
possible to derive the rate of each process from the organic carbon profile alone, un-
less strong assumptions are made. A model that includes all relevant processes can
likely produce very similar SOM profiles with entirely different parameter combinations
— a problem referred to as equifinality (Beven and Freer, 2001).

Thus, additional information is required in order to parameterize dynamic SOM pro-
file models. In past studies, 3¢ and '*C, have been used as tracers to this purpose
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(Elzein and Balesdent, 1995; Freier et al., 2010; Baisden et al., 2002). Although these
isotopes are particularly useful for constraining organic matter turnover times and car-
bon pathways, their precise information content with respect to the processes involved
in SOM profile formation is less clear, since rhizodeposition leads to direct input of 8¢
and '*C at depth.

In this context, fallout radio-isotopes (e.g. 187cs, 134cs, 21°Pbex, 7Be) may be more
effective. Such tracers have two major advantages over carbon isotopes: (i) loss oc-
curs only due to radioactive decay, which is constant and exactly known; and (ii) input
occurs only at the soil surface — direct input at depth is negligible. These points im-
ply that the vertical transport rate of such isotopes can be directly inferred from their
concentration profile (Kaste et al., 2007; He and Walling, 1997). Many radio-isotopes
sorb strongly to organic matter molecules. Transport independent from the sorbent
can be considered negligible for such isotopes, hence they offer an effective alternative
or complement to carbon isotopes for inferring transport processes in soils (Dorr and
Munnich, 1989, 1991). Particularly 21°Pbex (“'°Pb in excess of the in situ produced
fraction) is a valuable tracer due to its strong adsorption to soil particles, and relatively
constant fallout rate (Walling and He, 1999). Past studies have mostly used radio-
isotopes for determining erosion and deposition rates (Mabit et al., 2009; Wakiyama
et al., 2010), while their use for inferring vertical transport at stable sites has received
little attention (DArr and Mlnnich, 1989; Kaste et al., 2007; Yoo et al., 2011).

The aim of this study was to examine SOM profile formation with model inversion.
We used 21°Pbex concentration profiles, in addition to soil carbon measurements,
to optimize the model SOMPROF for two forest sites with contrasting SOM profiles.
SOMPROF (Braakhekke et al., 2011) is a vertically explicit SOM model that simulates
the distribution of organic matter over the mineral soil profile and surface organic layers
based on explicit descriptions of bioturbation, liquid phase transport, root litter input,
and decomposition. We aimed to answer the following questions: (i) What is the relative
importance of the different processes involved in SOM profile formation? (ii) How much
organic matter is present as material potentially transportable with the liquid phase, as
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compared to immobile particulate material? And, (iii) what is the information content of
21°Pbex profile data and organic carbon measurements with respect to the optimized
parameters? For both sites, 13 parameters, related to decomposition and transport
of organic matter, were estimated. The model inversion was performed in a Bayesian
framework, allowing us to include prior knowledge on the model parameters and to
estimate their posterior uncertainty.

2 Methods
2.1 The SOMPROF model

Here a brief overview of SOMPROF is presented. We focus specifically on the model
components related to the optimized parameters and the lead-210 module. A more
exhaustive description and the rationale behind the model structure is presented in
Braakhekke et al. (2011).

In SOMPROF the soil profile is explicitly split into the mineral soil and the surface
organic layer, which is assumed to contain no mineral material and is further subdi-
vided into three horizons: L, F and H (Fig. 1). These organic horizons are simulated
as homogeneous connected reservoirs of organic matter (OM). Immobile decomposi-
tion products of litter flow from the L to the F horizon and from the F to the H horizon.
Additionally, material may be transported downward between the organic horizons and
into the mineral soil by bioturbation. For the mineral soil, which comprises both or-
ganic matter and mineral material, the model simulates the vertical distribution of each
organic matter pool, using a diffusion-advection model.

The SOMPROF simulations in this study were started without any organic carbon in
the profile. The model was run with a time step length of one month (1/12yr), for a
specified maximum number of years, and was driven by average annual cycles of soil
temperature, moisture and (root) litter production.
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2.1.1 Organic matter pools and decomposition

The organic matter in the model comprises five organic matter pools representing or-
ganic matter types that differ with respect to decomposability, transport behavior and
mechanism of input: above ground litter (AGL), fragmented litter (FL), root litter (RL),
non-leachable slow organic matter (NLS), and leachable slow organic matter (LS).
Above ground and root litter are externally input; fragmented litter and leachable and
non-leachable slow OM are formed by decomposition. Note that the LS-OM pool rep-
resents potentially leachable material; the bulk of this organic matter is in fact immobile
due to the adsorption to the mineral phase. LS-OM is absent in the organic horizons
since the adsorptive capacity there is assumed to be negligible compared to that of the
mineral soil.

Organic matter decomposition is simulated as a first-order decay flux, corrected for
soil temperature and moisture. For any organic matter pool / decomposition is defined
as:

Li=f(T)gW)kC;, (1)

where C,; is the concentration (kg m_3, for the mineral soil) or the stock (kg m™~2, for
the organic horizons), k; is the decomposition rate (yr‘1) at 10°C and optimal soil
moisture, and (7)) and g(W/) are response functions for soil temperature and moisture
(see Braakhekke et al., 2011).

The formation of fragmented litter, non-leachable and leachable slow OM is defined
according to a transformation factor (a;_, ;) which specifies how much of the decompo-
sition flux of the donor pool i flows into the receiving pool j:

Finj=a;L;. (2)

The organic matter that does not flow to other pools is assumed to be lost as CO..
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2.1.2 Organic matter transport

All organic matter pools except above ground litter are transported by bioturbation, at
the same rate. Conversely, only the leachable slow organic matter pool is transported
by advection. All transport parameters are constant and independent of depth.

For the organic layer, organic matter transport due to bioturbation is determined by
the bioturbation rate B (kg m~2 yr‘1), which represents the mixing activity of the soil
fauna, i.e. the amount of material being displaced per unit area and unit time. B is the
maximum potential flux of organic matter that can be moved downward. In case the
potential bioturbation flux cannot be met by the organic matter pools in a horizon, it is
adjusted downward.

For the mineral soil, a diffusion model is applied to simulate transport due to biotur-
bation:
aC; 9°C,
=D : 3)

ot BT - BT 622

where C; is the local concentration of organic matter pool / (kg m'3), z is depth in
the mineral soil (m, positive downward; z =0 at the top of the mineral soil), and ¢ is
time (yr). (Dgt is the diffusivity (m2 yr‘1) which is derived from the bioturbation rate
according to mixing length theory, as follows:

B
DBT = %pTS/m, (4)

where is pMS is the local bulk density (kg m_3), and /,, is the mixing length (m), a
tuning parameter that links the bioturbation rate to the diffusivity. The upper boundary
condition, at the top of the mineral soil, is determined by flux of material coming from
the H horizon, as determined by B.
Dissolved organic matter is not explicitly represented in SOMPROF. Instead, the
combined effects of ad- and desorption and water flow on the concentration profile of
7264
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the leachable organic matter pool are simulated as an effective advection process:

0C. g 0C. g
=-v
ot 0z '

adv

()

where v is the effective organic matter advection rate (m yr'1). Note that the LS-OM
pool is also transported by bioturbation. The upper boundary condition for this pool
is determined by the total production in the organic layer. For the lower boundary, a
zero-gradient boundary condition is used for all pools, hence only advection can lead
to a loss of organic matter by transport.

2.1.3 ?'%pp,, simulation

Lead-210 is a radiogenic isotope that is input into the soil both due to atmospheric
deposition and in situ formation within the profile. The the fallout fraction (21°Pbex) is
typically estimated as the difference between the total lead-210 activity and the activity
of 22Ra which is a precursor of 210py, (Appleby and Oldfield, 1978).

A module has been added to SOMPROF in order to use measurements of excess
lead-210 as a tracer for SOM transport (Fig. 1). The modeled 210Pbex concentration
profile is controlled by atmospheric input, radioactive decay, and organic matter input,
decomposition and transport. The 210Pbex module is based on the following assump-
tions: (i) variations in time of the atmospheric 21°Pbex input are negligible; (ii) 21°Pbex is
input only into the L horizon, where it is immediately bound to organic matter; the time
needed for adsorption is negligible; (iii) 21°Pbex binds equally well to all organic mat-
ter fractions; (iv) no 210Pbex is associated to root litter or its decomposition products;
(v) the adsorption of 210Pbex is irreversible, hence it is not transported independently of
organic matter; (vi) 219pp “follows” the organic matter to which it is bound through the
decomposition and transport processes; and (vii) aside from transport, 21°Pbex is lost
only due to radioactive decay, at a fixed rate of 0.0311 yr'1.
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The transport behavior of 21°Pbex follows that of the organic matter pool to which it
is associated. Furthermore, input of organic matter as above ground litter or root litter
deposition has a diluting effect on 21‘)Pbex, while loss of organic matter as CO, leads to
an increase of concentration. For the organic horizons, the 21°Pbex fluxes due organic
matter flow (either by transport or transformation to another pool) are calculated by
multiplying the flux from a pool with its 21°Pbex mass fraction. For the mineral soil the
transport equations are solved separately for 21°Pbex associated with fragmented litter,
NLS-OM and LS-OM.

The atmospheric deposition rate of 21°Pbex is not generally known. However, since
we are only interested in the relative change of concentration with depth — not the
absolute concentrations — the input is set to 1 (see also Sect. 2.3.2).

2.2 Site descriptions
2.2.1 Loobos

Loobos is a Scots pine (Pinus sylvestris) forest on a well drained, sandy soil in the
Netherlands (52°10'0” N; 5°44'38" E). The climate is temperate/oceanic with an av-
erage annual precipitation of 966 mm and an average temperature of 10°C (WUR,
Alterra, 2011). The area was originally covered by shifting sands but in the early twen-
tieth century forest was planted. The forest floor is covered with a dense understorey of
wavy hair grass (Deschampsia flexuosa) that roots primarily in the organic layer. Due
to its young age, the soil is classified as Cambic or Haplic Arenosol (IUSS Working
Group WRB, 2007; Smit, 1999), but it shows clear signs of podzolization. Due to the
high content of quartzitic sand (> 94 %) the soils are pedologically very poor, reflected
by a low pH (3—4) and nutrient concentration and a virtual absence of soil fauna (Em-
mer, 1995; Smit, 1999). As a result, most organic carbon is present in a thick organic
layer of circa 11 cm, and organic carbon fractions in the mineral soil are very low.

7266

BGD
8, 7257-7312, 2011

Modeling the SOM
profile using >'°Pby,
measurements and
Bayesian inversion

M. C. Braakhekke et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
(R [ 4]
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/7257/2011/bgd-8-7257-2011-print.pdf
http://www.biogeosciences-discuss.net/8/7257/2011/bgd-8-7257-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Half-hourly measurements of soil moisture and temperature are performed contin-
uously at five depths (5, 13, 30, 60, 110cm). Data for the period 1 May 2005 to 31
December 2008 was used to derive an average annual cycle of soil temperature and
moisture which was used for the simulations. Additionally, above ground litter fall mea-
surements for the period 2000 to 2008 on a two to four weeks basis were used to derive
an average annual cycle for above ground litter input. Since the carbon content of the
litter was not determined, we used a fixed C fraction of 50 %.

The grass understorey accounts for almost two thirds of the organic matter input,
mostly by root turnover (Table 1). Annual root litter input was taken from Smit et
al. (2001) who estimated root litter production using root ingrowth cores. To account
for seasonal fluctuations of the grass layer, the annual input of both above and below
ground grass litter production was distributed over the year using a function based on
data taken from Veresoglou and Fitter (1984), which peaks around early June. The
vertical distribution of root litter input was set such that approximately 95 % occurs in
the organic layer (Supplement Fig. 1), which corresponds in situ observations of root
biomass (A. Smit, personal communication, 2009).

The simulation length was set to 95 yr, which is approximately the time between the
forest plantation and the sampling date. To account for the time needed for vegetation
to develop, litter input is reduced in the initial stage, by multiplying with a function
linearly increasing from 0, at the start of the simulation, to 1, after 60 yr (Emmer, 1995).

2.2.2 Hainich

This site is located in the Hainich national park in central Germany, (51°4'45.36" N;
10°27'7.20" E). The forest, which has been unmanaged for the last 60 yr, is dominated
by beech (Fagus Sylvatica, 65 %) and ash (Fraxinus excelsior, 25 %) (Kutsch et al.,
2010). The forest floor is covered by herbaceous vegetation (Allium ursinum, Mer-
curialis perennis, Anemone nemorosa) which peaks before canopy budbreak. The
climate is temperate suboceanic/subcontinental with an average annual precipitation
of 800 mm and an average temperature of 7 to 8 °C.
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The soil is classified as Luvisol or Cambisol (IUSS Working Group WRB, 2007;
Kutsch et al., 2010). It has formed in limestone overlain by a layer of loess, and is
characterized by a high clay content (60 %) and a pH-H,O of 5.9 to 7.8 (T. Persson,
personal communication, 2011). The favorable soil properties support a high biological
activity (Cesarz et al., 2007), corroborated by a thin organic layer and a well developed
A horizon. About 90 % of the root biomass occurs above 40 cm depth (Supplement
Fig. 1).

The Hainich simulation has been set up identically to that presented in Braakhekke
et al. (2011) (reference simulation). For additional information we refer to this publica-
tion. The not-optimized model input is listed in Table 1.

2.3 Observations used for optimization
2.3.1 Carbon measurements

For Loobos, measured carbon stocks in the L, F and H horizon and the mineral soil, and
carbon mass fractions at 3 depths in the mineral profile were used in the optimization.
Several profiles were affected by wind erosion. When this was the case, the affected
measurements were omitted.

In 2005 the soil was sampled in a regular quadratic grid at 25 points spaced 40 m
apart. Organic layers were removed with a square metal frame with a side length of
25cm. The mineral soil was sampled horizon-wise with a Purckhauer auger, 2-3cm
wide and 1 m long. Bulk density of the upper 5cm of the mineral soil was determined
with three 100 cm® cylinders at each of the 25 grid points. In view of low spatial variabil-
ity, the bulk densities of the subsoil horizons were derived from a representative soil pit
in the center of the study area. Soil samples were sieved to <2 mm and ground. Car-
bon stocks in the organic layers were analyzed with a CN analyser Vario EL (Elementar
Analysensysteme GmbH, Hanau, Germany); carbon fractions in the mineral soil were
measured with a CN Analyser VarioMax (Elementar Analysensysteme GmbH, Hanau,
Germany).
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For Hainich, measured stocks in the L and F/H horizon (the individual F and H hori-
zons could not be identified), and in the mineral soil were used, as well as mass fraction
measurements at 8 depths in the mineral profile. In addition, we used measured effec-
tive decomposition rates at 15°C and optimal soil moisture in the L and F/H horizon,
and at 7 depths in the mineral profile. The sampling procedure and organic carbon
measurements are described in Schrumpf et al. (2011). The decomposition rates were
calculated from measurements of respiration rates measured during lab incubation of
soil samples which are described in Kutsch et al. (2010). By dividing the average
respiration rate of each sample by its organic carbon content, we obtained effective
decomposition rates.

2.3.2 2'°pp_, measurements

Since local 21°Pbex measurements were not available for Loobos, we used two activity
profiles from Kaste et al. (2007), for a site in the Hubbard Brook Experimental Forest,
New Hampshire, USA. This site has conditions similar to those at Loobos in terms of
vegetation, soil texture, soil pH, and soil biological activity (Bormann and Likens, 1994).
Furthermore, pedological processes related to podzol formation are occurring at both
sites. The two sites differ with respect to age, since the Loobos soil is very young.
However, in view of the relatively fast decay rate of 210Pb, and the shallowness of the
21°Pbex profile (Fig. 2), we assume that it is close to steady state at both sites.

For Hainich, local 21°Pbex measurements were taken from Fujiyoshi and Sawamura
(2004). Although these measurements were corrected for in situ formed 210py, by sub-
tracting 22°Ra activity (R. Fujiyoshi, personal communication, 2008), the activity profile
did not approach zero with depth, hence this method did presumably not account for
all supported 219pp Therefore, we assumed that the supported 21°Pbex concentration
is zero from approximately 12.5 cm downwards. The the supported 210py, activity was
estimated as the average below this depth, and all data was corrected by subtracting
this average. (Note that in several cases this produced negative concentrations.)
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The activity data from both sites were normalized using the 21°Pbex activity at the
surface of the mineral soil which was estimated using piecewise Hermitian extrapola-
tion. Since neither data set had sufficient replicate measurements to estimate spatial
variability, a one-parameter exponential model was fit to the normalized depth distribu-
tion, and the uncertainty used for the optimization was estimated as the standard error
of the prediction. The thus obtained profiles and standard errors are shown in Fig. 2.

2.4 Bayesian optimization

We performed Bayesian estimation of 13 model parameters: 5 decomposition rates, 5
transformation factors, and 3 transport parameters (Table 2). Bayesian parameter es-
timation is aimed at deriving the posterior probability distribution P(8|0) of the model
parameters 0 based on the misfit between the model results and the observations O,
and the a priori probability distribution of the parameters P(0) (Mosegaard and Sam-
bridge, 2002). Here, @ is a vector containing all model parameters that are optimized.
According to Bayes’ theorem, the posterior distribution is defined as:

P(@|0)=cP(0)L(0]0). (6)

where P(@) is the prior probability distribution, expressing our knowledge of the
parameters prior to the optimization. The normalization constant ¢ assures that
/f°°oP(0|O)d0 =1, which is a requirement of a proper probability density function.
L(0|0) is a likelihood function that expresses the probability of measuring O, given
the parameters 8 (Gelman et al., 1995, ch. 1). Hence, L(O|0) essentially maps the
probability distribution of the measurements to the parameter space @, based on the
inverted model structure.

Due to the complexity of the model, no analytical expression of the posterior distri-
bution exists for our case. We therefore used a Markov Chain Monte Carlo (MCMC)
approach which obtains a random sample of P(8|0) by performing a random guided
walk in parameter space. The posterior sample is comprised of all the steps of the
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random walk. MCMC algorithms are increasingly used due to the rising availability of
computational resources as well as the increasing amount of data becoming available
from e.g. eddy-covariance flux measurements and satellite observations (Fox et al.,
2009). They have also been applied to optimize soil carbon models (Yeluripati et al.,
2009; Scharnagl et al., 2010; de Bruijn and Butterbach-Bahl, 2010). We used the well-
known Metropolis-Hastings algorithm which is further described in Appendix A1.

2.4.1 Uncertainty of the observations

In order to obtain the likelihood function L(0|@), an uncertainty model for the mea-
sured variables must be defined. Since all observed quantities are bounded at zero,
we assumed a log-normal distribution. The total likelihood of the model results was
determined by combining the misfit of all the different types of observed quantities (e.g.
the organic carbon fraction at a certain depth, the stock in the L horizon, etc.):

/
L(0]0) = exp (—%ZC,(B,O)), (7)

i=1

where / is the number of different types of observations and C;(@,0) is the cost, which
expresses the misfit of the model results to measurement type /. Note that we did not
consider correlations between the measurements.

For any type of measurement /, the cost was determined from the individual repli-
cates of each type of observation:

In(M;(8))-1n(0; )\ 2
C:(0,0)= z< ” >

In
where J; is the number of replicates, M;(@) is the model prediction, O; ; is the value
of replicate measurement /, and g,,,, is the sample standard deV|at|on over all log-
transformed replicates.

(8)
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2.4.2 Prior parameter distributions

We performed MCMC runs with both strong and with weak prior distributions. For the
weak priors, the prior probability P(8) was simply omitted from the posterior distribu-
tion, which resulted in a multivariate uniform distribution, within the sampling region.

For the runs with strong priors, the distributions were based on knowledge obtained
from previously published studies (Braakhekke et al., 2011). The same distributions
were used for both sites. The priors of the decomposition rates were log-normal, since
these parameters have their theoretical minimum at 0. For the litter pools (k,g, , k5 and
k) we used the same distributions, with a maximum likelihood at 0.20 yr'1 (Fig. 3a).
It is likely that the decomposition rate of leachable slow organic matter (k) is lower
than that of non-leachable slow organic matter (k, ), since the former is comprised
mostly of material adsorbed to the mineral phase. Nevertheless, since we aimed to
test this hypothesis with the measurements, we used the same prior distributions for
the decomposition rate of both pools (maximum likelihood at 0.014yr‘1; Fig. 3b).

We used logit-normal prior distributions for the transformation factors. This distribu-
tion is similar to the beta distribution and is bounded between 0 and 1 (Mead, 1965).
For a,, . @ distribution with maximum likelihood at 0.83 was used (Fig. 3c), while
for the other conversion fractions (g s, T isr Xens, @nd aq ) the same prior
was used with the maximum likelihood at 0.057 (Fig. 3d). Since relatively little a priori
information about the SOM transport parameters (B, /,,, and v) is available, we used
uniform priors within the sampling region for all optimizations (Fig. 3e).

The optimization was constrained to a bounded region in parameter space (Table 2)
since preliminary runs showed that, in certain cases, several parameters were virtually
unconstrained at the upper bound by the data. Furthermore, since decomposition
cannot lead to a net formation of material, the sum of transformation factors for root
litter (ag,_ns + @rs) @nd fragmented litter (@, s + @ _..s) POOIs was bounded to 1.
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2.4.3 MCMC run setup and forward simulations

Three series of MCMC runs (referred to as optimization setups from hereon) were
performed in which 210Pbex data and prior knowledge were stepwise added, in order to
investigate the information content of each source of information. Thus, for both sites,
we ran optimizations in the following setups:

1. excluding 21°Pbex data and with weak priors;
2. including 21°Pbex data and with weak priors;

3. including 21°Pbex data and with strong priors.

Optimization setup 3 represents our best estimate of the model parameters.

To illustrate the results of the optimizations we performed forward Monte Carlo sim-
ulations based on the posterior distributions. 1000 simulations were made with param-
eter sets drawn randomly from the posterior samples. The setup of these simulations
was the same as those made for the MCMC runs.

3 Results

For most of the optimization setups, the posterior distribution is multi-modal, meaning
it has more than one local optimum. For most optimizations the posterior modes are
very distant and isolated in parameter space. Hence they represent distinctly different
explanations for the measurements, in terms of the processes that are included in the
model. We refer to the modes as “cases” in the discussions below.

When a clear favorite case can be identified for a given optimization setup, the other
cases often have negligible probability. Nevertheless, we also report several non-
favorite cases here because they are illustrative of the workings of the model and
demonstrate the usefulness of the Bayesian approach in combination with 2'°Pb,,
data. We show the distributions separately for all cases of interest and report the
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value of the lowest total cost (summed over all measurements, cf. Eq. 8) in the sample
for each case, as an indicator of its performance1. It must be noted that for different
cases within the same optimization setup, the absolute difference between the costs
determines the difference in probability, not the relative difference.

The continuous posterior distributions depicted in the figures were derived using
kernel density estimation.

3.1 Loobos
3.1.1 Setup 1: excluding ?'°Pb,, data; weak priors

The posterior distribution for the setup 1 (excluding 21°Pbex and with weak priors) for
Loobos has two cases with distinctly differing marginal distributions for several param-
eters (Fig. 4a). The value of the minimum cost (Table 3) indicates that case B performs
significantly better at fitting the measurements.

The contrast between the two cases is further demonstrated by the results of the
forward simulations (Fig. 5). While non-leachable slow (NLS) organic matter is the
largest pool in case A, the leachable slow (LS) OM pool dominates in case B. These
differences can be attributed mostly to the decomposition rates of these pools. The
difference in average performance is also apparent from Fig. 5: case B performs sig-
nificantly better at reproducing the organic matter stocks and profile.

3.1.2 Setup 2: including 21‘)Pbex data; weak priors

Adding 21°Pbex measurements to the observations used in the optimization has a large
effect on the posterior (Fig. 4b). Again, two cases exist in which either NLS-OM or
LS-OM is the dominant organic matter pool (Supplement Fig. 3). However, particularly

"Note that the lowest cost in the sample is likely an overestimation of the cost at the true
minimum. This is because the algorithm does not necessarily come close to the true minimum,
due to the high number of dimensions.
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for case A, the marginal distributions of several parameters differ strongly with respect
to optimization 1.

Compared to the optimization without 2'°Pb,,, the average cost of case A has in-
creased dramatically while the cost of case B has increased only slightly (Table 3;
Supplement Fig. 2). The reason for the different performance of the two cases is clear
from the 21°Pbex results of the forward runs (Fig. 6): for case A the model completely
fails to reproduce the 21°Pbex profile, compared to case B. Also the fit to the organic
carbon measurements has decreased for case A (Supplement Fig. 3).

3.1.3 Setup 3: including 21()Pbe,( data; strong priors

In the setup with 21°Pbex data and strong priors, only one case was found (Fig. 4c),
in which LS-OM dominates. A case may still exist in which NLS-OM dominates, but
the cost has presumably further increased due to the prior distributions. Compared
to case B in the optimization setup 2, the distributions of several parameters (k, s,
e _ns' Trinis Nave changed to fit the prior distributions. Although uniform priors were
used for the transport parameters, the bioturbation rate B, and mixing length /., are
well constrained. Contrastingly, the advection rate v is quite poorly constrained and
apparently can be chosen freely from high end of the sampling range.

Despite the change of several of the marginal distributions, the results of the forward
simulations are very similar to those of case B for setups 1 and 2 (Fig. 7). Figure 8
depicts the modeled vertical transport fluxes of the forward simulations. Virtually all
organic matter movement occurs with as liquid phase transport.

3.2 Hainich
3.2.1 Setup 1: Excluding 2'°Pb,, data; weak priors

The optimization in setup 1 for Hainich produced 3 distinct cases in the posterior distri-
bution (Fig. 9a). Case C has the lowest minimum cost (Table 3).
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Again there is a distinct contrast between the cases in terms of the contributions
of each of the organic matter pools as demonstrated by the results of the forward
simulations (Fig. 10). As for the optimizations for Loobos, there is a case in which
NLS-OM dominates (A) and a case where LS-OM dominates (B). In addition, there is
a case where root litter dominates (C). The better performance of case C is explained
by the better fit of the model output to the the measured effective decomposition rate
in the deep soil.

3.2.2 Setup 2: including 2'°Pb,,; weak priors

When 21°Pbex was included in the optimization again three cases were found, with
similar quantities of each organic matter pool, compared to the cases of setup 1 (Sup-
plement Fig. 6). The addition of 210Pbex data to the observations did not lead not
significant changes in the marginal posterior distributions (Fig. 9b), with the exception
of k ¢ in case A.

The misfit to the 210PbeX data has lead to an increase of the minimum cost for all
cases (Table 3; Supplement Fig. 5), but more strongly so for case C, which is now
higher than the other two cases. These results are illustrated by Fig. 11 which shows
that 21°Pbex profile is better reproduced for cases A and B. (Other results are shown in
Supplement Fig. 6.)

3.2.3 Setup 3: including 210Pbex; strong priors

In the optimization with 210Pbex and strong priors, the three cases were again found
by the algorithm. The minimum cost of case C has further increased (Table 3), to
the point that we can discard it as explanation for the measurements. While cases A
and B performed almost equally well in setup 2, the addition of prior information has
shifted favor towards case B. Hence, we treat this case B as the most likely outcome
of the optimization and show only results for this case. (The posterior distribution and
results from forward simulations of case A and are shown in Supplement Figs. 7-10.)

7276

BGD
8, 7257-7312, 2011

Modeling the SOM
profile using >'°Pby,
measurements and
Bayesian inversion

M. C. Braakhekke et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
(R [ 4]
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/7257/2011/bgd-8-7257-2011-print.pdf
http://www.biogeosciences-discuss.net/8/7257/2011/bgd-8-7257-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Compared to the prior distributions, significant constraint has been gained for most
parameters, with the exception of k; (Fig. 9c). Figure 12 shows the results of the
forward Monte Carlo runs for case B, which are very similar to those for setups 1 and
2. Figure 13 shows the modeled vertical transport rates for case B. In contrast to
Loobos, bioturbation and liquid phase transport are of comparable magnitude in most
of the profile.

3.3 Parameter correlations

Figure 14 depicts the correlations between the parameters for the most likely cases of
optimization 3 (including 21°Pbex and with strong priors) for both sites. For both sites
several strong correlations exist, which can mostly be explained well in the context of
the model structure. For example, generally positive correlations exist between the pa-
rameters that control the formation of a specific organic matter pool (the transformation
factor(s) a;_,;), and its decomposition rate, since these parameters combined control
the total quantity of that pool. Also, the transport parameters are generally correlated
with the parameters that are influenced by the respective transport processes. For both
sites, the above ground litter decomposition rate k,; has little correlation with other pa-
rameters since this parameter is determined mostly by the measured carbon stock in
the L horizon and, for Hainich, the effective decomposition rate in the L horizon. In the
model, these quantities are fully determined by &, .

4 Discussion
4.1 Loobos

For Loobos, the posterior distributions of all optimization setups have one clearly fa-

vorite case, allowing the most likely explanation for the observed vertical SOM profile

to be identified. The results of the forward simulations for the final optimization sug-

gest that the leachable slow (LS) pool is dominant type of organic matter (Fig. 7) and
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that liquid phase transport is responsible for virtually all organic matter movement in
the mineral soil (Fig. 8). The relative importance of organic matter leaching is in good
agreement with the soil characteristics at Loobos. Soil fauna is virtually absent, and
the high concentration of sand supports fast water infiltration and has a low adsorptive
capacity, thus allowing high dissolved organic matter (DOM) fluxes. Furthermore, the
low soil pH may also further stimulate DOM fluxes since pH has been shown to be
negatively correlated with DOM concentration (Michalzik et al., 2001).

Although SOMPROF was not developed to simulate DOM transport, the modeled
liquid phase transport fluxes should represent the average movement of dissolved
organic carbon (DOC) over long timescales®. Figure 8 shows that simulated liquid
phase transport fluxes compare well to local measurements of DOC fluxes performed
by Kindler et al. (2011), but are overestimated in the topsoil. However, the uncertainty
of the simulated fluxes is quite high, indicating that the observations used in the opti-
mization could also be explained with somewhat lower transport rates. Furthermore,
the fit of the modeled liquid phase transport flux for case A of optimization 2 is markedly
worse (Supplement Fig. 4).

The root litter input distribution for Loobos was set such that almost no input oc-
curs below 5cm in the mineral soil (Supplement Fig. 1) which explains why no case
was found in which root litter dominates, as for the Hainich optimizations. This shal-
low distribution was chosen because the grass understorey, which is by far the largest
source of root litter, roots primarily in the organic layer (A. Smit, personal communica-
tion, 2009). However, a small amount of root litter input from the pine canopy may still
occur in the subsoil. Future study should explore the possible effects of this deep soil
input on the results of the optimization.

It must be noted that due to the absence of in situ 21°Pbex measurements at Loobos,
data from a different but similar site was used as a proxy. Comparison of the results

2Although the LS-OM represents mostly material adsorbed to the mineral phase, the trans-
port of this pool occurs only by the small fraction that is mobile and thus corresponds to DOC
fluxes.
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of optimizations setups 1 and 2 shows that adding 21°Pbex did not have a large effect
on the forward results and the minimum cost for case B. This shows that the organic
carbon and #'°Pb,, profiles can be explained well together, suggesting that the 2'°Pb,,
profile used for the optimization is consistent with that at Loobos.

4.2 Hainich

Despite the larger amount of data that is available for Hainich compared to Loobos,
there is more uncertainty with respect to the three cases that were found. Case C, in
which root litter dominates, can be discarded as unlikely with some confidence, in view
of the its high cost compared to the other cases, in optimization setup 3.

Although the difference in minimum cost between case A and B (in which NLS-OM
and LS-OM dominate) is considerably smaller, case B is still several orders magnitude
more probable than case A in a purely statistical sense (cf. Eq. 7). However, in addi-
tion to the spread of the measurements, there are several uncertainties related to the
assumption of steady state, possible effects of past land use and climate. Since these
uncertainties were not represented in the optimization (see Sect. 4.5), the results as
such are not sufficient to fully dismiss case A.

Organic matter density fractionation measurements (M. Schrumpf, unpublished data,
2011) indicate that 81-93 % of the organic matter is present in the heavy fraction, which
is known to comprise mostly material in organo-mineral complexes (Golchin et al.,
1994). Although the model pools can presumably not be compared directly to the mea-
sured density fractions, this is clearly in support of case B, since leachable slow OM
represents mostly material adsorbed to the mineral phase (Sect. 2.1.2; Braakhekke
et al., 2011).

Further confidence in case B is gained when comparing the modeled liquid phase
transport fluxes with in situ measurements of DOC fluxes of Kindler et al. (2011). As
depicted in Fig. 13, the modeled liquid phase transport fluxes for case B compare
well to measured DOC fluxes, while the fit for case A and C (Supplement Fig. 10) is
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considerably worse. Despite the high concentration of leachable slow OM in case B,
the liquid phase fluxes do not dominate, as for Loobos, which can be ascribed to the
low advection rate.

4.3 Comparison between sites

The fact that for Hainich more data was used than for Loobos did not lead to signifi-
cantly narrower marginal distributions. (Supplement Fig. 11). However, it is apparent
from correlation structure (Sect. 4.4).

The fact that the above ground litter decomposition rate for Hainich is significantly
lower than for Loobos is somewhat surprising since both sites have similar above
ground litter input (Table 1), but Loobos has a significantly higher L horizon C stock
(1038+1299gC m~? vs. 758 + 133 gC m~2 for Hainich). The discrepancy is caused by
the fact that the measured moisture content in the L horizon for Loobos is quite low dur-
ing summer, hence the model requires a high base decomposition rate to reproduce
the observed stock. The moisture sensitivity of decomposition may be overestimated
for Loobos.

The two sites differ strongly with respect to the organic matter transport parame-
ters, with Hainich having higher values for the two parameters related to bioturbation,
and Loobos having a much higher advection rate. This in good agreement with the
differences between the two sites in terms of biological activity and soil texture.

Although at both sites leachable slow organic matter is the dominant pool, the de-
composition rate of LS-OM is significantly lower for Hainich than for Loobos. Presum-
ably, the effective decomposition rate measurements for the mineral soil for Hainich
provide strong constraint for k5. Since for Loobos such information is not present, kg
is only constrained by mineral soil organic matter fractions. Here, a decrease of kg,
causing a lower loss of LS-OM by decomposition, can be compensated by an increase
of v, causing a higher loss of LS-OM by advection, or by a decrease of a;,_,, and
an s, leading to lower production of this pool (cf. Fig. 14).
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4.4 Correlation structure and parameter identifiability

As shown in Fig. 14, there are many strong correlations between different combinations
of model parameters, which indicates that the model is over-parameterized with respect
to the available data. The correlations are generally less strong for Hainich than for
Loobos which presumably is caused by the fact that for Hainich more data was used
in the optimization. A consequence of the strong correlations is that the constraint of
the posterior distributions is much stronger than what is suggested by the marginal
distributions. The correlations between the parameters must be considered in order to
determine the information gain of the observations (see also Supplement Fig. 12).

For all of the cases in all optimization setups there is at least one decomposition rate
for which high values are not constrained by the observations (k; and k., for Loobos,
Fig. 4c; and k., and k¢ for Hainich, case B, Fig. 9¢c). Since the predicted stock of a
pool is inversely proportional to its decomposition rate, this shows that SOMPROF has
at least one redundant organic matter pool, given the available data. This is further
demonstrated by the existence of several strong negative correlations between de-
composition rates (k. and kg, for Loobos and k., and k,, ¢ for Hainich), which suggest
that organic matter pools are essentially “competing” as explanation for the observed
carbon stocks and fractions. Further study should explore whether simplification of
the model by removal of organic matter pools is warranted. If so, a possible solution
would be to merge the root litter and fragmented litter pools, which are functionally very
similar.

4.5 Methodological constraints and implications for soil organic matter cycling

In addition to the spread of the measurements there are several sources of uncertainty
that were not, and in some cases can not, be considered in the Bayesian inversion.
Examples include the behavior of 210Pbex (discussed below), the general validity of
the model structure, and the uncertainties discussed in Sects. 4.1 and 4.2. These
uncertainties call for some care when interpreting the results in terms of the in situ
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processes. Furthermore, the case with the highest relative likelihood, should not be
accepted offhand as the truth without verification.

Assuming that for both sites the most likely posterior case of optimization 3 is correct,
our results emphasize the importance of organo-mineral interactions for soil carbon
cycling. However, this conclusion relies on the assumption that mineral-associated
organic matter is correctly represented by the LS-OM pool. Mathematically, the only
difference between the NLS-OM and LS-OM pools in the model structure lies in the
transport behavior. The question is whether this distinction correctly represents the
differences between stable particulate and adsorbed organic matter in reality. The
good agreement of our results with DOC flux and density fractionation measurements,
as well as the environmental conditions at both sites suggests that a situation where
LS-OM dominates might indeed be close to the truth. Furthermore, many studies have
indicated the importance of mineral associations for long-term carbon preservation
(Eusterhues et al., 2003; Mikutta et al., 2006; Kdgel-Knabner et al., 2008; Kalbitz and
Kaiser, 2008). In contrast, several researchers have indicated the presence of root-
derived particulate material in podzol B horizons, and questioned the relevance of DOM
transport for mineral soil organic matter fractions (Nierop, 1998; Nierop and Buurman,
1999; Buurman and Jongmans, 2005).

Our results also suggest that vertical transport of organic matter is the dominant
process for the formation of the SOM profile at our sites. This contradicts Jobbagy and
Jackson (2000), who proposed that root/shoot allocation together with the root biomass
distribution controls the vertical SOM profile, based on analysis of a large database of
SOM profiles. Also others have indicated the importance of root input for soil carbon
(Rasse et al., 2005). However, our findings do not suggest that rhizodeposition is
negligible for long term organic input compared to above ground litter production. The
transformation factors indicate that the relative conversion to LS-OM is slightly higher
for root litter than for fragmented litter. Furthermore, the contribution of root litter as a
source of SOM will increase with depth in the profile. It is difficult to judge the source of
SOM in the slow pools, since the material coming from fragmented litter and root litter
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are lumped in the model. In the future, the model will be modified to allow the source
of of SOM to be traced.

4.6 The use of 210Pbex measurements

For Loobos, the addition of 21°Pbex data was very helpful for disentangling the different
processes involved in SOM profile formation. This is demonstrated by the vastly higher
cost minimum for case B in optimization 2 compared to optimization 1. In contrast, the
21°Pbex data was much less informative for Hainich. Although the addition of 21°Pbex
data reduced the likelihood of case C, in which root litter dominates, it did not help to
disentangle the two transport mechanisms, as indicated by the similar costs minimum
of case A and B, in optimization setup 2.

The difference between the two sites with respect to the information content of the
21°Pbex data may be partially explained by the less “ideal” shape of the 210Pbex pro-
file for Hainich, in the sense that it deviates from an exponentially decaying profile.
Furthermore, the correction for supported 210py, activity (Sect. 2.3.2) created several
negative values, which are intrinsically impossible to reproduce by the model.

The use of 21°Pbex as a tracer for SOM transport relies on the assumption that Pb
adsorbs strongly to organic matter, both particulate and in solution. Based on 210Pbex
and "C profiles, Dorr and Minnich (1989) found that transport rates of 21°Pbex were
very close to those of organic matter, suggesting that the two are indeed strongly linked.
Although Pb is known to occur also in association with the mineral phase and inorganic
complexes (Schroth et al., 2008), the affinity of Pb to particulate organic matter is well
established, in view of its strong retention in organic layers and topsoils over short
timescales (Kaste et al., 2003; Kylander et al., 2008; Schroth et al., 2008), as well as
by adsorption studies (Logan et al., 1997; Sauve et al., 2000). The effect of DOM
movement on Pb migration is less clear, because it is difficult to predict the behavior of
Pb adsorbed to the organic matter that is transformed to the dissolved fraction. Several
researchers have indicated the importance of DOM and colloidal organic carbon for Pb
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movement in soil (Miller and Friedland, 1994; Wang and Benoit, 1997; Urban et al.,
1990; Friedland et al., 1992). Furthermore, adsorption studies have found that Pb
adsorbs readily to humic and fulvic acids (Logan et al., 1997; Turner et al., 1986),
while movement of dissolved Pb®* was found to be insignificant (Wang and Benoit,
1997). In view of these past findings we believe that our use of 21°Pbex data to optimize
SOMPROF is well defendable. However, further study focussing specifically on the use
of 21°Pbex as a tracer for SOM transport, is needed.

5 Concluding remarks

We performed a Bayesian parameter estimation for 13 parameters of the SOMPROF
model for two forest sites with strongly contrasting SOM profiles: Hainich and Loo-
bos. The problem of equifinality caused by multiple processes acting simultaneously
on the SOM profile (rhizodeposition, liquid phase transport, and bioturbation) is clearly
illustrated by the existence of multiple modes (cases) in the posterior distribution, cor-
responding to distinctly different explanations for the observations. One clearly favorite
case could be identified for Loobos. For Hainich there is more uncertainty, although the
most likely case suggested by the optimization agrees well with other measurements.

In the most likely cases for both Loobos and Hainich, the leachable slow organic
matter pool (representing material that can be moved with the liquid phase but is mostly
adsorbed to minerals) has the lowest decomposition rate and thus comprises the bulk
of the organic matter. The results indicate that two sites are characterized by different
regimes in terms of organic matter transport. For Loobos, virtually all organic matter
transport occurs by liquid phase transport, while for Hainich liquid phase transport and
bioturbation fluxes are of comparable magnitude. These results agree well with local
conditions at the sites.

Our study showed that organic carbon fractions and stocks are necessary but in
general not sufficient for parameterizing a SOM profile model. 21°Pbex data represents
a powerful tool that can offer much additional constraint on the model parameters, but
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not in all situations, as shown for Hainich. Other data may be considered to obtain
additional constraint, such as other isotopes (14C, 130, 15N) and density fractionation
measurements.

Future work will focus on deriving additional parameter sets for different soils and
ecosystems to allow large scale simulations with SOMPROF. Bayesian optimization is
an effective tool in this context since it allows knowledge obtained by previous opti-
mizations to be re-used to construct new prior distributions.

Appendix A

Markov chain Monte Carlo scheme
A1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) samples
the posterior distribution by performing a random guided walk in parameter space. At
each iteration / a proposal sample of the parameters 8" is generated by taking a ran-
dom step from the current sample 8. The model is run with the proposed parameter
set and the unnormalized posterior likelihood (P(@)L(0|@)) of the proposal is evalu-
ated. The proposal is subsequently accepted or rejected according to the Metropolis-
Hastings rule, which defines the chance for acceptance as:

L(0|6")P(6")J (6’

s=min ©l _) ( _) ( ),1 , (A1)
L(0O|8")P(0")J(67)

where J(0) is the Hastings factor which may be included to remove the effects of

an asymmetric proposal distribution (see Sect. A2). The decision for acceptance or
rejection is made according to:

9/+‘| — { g/

if a<s

, A2
if a>s (A2)
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with a ~U(0,1).

We split the algorithm into three steps applied in cascade. The proposal sample is
accepted or rejected based on: (i) the upper parameter bounds (see Table 2), (ii) the
prior (P(0)) and, if applicable, the correction factor (J(8)), and (iii) the likelihood func-
tion (L(0|0)). The algorithm proceeds only if the proposal is accepted in the current
step, otherwise the sample is rejected for the complete iteration. This setup converges
on the correct distribution, while reducing computation time since the model is only run
if the proposal is accepted in the first step and second steps (Mosegaard and Tarantola,
1995; Knorr and Kattge, 2005).

A2 Proposal sample generation

At each step proposals were generated for all parameters by drawing from a proposal
distribution centered around the current sample. Since the decomposition rates (k;)
and transport rates (B, /,, and v) have a theoretical lower bound at zero, the random
walk for these parameters was performed in log-transformed space:

8’ =In(0), (A3a)

6 = exp(6'), (A3Db)

where @' is the transformed parameter value and @ is the untransformed parameter
value used as input for SOMPROF. In this way proposals below zero are avoided and
the step become smaller when the untransformed parameters approach zero.

The conversion fractions (a;_, ;) are bounded at 0 and 1, hence for these parameters
the random walk was performed in logit-transformed space:

T
9_In(1_9>, (Ada)
B exp(8")
= T @)’ (A4b)
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Similar to the log-transformation, the logit transformation assures that no steps below
zero and above one are proposed, and that the steps get progressively smaller when
the chains get closer to either of these bounds.

Unless corrected, the transformations affect the distribution sampled with random
walk. This effect may be removed by multiplying the the acceptance chance (Eq. A1)
with the Hastings factor which, in our case, is the inverse of the Jacobian of the trans-
formation. For a log transformation:

J(6)=6, (A5)
and for a logit transformation:
J(6)=0-6 (A6)

The correction factor was applied for the optimizations with weak priors (setups 1 and
2). Omitting the correction factor for a log transformation effectively transforms a nor-
mal prior in transformed space into a log-normal prior in untransformed space, and
analogously for a logit transformation. The prior distributions for optimization setup 3
where constructed in this way.

The proposals in transformed space were generated by drawing from a normal dis-
tribution centered around the current sample:

0" ~N(6",0). (A7)

The step length variance o controls the average length of the steps and is inversely
proportional to the acceptance rate of the samples. By manually adjusting ¢ during the
optimization an acceptance rate of approximately 23 % was maintained, which is the
optimal rate for Gaussian posteriors (Gelman et al., 1995).

A3 Optimization design

For each optimization first a exploratory run was performed, intended to search for
different posterior modes (cases). For this run, 20 chains were run in parallel, with
7287

BGD
8, 7257-7312, 2011

Modeling the SOM
profile using >'°Pby,
measurements and
Bayesian inversion

M. C. Braakhekke et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
(R [ 4]
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/7257/2011/bgd-8-7257-2011-print.pdf
http://www.biogeosciences-discuss.net/8/7257/2011/bgd-8-7257-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

starting points widely dispersed in the sampling region using Latin hypercube sam-
pling. Furthermore, the posterior cost was reduced using a cost-reduction factor of
0.1, multiplied with the cost in Eq. (7). This effectively “flattens” the posterior, allowing
the chains to escape from local modes and to take bigger steps, and thus cover more
area. After all modes of interest were identified in the exploratory run, secondary runs
without cost reduction were performed, where at least 4 chains were started near each
mode.

The convergence of the chains was evaluated using the convergence index intro-
duced by Gelman et al. (1995, ch. 11), which is proportional to the ratio of the between-
chain variance and the within-chain variance. When the different chains converge on
the same distribution, this quantity declines to 1. All chains were run for at least 20 000
iterations per chain, or until the convergence index was < 1.1 for all parameters.

After the secondary runs, the chains that had not converged were discarded (it was
assured that at least 4 chains had converged per run). Additionally, a variable (but at
least 10 000), number of samples was removed from the start of each chain (the burn-
in). Next, the remaining chains for each mode were merged and thinned to 10000
samples for analysis by selecting samples in regular intervals.

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/8/7257/2011/
bgd-8-7257-2011-supplement.pdf.
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Table 1. Model driving data and not-optimized parameters.

Variable/Parameter Loobos Hainich  Units
Annual above ground litter input 0.310 0.314' kgC m~2 yr-
From canopy 0.255 0.277

From understory 0.055°  0.037

Total annual root litter input 0.445 0.178' kgC m™2 yro
From canopy 0.02°  0.148

From understory 0.425°  0.03

Root litter distribution parameter 0.4 0.07 m™’

Soil temperature response parameter 308.56* 308.56" K

Soil moisture response parameter a 1 1 -

Soil moisture response parameter b° 20 20 -

Soil temperature * * K

Relative soil moisture content * * -

Bulk density L layer 50 50 kgm™®
Bulk density F layer 100 100 kg m~3

Bulk density H layer 150 150 kgm™
Bulk density mineral soil 1400 * kg m~2
Simulation period 95 1000 yr

Depth of bottom boundary 2 0.7 m

* Variable in depth and/or time.

" Kutsch et al. (2010); W. Kutsch (personal communication, 2009) .
2 Smit and Kooijman (2001).

3 Smit and Heuvelink (2007).

* Lloyd and Taylor (1994).

5 Soil moisture response function: g (W) = exp(-exp(a— bW)).
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Table 2. Optimized model parameters.

Parameter Symbol  Units Prior distribution Upper bound O T F -
» Bayesmn inversion
Decomposition rates at 10 °C and optimal soil moisture g
Above ground litter Ko yr! Log-N (-0.81,0.76) 3 2 M. C. Braakhekke et al.
Root litter Ke yr! Log-N(-0.81,0.76) 3 %
Fragmented litter ke, yr! Log-N(-0.81,0.76) 3 =
Non-leachable slow organic matter k¢ yr! Log-N(-3.25,1.05) 3 s g
Leachable slow organic matter ks yr! Log-N(-3.25,1.05) 3 - ! !
Transformation factors =
Aboveground litter-fragmented liter @, . - Logit-N((0.70,1.20) 1 @ ! !
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Root litter-LS-OM a,, . - Logit-N(-1.50,1.20) 1,(1-a, . 9
Transport parameters @ ! !
Bioturbation rate B kgm=Zyr! - 3 —
Advection rate v mm yr'1 - 3 g
- T
(2}
2
o
- IR
v
QO
o
: TS
7297 o ) ®

2


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/7257/2011/bgd-8-7257-2011-print.pdf
http://www.biogeosciences-discuss.net/8/7257/2011/bgd-8-7257-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 3. Minimum cost for each of the posterior cases (see also Supplement Figs. 2 and 5).

Optimization Minimum cost
Loobos  Hainich
1: Excl. 7°Pb,,; A:189.02 A:226.97
weak priors B: 152.25 B:223.24
C:221.88
2: Incl. 2°Pb,,; A:891.08 A:228.77
weak priors B: 155.90 B:229.99
C: 243.40
3: Incl. #'°Pby; 169.91 A: 251.90
strong priors B: 248.54
C:272.15
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2007).
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Fig. 6. Measured and modeled 21°Pbex profile for Loobos. Modeled results are from forward
Monte Carlo runs based on posterior samples from the two cases of optimization setup 2

(including ?'°Pb,, and with weak priors).
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Fig. 7. Results from the forward Monte Carlo runs for Loobos using posterior samples from the
optimization setup 3 (including 21°Pbex and with strong priors). Errorbars indicate one standard
error of the mean for the measurements and one standard deviation for the model results.

(topsoil: 0—30 cm; subsoil: >30cm).
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Fig. 8. Modeled vertical transport fluxes for Loobos, from forward Monte Carlo simulations
based on posterior samples of optimization setup 3 (including 21°Pbex and with strong priors).
The depicted fluxes are averages for the last simulation year. The dashed line indicates the
standard deviation over the Monte Carlo ensemble. Measured DOC fluxes were taken from
Kindler et al. (2011). Note the somewhat indistinct bioturbation flux in the upper left corner.
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Fig. 9. Violin plots of the optimization results for Hainich. For optimizations 1 and 2, three cases (posterior modes)
are shown; see text for further explanation. For optimization 3, the graph shows the prior distribution and most likely
case of the posterior distribution. The violins indicate the marginal distributions for each parameter. The three vertical
lines inside the violins indicate the median and the 95 % confidence bounds.
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Fig. 11. Measured and modeled #'°Pb,, profile for Hainich. Modeled results are from forward
Monte Carlo runs based on posterior samples from the three cases of optimization setup 2

(including ?'°Pb,, and with weak priors).
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Fig. 13. Modeled vertical transport fluxes for Hainich, from forward Monte Carlo simula-
tions based on posterior samples of the most likely case case (B) of optimization setup 3.
The depicted fluxes are averages for the last simulation year. The dashed lines indicate the
standard deviation over the Monte Carlo ensemble. Measured DOC fluxes were taken from
Kindler et al. (2011).
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Fig. 14. Correlation matrix of the posterior sample for optimization 3 (including 21°Pbex and
with strong priors) for Loobos and Hainich (case B). The figure shows the correlations for each
possible combination of two parameters. In the lower triangle bivariate density probability plots
are depicted. In the upper triangle the correlation coefficients are shown, with blue indicating
negative correlations and red positive correlations. On the diagonal histograms of the univariate
marginal distribution for each parameter are shown.
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