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Abstract 21 

Satellite remote sensing provides continuous temporal and spatial information of terrestrial 22 

ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, 23 

such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of 24 

carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging 25 

Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and 26 

carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production 27 

(GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of 28 

canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the 29 

new version of TEM with eddy flux data. We then apply the model to the conterminous United States 30 

over the period 2000-2005 at a 0.05o ×0.05o spatial resolution. We find that the new version of TEM 31 

made improvement over the previous version and generally captured the expected temporal and spatial 32 

patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 33 

and net primary production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production 34 

(NEP) varies within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. 35 

The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of 36 

GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe 37 

drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study 38 

provides a new independent and more adequate measure of carbon fluxes for the conterminous United 39 

States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon 40 

management and climate. 41 

Keywords: Carbon dynamics; Terrestrial Ecosystem Model; Remote Sensing; MODIS; EVI; LSWI; 42 
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1. Introduction 45 

Quantification of net carbon exchanges between the terrestrial ecosystems and atmosphere is 46 

scientifically and politically important. It can help improve our understanding of the feedbacks between 47 

the terrestrial biosphere and atmosphere (Law et al., 2006) and provide critical information to studying 48 

long-term biosphere interactions with other components of the Earth system (Potter et al., 2007). The 49 

Intergovernmental Panel on Climate Change (IPCC) reported that the continent of North America has 50 

been identified as a significantly large fraction of global carbon budget in terms of both source and sink 51 

of atmospheric CO2 (Pacala et al., 2001;Gurney et al., 2002;IPCC, 2001). The conterminous United 52 

States accounts for most of the North American total, but with a high uncertainty. For instance, Pacala et 53 

al. (2001) estimated a carbon sink in the conterminous United States is between 0.30 and 0.58 Pg C 54 

yr-1 (1 Pg = 1015 g) over the 1980s. Fan et al. (1998) estimated the North America sink as 1.7 ± 0.5 Pg C 55 

yr-1 over the period of 1988 to 1992, mostly in the south of 51o N. Analyses based on land use change 56 

and inventory databases for the conterminous United States in the 1980s estimated a sink of 0.08 to 0.35 57 

Pg C yr-1 (Turner et al., 1995;Houghton et al., 1999;Houghton and Hackler, 2000;Houghton et al., 2000). 58 

Results from the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) suggested a smaller 59 

sink (0.08 ± 0.02 Pg C yr-1) of the conterminous United States from 1980 to 1993 (Schimel et al., 2000). 60 

Recently, Potter et al. (2007) estimated a sink of 0.04 to 0.2 Pg C yr-1 from 2000 to 2004 while Xiao et al. 61 

(2008) estimated the sink at 0.68 Pg C yr-1 over the period 2000 to 2006 using satellite information. 62 

Overall, these results have shown great uncertainties, and remarkably, the uncertainty sometimes is 63 

larger than the sink itself.  64 

Reducing the uncertainty of large-scale carbon exchanges requires more adequate 65 

comprehension to the related biophysical processes. Traditionally, process-based biogeochemical 66 
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models have been used (e.g. Raich et al., 1991;Potter et al., 1993;Field et al., 1995;Zhuang et al., 67 

2003;Running and Hunt, 1993). These models usually consider carbon fluxes as functions of climatic 68 

and biogeochemical factors (McGuire et al., 1992) and are able to estimate carbon fluxes and storage in 69 

the ecosystem. However, since the environmental limitation for simulating carbon fluxes is estimated 70 

with specific algorithms driven by uncertain environmental variables, biases between the observed and 71 

estimated environmental status can introduce uncertainty. In addition, terrestrial biogeochemical model 72 

simulations are uncertain due to lacking of large-scale disturbance data (Canadell et al., 2000;Law et al., 73 

2006). Remotely sensed data provide globally consistent and near real-time observations of numerous 74 

surface variables as well as the information of the timing, distribution, spatial extent or severity of 75 

disturbances at regional and global scales (Zhao and Running, 2008).  These satellite data help more 76 

adequately quantify carbon dynamics (Coops et al., 1998;Seaquist et al., 2003;Xiao et al., 2004;Sims et 77 

al., 2008). These remotely-sensed data are good at estimating carbon assimilation and plant respiration, 78 

but not heterotrophic respiration.  Satellite-based models alone cannot sufficiently account for 79 

vegetation carbon (Xiao et al., 2010) and nitrogen availability (Clark et al., 1999;Clark et al., 2004) 80 

while these can be provided by process-based models. Therefore, models that are based on both satellite 81 

observations and biogeochemical processes could potentially improve the quantification of carbon 82 

dynamics of Gross Primary Production (GPP), Autotrophic Respiration (RA) and heterotrophic 83 

respiration (RH).  For example, Potter et al. (2003) retrieved major disturbances at a global scale with 84 

the AVHRR FPAR data for the period of 1982-1999 and combined them with the NASA-CASA model 85 

to estimate the above-ground biomass carbon lost.  Hazarika et al. (2005) used MODIS derived Leaf 86 

Area Index (LAI) to constrain an ecosystem model (Sim-CYCLE) and improved the accuracy in 87 

estimating global Net Primary Production (NPP). However, limitations still exist in those studies. For 88 
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example, the NASA-CASA directly modeled NPP but avoided the estimation of the Gross Primary 89 

Production (GPP). The MODIS LAI products used for constraining Sim-CYCLE are not directly 90 

calculated with surface reflectance but derived with complex algorithms (Myneni et al., 2002) which 91 

can cause high uncertainty. Here we conduct a study by combining satellite reflectance data with a 92 

process-based biogeochemistry model, the Terrestrial Ecosystem Model (McGuire et al., 2001;Zhuang 93 

et al., 2003;McGuire et al., 1992;Raich et al., 1991), to quantify the carbon dynamics in the 94 

conterminous U.S. for the period of 2000-2005. 95 

Eddy covariance flux towers have been established since the 1990s to provide continuous 96 

measurements of ecosystem-level carbon exchanges (Wofsy et al., 1993;Baldocchi et al., 2001). At 97 

present, over 400 eddy covariance flux towers are operating on a long-term and continuous basis over 98 

the globe (FLUXNET, 2009). This global network covers a wide range of climate and biome types, and 99 

provides probably the best measurements of Net Ecosystem carbon Exchange (NEE) (Xiao et al., 2008). 100 

Previous ecosystem models were either estimated or calibrated with annual values of observed carbon 101 

fluxes (Raich et al., 1991;Potter et al., 1993) and the time series data of carbon fluxes have not been 102 

adequately used.  In recent years,  a number of studies used eddy flux data in a model-data fusion 103 

manner  to improve the parameterization and predictability of process-based ecosystem models (e.g. 104 

Tang and Zhuang, 2008;Braswell et al., 2005;Williams et al., 2005;Aalto et al., 2004;Santaren et al., 105 

2007;Tang and Zhuang, 2009;Wang et al., 2007;Wang et al., 2001).  Here we conduct a model-data 106 

fusion study with a satellite-based model.  We first develop a new version of TEM based on 107 

satellite-observed surface reflectance, which is hereafter referred to as SAT-TEM. Second we 108 

parameterize the SAT-TEM using flux tower data and compare both SAT-TEM and TEM performance 109 

at the site level. Finally, we use SAT-TEM to quantify carbon fluxes in the conterminous United States 110 
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in comparison with the estimates of a previous version of TEM. 111 

 112 

2. Method 113 

2.1. Overview 114 

In this study, Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) from 115 

Moderate Resolution Imaging Spectroradiometer (MODIS), which are of high data quality and 116 

accuracy (Justice et al., 2002;Guenther et al., 2002;Wolfe et al., 2002), are incorporated into the 117 

process-based biogeochemistry model TEM. Observed data from AmeriFlux sites (AmeriFlux, 2009) 118 

are then utilized to improve parameterization of the model and test the model performance. Specifically, 119 

we modify GPP formulae in TEM by incorporating MODIS EVI and LSWI. We then use a Bayesian 120 

Inference technique (Tang and Zhuang, 2009) to parameterize the model. The model is then verified for 121 

different ecosystem types with the observed Net Ecosystem Exchange (NEE) and GPP from eddy 122 

covariance flux towers of AmeriFlux network. To examine how the new model could improve the 123 

carbon flux estimation of TEM, we run both versions of TEM at the same sites with the same driving 124 

data sets. The model is finally applied to estimate dynamics of carbon fluxes for each 0.05o ×0.05o grid 125 

cell across the conterminous United States over the period 2000-2005.  126 

 127 

2.2. Modification to the Terrestrial Ecosystem Model 128 

The TEM is a well-documented process-based ecosystem model that describes carbon and 129 

nitrogen dynamics of plants and soils for terrestrial ecosystems (Raich et al., 1991;McGuire et al., 130 

1992;McGuire et al., 2001;Melillo et al., 1993;Zhuang et al., 2001;Zhuang et al., 2002;Zhuang et al., 131 
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2003;Zhuang et al., 2004). The TEM runs at monthly time step and uses spatially referenced 132 

information on climate, elevation, soils, vegetation and water availability as well as soil- and 133 

vegetation-specific parameters to make monthly estimates of important carbon and nitrogen fluxes and 134 

pool sizes of terrestrial ecosystems. In TEM, GPP is modeled as a function of irradiance of 135 

photosynthetically active radiation (PAR), atmospheric CO2 concentrations, moisture availability, mean 136 

air temperature, the relative photosynthetic capacity of the vegetation, and nitrogen availability. The 137 

freezing and thawing dynamics have also been considered (Zhuang et al., 2003).  The formula for 138 

calculating monthly GPP is: 139 

           , ( )max A vGPP C f PAR f PHENOLOGY f FOLIAGE f T f C G f NA f FT  (1) 140 

where Cmax is the maximum rate of C assimilation by the entire plant canopy under optimal 141 

environmental conditions; f(PAR) represents the influence of photosynthetically active radiation; 142 

f(PHENOLOGY) is monthly leaf area relative to leaf area during the month of maximum leaf area 143 

depending on monthly estimated evapotranspiration (Raich et al., 1991); f(FOLIAGE) is a scalar 144 

function representing the ratio of canopy leaf biomass relative to maximum leaf biomass (Zhuang et al., 145 

2002) having the similar effect as f(PHENOLOGY) on constraining the estimation of GPP; f(T) is 146 

temperature scalar with reference to the derivation of optimal temperatures for plant production and T is 147 

monthly air temperature; f(CA, Gv) represents the effect of CO2 concentrations, where CA is CO2 148 

concentration in the atmosphere and Gv is a unitless multiplier that accounts for changes in leaf 149 

conductivity to CO2 resulting from changes in moisture availability. The function f(NA) models the 150 

limiting effects of plant nitrogen availability. f(FT) is an index of sub-monthly freeze-thaw to indicate 151 

effects of freeze-thaw dynamics on GPP (Zhuang et al., 2003). In TEM, NPP is defined as the difference 152 

of GPP and autotrophic respiration (RA) and the net carbon exchange between the ecosystems and 153 
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atmosphere is defined as NEP, a difference between NPP and heterotrophic respiration (RH) (Raich et al., 154 

1991;McGuire et al., 1992;McGuire et al., 2001;Zhuang et al., 2003).  155 

Satellite vegetation indices are widely used in satellite-based carbon models to represent the 156 

fraction of vegetation absorbed PAR (FAPAR) (Prince and Goward, 1995; Running et al., 1999, 2000, 157 

Potter et al., 1993; Xiao et al., 2004). For example, the Normalized Difference Vegetation Indices 158 

(NDVI), which captures the contrast between the visible-red and near-infrared reflectance of vegetation, 159 

has a good linear or non-linear relationship of FAPAR. Recent studies show that EVI (Huete et al., 160 

1997;Huete et al., 2002) calculated from the MODIS could more efficiently dismiss the influence of 161 

atmospheric scattering and sensitive to canopy variations (Huete et al., 2002). EVI is believed to be a 162 

better choice than NDVI to represent photosynthetic activity of vegetation canopy (Boles et al., 163 

2004;Xiao et al., 2004;Yang et al., 2007) and provides reasonably accurate direct estimates of GPP 164 

(Rahman et al., 2005). EVI is a normalized index using the reflectance in the near infrared (NIR), red 165 

and blue spectral bands: 166 

 
2.5( )
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 (2) 167 

Apart from EVI, Xiao et al. (2004) developed the Vegetation Photosynthesis Model (VPM) 168 

which used the Land Surface Water Index (LSWI) to help capture the effects of water stress and leaf 169 

phenology. As the shortwave infrared (SWIR) spectral band is sensitive to land surface water content, 170 

the LSWI is calculated as the normalized difference between NIR and SWIR spectral bands: 171 

 nir swir

nir swir

LSWI
 
 





 (3) 172 

where the SWIR spectral bands may be either 1628–1652 nm or 2105–2155 nm for MODIS on 173 

board the NASA Terra satellite (Yan et al., 2009;Ratana et al., 2005;Li et al., 2007). In our study, we use 174 
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the band at 2105–2155 nm to calculate LSWI. 175 

We therefore adopt the formulae of the VPM for GPP modeling in our revision of TEM. We use 176 

water scalar (Wscalar), phenology scalar (Pscalar) and EVI to account for the vegetation water stress and 177 

phenology as well as absoption of PAR while maintaining the original formulation for nitrogen 178 

availability, temperature constraints, and the effect of CO2 concentration. GPP in the new version of 179 

TEM (SAT-TEM) is thus modeled as: 180 

        ( , )max scalar scalar A vGPP C f PAR f T W P f C G f NA f FT  (4) 181 

where f(PAR) = EVI×PAR/(ki+PAR) indicates the PAR absorption and the effect of PAR 182 

saturation while ki is the half-saturation value. Wscalar = (1+LSWI)/(1+LSWImax) where LSWImax is the 183 

maximum LSWI within the plant-growing season for individual grid cell. Through our study, we 184 

calculated LSWImax in advance and use it as an input parameter for each grid cell in the regional 185 

simulation. Pscalar = (1 + LSWI)/2. Specifically, Pscalar is set to be 1 for evergreen vegetations (Xiao et al., 186 

2004).  The calculations of NPP and NEP in SAT-TEM are kept the same as the previous version of 187 

TEM. 188 

 189 

2.2 Data Organization  190 

 2.2.1. Site-level data  191 

To drive SAT-TEM model, we first parameterize SAT-TEM using AmeriFlux site observations. 192 

We organize the observed GPP, NEP and meteorological data (radiation, air temperature, and 193 

precipitation) from six representative eddy covariance flux sites for each vegetation type to 194 

parameterize and verify SAT-TEM. In order to further test the performance of SAT-TEM, we organize 195 

the same data from ten additional available sites covering all the six vegetation types across most of the 196 
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conterminous United States (Figure 1). Specifically, we gather all available monthly Level 4 GPP and 197 

Net Ecosystem Exchange (NEE) products (http://public.ornl.gov/ameriflux/) at these sites (Table 1). 198 

The Level 4 product consists of two types of NEE data, including standardized (NEE_st) and original 199 

(NEE_or) NEE. Corresponding GPP_st and GPP_or are calculated by ecosystem respiration (Re) with 200 

NEE_st and NEE_or, respectively. GPP_st, GPP_or, NEE_st and NEE_or are filled using the Marginal 201 

Distribution Sampling (MDS) method (Reichstein et al., 2005) and the Artificial Neural Network (ANN) 202 

method (Papale and Valentini, 2003). We use GPP and NEE calculated from NEE data that were 203 

gap-filled using the ANN method (Moffat et al., 2007;Xiao et al., 2008). For each site, if the percentage 204 

of the remaining missing values for NEE_st is lower than that for NEE_or, we select NEE_or and 205 

GPP_or; otherwise, we use NEE_st and GPP_st. To compare with our TEM simulation, we treat NEE as 206 

TEM NEP, but with different signs.  207 

We obtain site-level EVI and LSWI by collecting MODIS ASCII subsets (Collection 5) which 208 

consist of 7 km × 7 km regions centered on the flux tower from the Oak Ridge National Laboratory’s 209 

Distributed Active Archive Center for each AmeriFlux site. This 16-day product has a spatial resolution 210 

of 1 km × 1 km. To better represent the flux tower footprint (Schmid, 2002;Rahman et al., 2005;Xiao et 211 

al., 2008;Xiao et al., 2010), mean EVI, NIR and SWIR band values for the central 3km × 3 km area are 212 

extracted within the 7km × 7 km cutouts. We only use the pixels with good quality which are 213 

determined by the corresponding quality assurance (QA) flags included in the product. LSWIs are then 214 

calculated by NIR and SWIR band values. Each 16-day EVI and LSWI values are aggregated into 215 

monthly values to correspond with the time step of SAT-TEM. 216 

 217 

2.2.2. Regional spatially-explicit data 218 
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To conduct regional simulations, we organize the regional data of vegetation, soils, topography, 219 

and climate at a spatial resolution 0.05o × 0.05o. We obtain land-cover information derived from 220 

MODIS product Land Cover Types Yearly L3 Global 0.05 Deg CMG (MOD12C1) (Year 2004) from 221 

NASA Goddard Space Flight Center website (http://modis-land.gsfc.nasa.gov). We use the 222 

classification of the International Geosphere and Biosphere (IGBP) land-cover classification system to 223 

classify the land cover map of the conterminous United States into 6 major vegetation types, which are 224 

used in our SAT-TEM simulations (Table 2 and Figure 1). EVI, NIR and SWIR bands data are extracted 225 

from MOD13C2 (MODIS Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V005) for the 226 

conterminous United States. 227 

Mean monthly climate data including air temperature, cloudiness fractions and precipitation are 228 

extracted from NCEP global datasets at a 0.5o spatial resolution (Kistler et al., 2001). Spatial elevation 229 

data and soil texture data from previous studies are from Zhuang et al. (2003). All these data are 230 

interpolated into a 0.05o spatial resolution using Inverse Distance Weighted method to match MODIS 231 

data. 232 

 233 

2.3 Model Parameterization and Application  234 

We parameterize the SAT-TEM with a Bayesian inference method (Tang and Zhuang, 2009) at 235 

the selected six AmeriFlux sites representing every major vegetation type across the conterminous 236 

United States. The parameterization method follows the procedures described in Tang and Zhuang 237 

(2009). Firstly, 15 key parameters (Table 3) are selected to conduct the parameterization according to 238 

our previous sensitivity study (Tang and Zhuang, 2009) and parameterization experiences. To derive 239 

the prior parameter sets of SAT-TEM, we first assume that they follow the uniform distributions within 240 
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previous specified reasonable ranges either based on literature review or our experience. We sample 241 

500,000 sets of parameters using the Latin Hypercube Sampling technique (Iman and Helton, 1988) to 242 

conduct the Monte Carlo simulations. We then use the sampling importance resampling (SIR) 243 

technique with the observed carbon fluxes at the selected sites to draw the posterior from the prior 244 

SAT-TEM simulations (Skare et al., 2003) and collect 50,000 posterior sets of parameters, which are 245 

one-tenth of the prior sample size and are suggested to be able to produce stable results (Green et al., 246 

1999;Tang and Zhuang, 2009). We then divide the errors made by the 50,000 sets of parameters into 50 247 

levels (from the highest error level to the lowest) and sampled 50 sets of parameters, one for each level. 248 

These 50 sets of parameters are applied at both sites and the region for ensemble simulations of 249 

SAT-TEM to account for the uncertainties of parameterization at different spatial scales. Here the first 250 

2-year data at all the six sites are used for parameterization while data of the remaining years are used 251 

for testing the model. To further test the performance of the SAT-TEM and compare it with TEM 252 

independently apart from the parameterization sites, we run both SAT-TEM and TEM at ten additional 253 

AmeriFlux sites which represent all six vegetation types within diverse climatic zones across the 254 

conterminous United States. Statistics of R2 and Root Mean Square Error (RMSE) are calculated to 255 

quantitatively evaluate the model performance. The TEM parameters for natural ecosystems are from 256 

previous studies (McGuire et al., 1992;Zhuang et al., 2003), parameters for croplands are averaged 257 

values for C3 and C4 plants from (Lu and Zhuang, 2010). 258 

The parameterized SAT-TEM is then applied to the conterminous United States for the period 259 

of 1948-2005 at a 0.05o spatial resolution with a total of 322287 grid cells. We first run SAT-TEM to 260 

equilibrium with the long-term averaged climate and CO2 concentration data from 1948 to 2005. We 261 

then spin-up the model for 120 years to account for the influence of climate inter-annual variability on 262 
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the initial conditions of the ecosystems. Since historic climate and CO2 concentration data are not 263 

available before 1948, we repeat the data from 1948 to 1987 for three times for the spin-up. In addition, 264 

since MODIS vegetation index products are only available from 2000, we fill the gap by repeating 265 

2000-2005 MODIS EVI data for the whole period in order to have consistent data for our simulation 266 

period. After the spin-up, we run the model with transient monthly climate and annual atmospheric CO2 267 

concentrations from 1948 to 2005 and then extract the results of the period of 2000-2005 for further 268 

analysis. To quantify the uncertainty of regional simulation caused by parameterization, we run 269 

ensemble SAT-TEM simulations with the 50 sets of parameters obtained from site-level 270 

parameterizations. The averaged values and standard deviations of 50 sets of regional results are 271 

calculated for analysis. For comparison, we also conduct a regional simulation with TEM. 272 

 273 

3. Results and Discussion 274 

3.1 Model Performance at AmeriFlux Sites 275 

The parameterized SAT-TEM can reproduce the carbon fluxes reasonably well at the six 276 

parameterization sites. Comparisons at each individual site show reasonable agreement of seasonality 277 

and inter-annual variability between the observed and predicted values (Figure 2, Table 4) except for 278 

Sky Oaks New site. Specifically, at forest sites, SAT-TEM simulations better capture the variation of 279 

both fluxes of GPP and NEP (R2 > 0.9 for GPP and R2 > 0.6 for NEP) when comparing to non-forest 280 

sites. SAT-TEM results at Sky Oaks New site however have a relatively lower linear relationship (R2 = 281 

0.10 for GPP and R2 = 0.13 for NEP) comparing to R2 > 0.7 for GPP at other sites. Literature review 282 

(Xiao et al., 2008, 2010;Sims et al., 2008) shows previous satellite-based estimations all failed to 283 

capture the variation of carbon fluxes at this site. Apart from the reason of short records at this site, this 284 
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disagreement is likely due to solar elevation angle effects on spectral reflectance (Sims et al., 2008) 285 

since it is reported that surface reflectance as well as NDVI and EVI are strongly affected by diurnal and 286 

seasonal changes in solar elevation angle when vegetation is sparse (Goward and Huemmrich, 287 

1992;Pinter et al., 1983, 1985;Sims et al., 2006, 2008). There is also a relatively weak linear 288 

relationship between SAT-TEM NEP and observations at Tonzi Ranch site. This may be due to MODIS 289 

and tower footprints that do not match with each other at this site according to Ma et al., (2007) and 290 

Xiao et al., (2008). Tonzi Ranch site is dominated by deciduous blue oaks and the understory while the 291 

MODIS footprint consists of larger area of grassland. Since the phenology of these two ecosystems is 292 

distinct from each other, they contribute differently to the integrated fluxes, leading to the error of 293 

model predictions.  294 

Overall, performance of SAT-TEM is obviously superior to that of TEM as shown in Table 4 at 295 

the six parameterization sites. Statistics of SAT-TEM results have notable higher R2 values and lower 296 

RMSE at all these sites showing that SAT-TEM has better ability to capture the variations and 297 

magnitudes of both GPP and NEP fluxes. The superiority of SAT-TEM is especially reflected at the 298 

non-forested sites considering the corresponding poor performances of TEM. This finding may indicate 299 

that TEM is better at simulating forest fluxes but weaker at simulating the seasonality and variations of 300 

carbon sequestration in non-forested ecosystems where satellite observations may provide a significant 301 

help. 302 

Testing at the other ten additional sites generates the similar results (Figure 3, Table 5). 303 

Comparing to the non-forested sites, both SAT-TEM and TEM have promising simulations at the 304 

forested sites and SAT-TEM performs overall better than TEM with significantly higher values of R2 305 

and lower values of RMSE. SAT-TEM again shows superior performances to TEM at the non-forested 306 
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sites. Except the shrubland site, the averaged R2 of SAT-TEM GPP and NEP at all non-forested sites are 307 

0.68 and 0.27, respectively. Comparing to 0.41 and 0.12 of TEM, SAT-TEM can better capture the 308 

seasonality and inter-annual variability of the carbon fluxes than TEM.  SAT-TEM’s RMSEs are much 309 

lower than TEM’s at these sites, indicating that SAT-TEM has better performance.  Both SAT-TEM 310 

and TEM do not perform well at the only available shrubland site. The Sky Oaks Old site is very close 311 

to the parameterization sites, thus the verification result is similar at the parameterization site. However, 312 

SAT-TEM still performs better with higher R2 and lower RMSE for both GPP and NEP. The high 313 

RMSEs at cropland sites are probably due to the different crop species, the rotations of different crops 314 

and the different field managements, which have not been considered in simulations. 315 

SAT-TEM estimated GPP and NEP are under- or over-predicted for some sites. The model 316 

could not capture exceptionally high values in the summer at some sites, such as some summer months 317 

at the cropland sites (Bondville, Rosemount, Mead Irrigated). Underestimations of NEP also take place 318 

in the winters at the Howland site, the springs and the winters at the Wind River Crane site, possibly due 319 

to the overestimation of the ecosystem respirations at these two sites.  The model also overestimated 320 

GPP at the Varia Ranch site in winters. Considering the low quality of GPP in winters (most of them < 0), 321 

our estimation could still be in a reasonable range.  If we pool all the measured fluxes together (Figure 322 

4), SAT-TEM shows better performance. 323 

We find the errors introduced by parameterization are relatively small at most sites except at the 324 

shrubland sites and evergreen forest sites with SAT-TEM (Figure 2 and 3). The most significant errors 325 

are usually occurring in summer commonly with relatively higher air temperature and abundant solar 326 

radiation, and precipitation, which can amplify the differences (Tang and Zhuang, 2009, 2008). 327 

Comparing to GPP, the simulated NEP has more significant errors, which is probably due to the error 328 
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propagation when more parameters are involved in NEP calculation. 329 

 330 

3.2 Temporal variation of carbon fluxes in the conterminous U.S.  331 

Annual GPP, NPP and NEP for the conterminous United States over the period 2000-2005 vary 332 

from year to year (Table 6). Discrepant results are found comparing to previous studies in the same 333 

region and similar time period (Table 7). The SAT-TEM estimated GPP flux varies from 7.02 to 7.78 Pg 334 

C yr-1 with of an annual average 7.43 Pg C yr-1. This estimate is close to 7.06 Pg C yr-1 estimated by 335 

(Xiao et al., 2010) over the period 2001-2006 but higher than 6.2 Pg C yr-1 of MODIS GPP product 336 

(Zhao et al., 2005) for the period of 2000-2005. Our estimate NPP ranges from 3.81 to 4.38 Pg C yr-1 in 337 

this period, which is much higher than the range of 2.67-2.79 Pg C yr-1 over 2000-2004 from Potter et al., 338 

(2007) and the 3.3 Pg C yr-1 from MODIS NPP product over 2000-2005(Zhao et al., 2005). Our 339 

estimated NEP is 0.08-0.73 Pg C yr-1 with an average 0.41 Pg C yr-1. Overall our estimations are higher 340 

than 0.04-0.2 Pg C yr-1 from Potter et al., (2007), and much lower than the estimates as high as 1.21 Pg 341 

C yr-1 from Xiao et al. (2011) but our estimation of 0.40 Pg C yr-1 in 2003 is closer to the estimate of 342 

0.63 Pg C yr-1 based on an inverse modeling approach (Deng et al., 2007). Comparing to NEP in the 343 

1980s, SAT-TEM estimated a much higher sink than the VEMAP estimate, which put the sink as 0.08 ± 344 

0.02 Pg C yr-1, and the land-based analyses (0.08 - 0.35 Pg C yr-1) (Turner et al., 1995; Houghton et al., 345 

1999, 2000), but close to the results (0.30 - 0.58 Pg C yr-1) provided by Pacala et al. (2001).  346 

SAT-TEM NEP has the similar inter-annual variation to the results presented by Potter et al. 347 

(2007) and Xiao et al. (2011) which are higher in 2001, 2003 and 2004 but lower in 2000 and 2002. 348 

From 2000 to 2003, the whole region acted as a relatively low net sink of atmosphere CO2 because large 349 

area carbon source occurred (Figure 5). Specifically, in 2000, large carbon sources mainly took place in 350 
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the south central and southwest area. In 2001, part of the Midwest and South Central, the Rocky 351 

Mountain area as well as the Pacific Southwest acted as carbon source. In 2002, large area of the 352 

Midwest, the Great Plains and the western U.S. were carbon sources. In 2003, carbon sources mainly 353 

took place in the western U.S., the Rocky Mountain areas and some part of the east and southeast coast. 354 

Except for the near-consistent carbon source in the Rocky Mountain area which is very likely due to 355 

cool or cold weather of the highland climate, temperature changes and extreme droughts might be the 356 

reason causing the other large area of carbon sources in these years. The National Climatic Data Center 357 

(NCDC, http://www.ncdc.noaa.gov/oa/ncdc.html) reported that the contiguous U.S. was very warm 358 

during the summer but very cold in November and December in 2000. Southwest states such as Utah, 359 

New Mexico and Nevada experienced the second or the third warmest year on record. Apart from the 360 

abnormal temperature, the drought in 2000 severely affected much of the southern and western U. S. 361 

and therefore reduced the carbon uptake and enhanced the intensity of carbon source. In 2001, the 362 

Midwest and Pacific Southwest both had abnormally high temperatures. 2003 was reported as the 20th 363 

warmest year on record for the United States. Western regions were reported as much warmer than 364 

average for the summer. The Northwest Region had its second warmest summer on record, and the 365 

Southwest and West had their third in 2003. Abnormally high air temperature significantly enhances 366 

ecosystem respirations but does not contribute much to carbon uptake because the temperature may 367 

have passed the range of optimums temperature for plant photosynthesis during the summer time. 368 

Consequently, the ecosystem acts as a low sink or becomes a carbon source. Year 2002 had the lowest 369 

GPP, NPP and NEP during this period. 2002 was an extreme drought year, in which precipitation was 370 

lower than 30-year mean annual value. As the year began, moderate to extreme drought covered 371 

one-third of the contiguous United States including much of the eastern seaboard and northwestern 372 
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United States. The combination of generally warmer- and drier-than-average conditions led to a large 373 

area of carbon source in 2002 (Figure 5). In addition to the limitations of the carbon uptake, the extreme 374 

drought also significantly enhanced the respiration and therefore led to a more severe carbon source. 375 

These results suggest that the use of EVI and LSWI is able to reflect the real large-scale environmental 376 

conditions and to constrain the estimates of carbon fluxes. 377 

In contrast, the year 2004 had slightly above-average temperatures and was the 6th wettest year 378 

on record of the nation (NCDC 2004). The year 2005 was above-average warm but had much lower 379 

than average temperatures along the Eastern Seaboard in growing season and the precipitation was near 380 

the long-term mean of precipitation in the nation (NCDC 2005). These climate patterns resulted in a 381 

high sink in these 2 years and a carbon source in the eastern regions in 2005.  382 

Seasonality of net carbon uptake of the conterminous United States differed from year to year 383 

(Figure 6a). The accumulative NEP of 2002 didn’t reach a positive value until early July, which is about 384 

one month later than the other years probably due to the severe drought in the spring and summer. Both 385 

2004 and 2005 achieved positive accumulative NEP in the early June while the dates for 2000, 2001 and 386 

2003 were in the midst June. For most of the years, the accumulative NEP started to increase since April, 387 

while the date for 2004 is March, indicating the year 2004 turned from a carbon source into a sink 388 

earlier than the other years. Accumulative NEP started to decrease in September for all of the years 389 

except 2005, which continued to assimilate more carbon than that was released in October and then 390 

reverted to a source. The early-beginning and late-ending growing seasons for the year 2004 and 2005 391 

led to much higher annual NEP than the other years. Overall, the carbon budget level of the 392 

conterminous United States ecosystems can be classified into 3 groups: high sinks in 2004 and 2005, 393 

moderate sinks in 2000, 2001, and 2003, and low sink in 2002. 394 
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The seasonality of the regional net carbon uptake can be explained by the satellite-observed 395 

vegetation indices.  The monthly regional averaged EVI and LSWI vary from year to year (Figure 6b, 396 

c). EVI generally indicates the greenness of the land surface vegetation and shows the pattern of 397 

vegetation green-up and senescence. The patterns of regional averaged EVI were similar for the 6 years 398 

but the year 2002 had lower EVI during the green-up period in the spring and the year 2000 had 399 

relatively lower EVI during the senescent season. The lower EVI of these two years were reflected by 400 

the relatively low NEP in these two years. Particularly, since 2002 was the lowest-sink year, our result 401 

may suggest that abnormal EVI in the green-up season led to a stronger influence on the annual total 402 

NEP. In contrast, EVI of the year 2004 and 2005 were mostly higher than that of the other years, 403 

especially during the summer, which resulted in the highest carbon sink over the 6-year period. Similar 404 

to EVI, the low LSWI from April to August in 2002 indicates that the year 2002 was a drought year and 405 

the highest LSWI occurred in the main growing seasons in the years 2004 and 2005, leading to a lower 406 

and higher net carbon uptake in the year 2002 and the years 2004 and 2005, respectively.  The lowest 407 

accumulative EVI and LSWI for the other 5 years except 2002 in June were 1.40 and 1.53, while the 408 

values in 2002 were 1.40 and 1.39, respectively. In 2002, the accumulative EVI and LSWI were 1.76 409 

and 1.77 in July, respectively, which exceeded the levels in June of the other years and the region turned 410 

into a carbon sink.  These suggest that both EVI and LSWI affect the transition of a carbon source to a 411 

sink. 412 

 Regional estimations between SAT-TEM and TEM differ greatly. The averaged differences 413 

are more than 2 and 1.4 Pg C yr-1 for GPP and NPP, respectively.  NEP of SAT-TEM is 0.23 Pg C yr-1 414 

higher than that of TEM.  The simulated interannual variations between these two versions of TEM are 415 

also different.  Specifically, SAT-TEM indicated the annual carbon fluxes increased in 2000 and 2001 416 
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and dropped to the lowest values in 2002, then kept increasing in the following years and reached the 417 

peak values in 2004 and 2005.  In contrast, TEM suggested the highest and lowest GPP and NPP 418 

occurred in 2005 and 2000, respectively, and the highest NEP in 2003.  During these years, TEM might 419 

over- or underestimate the water stress and PAR absorption of the vegetation and therefore provided 420 

different carbon sequestration estimations, while SAT-TEM used the satellite information of vegetation 421 

index and land surface water index, which constrained the carbon flux estimates.  SAT-TEM’s 422 

performance also benefits from the way of parameterization using the monthly eddy fluxes while TEM 423 

was calibrated using annual fluxes only.  424 

 425 

3.3 Spatial Variation of Carbon Fluxes in the Conterminous U.S. 426 

SAT-TEM simulated annual carbon fluxes generally capture the expected spatial patterns 427 

(Figure 7). GPP and NPP have a similar spatial variability from west to east across the conterminous 428 

United States. The West Coast, which is dominated by evergreen forest, has high annual GPP and NPP. 429 

The western Great Plains and the Rocky Mountain as well as the Southwest regions have relatively low 430 

GPP and NPP owing to sparse vegetation and arid climate. Cropland areas in the Midwest have 431 

relatively high GPP and NPP probably due to ample irrigation and fertilization. Highest GPP and NPP 432 

occur in the east United States with dense vegetation. The Gulf Coast has especially high GPP mainly 433 

due to its favorable temperature and abundant precipitation. 434 

Most areas across the conterminous United States have positive NEP from 2000 to 2005. Most 435 

forested areas are carbon sinks and the highest sinks take place in the woody regions in the eastern 436 

United States and especially in the Northeast with intensive radiation, abundant precipitation, warm 437 

temperature or dense vegetation cover. But the carbon sources also take place in forest regions, mostly 438 
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in the south Rocky Mountain area and Sierra Nevada Mountain mainly due to the cold and dry climate. 439 

Non-forest regions including grassland, savannas, shrubland as well as cropland act as a carbon sink. 440 

Except the year 2000, most area of grassland in the south especially in Texas is a persistent carbon sink 441 

with warm weather and abundant precipitation with 100 to 250 g C m-2 yr-1 over the 6-year period. Most 442 

cropland areas are carbon sinks with the intensity of 50 to 100 g C m-2 yr-1.  443 

Carbon dynamics vary in different ecosystems (Table 8). Cropland contributes the most to the 444 

conterminous United States carbon sink with the highest GPP, NPP and NEP.  Forests follow cropland 445 

to have high total GPP, NPP and contribute about one-third of the total net carbon uptake. With the 446 

second largest area, grasslands contribute about one-sixth to one-fifth of total annual GPP and NPP, and 447 

one-sixth of total annul NEP.  Shrubland has the lowest total annual GPP, NPP while savannas have the 448 

lowest total annual NEP. On a per-unit area basis, forests have the highest GPP, following with cropland 449 

and savannas. Deciduous forests have the highest NPP intensity while shrubland and grasslands have 450 

the lowest. Deciduous forest NEP is the highest and shrubland have the lowest carbon sink. Overall, 451 

deciduous forests and croplands are the main contributors to the national carbon sink over the period 452 

2000-2005.   453 

Since the disturbance damages to vegetation can be reflected by the variations of EVI, use of 454 

EVI in TEM helps capture the effects of disturbances on carbon dynamics. For example, the Hurricane 455 

Katrina occurred in late August 2005 and affected five million acres of forest across Mississippi, 456 

Louisiana and Alabama with downed trees, snapped trunks and broken limbs to stripped leave. 457 

Dramatic changes of EVI occurred in the following two months (September and October) after the 458 

hurricane in that region. For the most influenced region between 90oW~88oW and 29oN~31oN, the EVI 459 

is averagely about 0.04 lower than normal values for each pixel during those two months.   SAT-TEM 460 
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indeed estimated a large negative GPP anomaly in that period (Figure 8). GPP is 14 g C m-2 month-1 461 

lower than normal values for each pixel.  In contrast, TEM failed to capture these anomalies and even 462 

presented positive anomalies due to the abundant water storage in that period. Our SAT-TEM results 463 

agree with the findings suggesting Hurricane Katrina had large impacts on the regional carbon budget 464 

based on satellite data and empirical approaches (Chambers et al., 2007;Xiao et al., 2010). 465 

 466 

3.4 Possible Uncertainties 467 

The data used to drive SAT-TEM and the parameterization both result in uncertainties to our 468 

estimation. As indicated by Zhao et al. (2006), the NCEP reanalysis data overestimated solar radiation 469 

and underestimated temperature. The errors in temperature may introduce errors in carbon fluxes 470 

because of the nonlinear relationship between temperature and plant maintenance respiration. The 471 

heterogeneity of land covers is another important source of uncertainty when we scale the site-level 472 

parameterization to the region.  For example, C3 and C4 plants in the regional simulations are not 473 

treated differently since there is no transient spatially-explicit C3 and C4 plant distribution data.  474 

Second, carbon dynamics are uncertain due to lacking spatially-explicit forest stand age data.  475 

In this study, we assume that all ecosystems (e.g., forests) are mature. Parameters generated at the 476 

chosen matured forest at Howland and Harvard forest sites do not work for young forests. Thus models 477 

may underestimate NPP of the forest in the conterminous United States because the forest productivity 478 

generally decreases with stand age (McMurtrie et al., 1995). Although the usage of MODIS vegetation 479 

indices can represent some information of the forest age (Waring et al., 2006), more adequate 480 

quantification of the regional carbon fluxes should use spatially-explicit data of forest stand age.  481 

Third, the uncertainty came from a limited number of quality ecosystem sites. For example, 482 
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there are only a few shrubland sites with sufficient observations. The weak constraint on parameters of 483 

SAT-TEM for shrubland may bias the results. In addition, more sites in the western U.S. should be 484 

established. The significant uncertainties of eddy flux data (Richardson et al., 2008) and the 485 

uncertainties introduced by the gap-filling techniques (Moffat et al., 2007) may also bias 486 

parameterization and regional results.  487 

 Finally, the parameterization could also introduce uncertainty to flux estimates. Here we use 488 

the 50 ensemble regional simulations to quantify the errors from parameterization. Parameterizations of 489 

different vegetation types contribute differently to the total uncertainties (Figure 7).  The spatial 490 

distribution of the relative standard deviation, as the ratio of standard deviation to the mean value 491 

indicates that shrubland has the biggest uncertainties.  Evergreen forests in the Rocky Mountain area 492 

and the upper Midwest are the second largest uncertainty contributor. With the Bayesian Inference 493 

method (Tang and Zhuang, 2008, 2009), the possible parameter sets introduce 0.34, 0.65 and 0.18 Pg C 494 

biases to the estimation of the annual GPP, NPP and NEP of the conterminous United States, 495 

respectively (Table 6).  496 

 497 

4. Conclusions 498 

We incorporate MODIS EVI and LSWI into a process-based biogeochemistry model TEM to 499 

more adequately quantify ecosystem carbon dynamics from 2000 to 2005 for the conterminous United 500 

States. Multiple eddy flux tower data are used to parameterize and verify the SAT-TEM. Ensemble 501 

simulations with the posterior parameters are applied at both site and regional levels. The site-level 502 

comparisons indicate that the SAT-TEM performs better. The regional extrapolation of SAT-TEM 503 

across the conterminous United States generally captures the expected spatial and temporal carbon 504 
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dynamics. With SAT-TEM, we estimate that the GPP is between 7.02 and 7.78 Pg C yr-1, NPP varies 505 

from 3.81 to 4.38 Pg C yr-1 and NEP ranges from 0.08 to 0.73 Pg C yr-1 in the region during the period 506 

2000-2005. The parameterization introduces 0.34, 0.65 and 0.18 Pg C yr-1 errors to the regional GPP, 507 

NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 508 

2002 and Hurricane Katrina in 2005 are captured in our regional simulations. This study takes 509 

advantage of process-based ecosystem modeling, satellite observations and eddy flux tower carbon flux 510 

data to provide a more adequate quantification of carbon fluxes for the conterminous United States. Our 511 

findings and carbon flux product should benefit studies of carbon-climate feedbacks and facilitate 512 

policy-making of carbon management and climate change. 513 

514 
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Figure Captions 854 

Figure 1. Land cover map of the conterminous U.S. (0.05o ×0.05o) used in regional simulations. The 855 

map was re-classified based on MODIS product Land Cover Types Yearly L3 Global 0.05 Deg CMG 856 

(MOD12C1). Red pins indicate the location of the AmeriFlux sites used in this study. 857 

 858 

Figure 2. Comparison of seasonal variations of the observed GPP and NEP with SAT-TEM and TEM 859 

predicted ones at the six parameterization sites. Dashed lines are the observations while circles and 860 

crosses are the predictions with SAT-TEM and TEM, respectively. The error bars indicates the standard 861 

deviation of the results by ensemble SAT-TEM simulations with 50 sets of posterior parameters. Data 862 

during the periods before the vertical dotted lines are used for parameterization while the remaining are 863 

verification results at: (a) Howland Forest West Tower site; (b) Harvard Forest site (c) Vaira Ranch site; 864 

(d) Sky Oaks New site; (e) Tonzi Ranch site; (f) Bondville site.  865 

 866 

Figure 3. Comparison of seasonal variations of the observed GPP and NEP with SAT-TEM and TEM 867 

predictions at the ten additional AmeriFlux sites. Dashed lines are the observed values while circles and 868 

crosses are the predictions with SAT-TEM and TEM, respectively. The error bars indicates the standard 869 

deviation of the results by ensemble SAT-TEM simulations with 50 sets of posterior parameters: (a) 870 

Niwot Ridge site; (b) Wind River Crane site (c) Morgan Monroe State Forest site; (d) Willow Creek site; 871 

(e) Kendall Grassland site; (f) Walnut River site; (g) Sky Oaks Old site; (h) Santa Rita Mesquite 872 

Savanna site; (i) Rosemount G21 Conventional Management Corn Soybean Rotation site; (j) Mead 873 

Irrigated Rotation site. 874 

 875 

Figure 4. Scatterplots of the observed GPP and NEP versus SAT-TEM and TEM predictions at the 876 

selected AmeriFlux sites. Black dashed lines show a 1:1 relationship. Circles and crosses, red and blue 877 

regression lines are SAT-TEM and TEM simulated values, respectively. The error bars indicates the 878 

standard deviation of the results by ensemble SAT-TEM simulations with 50 sets of posterior 879 

parameters. (a) and (b) are the predicted GPP and NEP versus observed values, respectively. 880 

 881 

Figure 5. Annual average SAT-TEM estimated NEP across the conterminous United States for each year 882 

in 2000-2005. Positive values represent carbon sink while negative values represent carbon source. 883 

Units are g C m-2 yr-1. 884 

 885 

Figure 6. Comparison between NEP, EVI, and LSWI across the conterminous United States over the 886 

period of 2000-2005: (a) Cumulative monthly NEP estimated by SAT-TEM. (b) Monthly averaged 887 

regional EVI,. (c) Monthly averaged regional LSWI. 888 

 889 

Figure 7. Average annual carbon fluxes (g C m-2 yr-1) (left) and the relative standard deviations (right) of 890 

the conterminous United States over the period 2000-2005: (a) GPP; (b) NPP; (c) NEP. The relative 891 

standard deviations are calculated by dividing standard deviations by the average values of the regional 892 

results of the 50 sets of simulations. 893 

 894 

Figure 8. Impacts of Hurricane Katrina on two-month-average EVI and estimated GPP.  Units for GPP 895 

are g C m-2 month-1. 896 

897 
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Table 1. Characteristics of AmeriFlux sites used in this study. 898 

Site Name 
Latitude 

(o) 

Longitude 

(o) 

Vegetation 

Type 
Years References 

Howland Forest West Tower 

(ME, USA)* 
45.2091 -68.7470 

Evergreen 

Forest 
2000-2004 

Hollinger et 

al., (1999, 

2004) 

Harvard Forest (MA, USA) * 42.5378 -72.1715 
Deciduous 

Forest 
2000-2006 

Urbanski et 

al., (2007) 

Vaira Ranch (CA, USA) * 38.4061 -120.9507 Grassland 2002-2007 

Xu and 

Baldocchi, 

(2004)  

Sky Oaks New (CA, USA) * 33.3844 -116.6403 Shrubland 2004-2006 
Lipson et al., 

(2005) 

Tonzi Ranch (CA, USA) * 38.4316 -120.9660 Savannas 2002-2007 
Ma et al., 

(2007) 

Bondville (IL, USA) * 40.0062 -88.2904 Cropland 2001-2006 
Hollinger et 

al., (2005) 

Niwot Ridge (CO, USA) 40.0329 -105.5464 
Evergreen 

Forest 
2000-2005 

Monson et 

al., (2002) 

Wind River Crane site (WA, 

USA) 
45.8205 -121.9519 

Evergreen 

Forest 
2000-2002 

Falk et al., 

(2008) 

Morgan Monroe State Forest 

(IN, USA) 
39.3232 -86.4131 

Deciduous 

Forest 
2001-2006 

Schmid et al., 

(2000)  

Willow Creek (WI, USA) 45.8059 -90.0799 
Deciduous 

Forest 
2000-2003 

Cook et al., 

(2004) 

Kendall Grassland (AZ, 

USA) 
31.7365 -109.9419 Grassland 2005-2007 

Scott et al., 

(2010) 

Walnut River (KS, USA) 37.5208 -96.8550 Grassland 2002-2003 
Coulter et al., 

(2006) 

Sky Oaks Old (CA, USA) 33.3739 -116.6229 Shrubland 2004-2006 
Lipson et al., 

(2005) 

Santa Rita Mesquite Savanna 

(AZ, USA) 
31.8214 -110.8661 Savannas 2004-2006 

Scott et al., 

(2008) 

Rosemount G21 

Conventional Management 

Corn Soybean Rotation (MN, 

USA) 

44.7143 -93.0898 Cropland 2004-2006 
Griffis et al., 

(2008) 

Mead Irrigated Rotation (NE, 

USA) 
41.1649 -96.4701 Cropland 2002-2005 

Suyker et al., 

(2005) 
* Sites for parameterization.899 
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Table 2.  Reclassification of MODIS land covers to TEM vegetation types  900 

MODIS Land Cover Types(IGBP) Vegetation Community Type in SAT-TEM 

Evergreen needleaf forest Evergreen Forest 

Evergreen broadleaf forest Evergreen Forest 

Deciduous needleaf forest Deciduous Forest 

Deciduous broadleaf forest Deciduous Forest 

Mixed forest 50% Evergreen Forest, 50% Deciduous Forest 

Closed shrubland Shrubland 

Open shrubland Shrubland 

Woody savannas Savannas 

Savannas Savannas 

Grassland Grassland 

Permanent Wetland Grassland 

Cropland Cropland  

Cropland and natural vegetation mosaic Cropland  

901 
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Table 3. Key TEM Parameters  902 

 903 

Parameter Definition Unit Prior Range 

ki Half saturation constant for PAR used by plants μL L-1 [100.0, 500.0] 

kc Half saturation constant for CO2-C uptake by plants μL L-1 [100.0, 400.0] 

RAQ10A0 Leading coefficient of the Q10 model for plant 

respiration 

None [1.0, 3.0] 

RAQ10A1 1st order coefficient of the Q10 model for plant 

respiration 

oC-1 [-0.1, 0.1] 

RAQ10A2 2nd order coefficient of the Q10 model for plant 

respiration 

oC-2 [0, 0.005] 

RAQ10A3 3rd order coefficient of the Q10 model for plant 

respiration 

oC-3 [0.0001, 0.001] 

RHQ10 Change in heterotrophic respiration rate due to 10 oC 

temperature increase 

None [1.0, 3.0] 

MOISTOPT Optimum soil moisture content for heterotrophic 

respiration 

% [0.2, 0.8] 

Cmax Maximum rate of photosynthesis C g C m-2 month-1 [500.0, 3000.0] 

Kr Logarithm of plant respiration rate at 0 oC g g-1 month-1 [-9.5, -0.2] 

Kd Heterotrophic respiration rate at 0 oC g g-1 month-1 [0.0005, 0.007] 

KFALL Proportion of vegetation carbon loss as litterfall 

monthly 

g g-1 month-1 [0.0005, 0.005] 

Nmax Maximum rate of N uptake by vegetation g m-2 month-1 [0.1, 1.0] 

Nup Ratio between N immobilized and C respired by 

heterotrophs 

g g-1 [0, 0.05] 

NFALL Proportion of vegetation nitrogen loss as litter-fall 

monthly 

g g-1 month-1 [0.001, 0.01] 

 904 

905 
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Table 4. Statistical results for the observed and SAT-TEM and TEM predicted monthly GPP and NEP at 906 

each AmeriFlux site for parameterization. The units of RMSE are g C m-2 month-1.  907 

 908 

Site Name Time Periods  R2 RMSE 

Howland Forest West Tower 

(ME, USA) 
2002-2004 

SAT-TEM GPP 0.94 27.24 

SAT-TEM NEP 0.65 26.84 

TEM GPP 0.85 64.68 

TEM NEP 0.67 29.72 

Harvard Forest (MA, USA) 2002-2006 

SAT-TEM GPP 0.90 45.62 

SAT-TEM NEP 0.83 40.84 

TEM GPP 0.87 58.63 

TEM NEP 0.75 64.87 

Vaira Ranch (CA, USA) 2004-2007 

SAT-TEM GPP 0.90 48.37 

SAT-TEM NEP 0.66 26.40 

TEM GPP 0.23 84.13 

TEM NEP 0.04 44.20 

Sky Oaks New (CA, USA) 2006 

SAT-TEM GPP 0.10 19.15 

SAT-TEM NEP 0.13 19.03 

TEM GPP 0.30 15.99 

TEM NEP 0.01 34.21 

Tonzi Ranch (CA, USA) 2004-2007 

SAT-TEM GPP 0.74 32.81 

SAT-TEM NEP 0.52 26.73 

TEM GPP 0.20 66.61 

TEM NEP 0.03 46.76 

Bondville (IL, USA) 2003-2006 

SAT-TEM GPP 0.87 63.90 

SAT-TEM NEP 0.66 66.20 

TEM GPP 0.50 155.33 

TEM NEP 0.14 103.80 

 909 

910 
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Table 5. Statistics for the observed and SAT-TEM and TEM predicted monthly GPP and NEP at each 911 

AmeriFlux site for parameterization. The units of RMSE are g C m-2 month-1.  912 

Site Name Time Periods  R2 RMSE 

Niwot Ridge (CO, USA) 2000-2005 

SAT-TEM GPP 0.90 19.56 

SAT-TEM NEP 0.78 13.64 

TEM GPP 0.83 28.10 

TEM NEP 0.83 12.02 

Wind River Crane site (WA, 

USA) 
2000-2002 

SAT-TEM GPP 0.83 32.71 

SAT-TEM NEP 0.33 34.29 

TEM GPP 0.74 65.30 

TEM NEP 0.09 42.06 

Morgan Monroe State Forest 

(IN, USA) 
2001-2006 

SAT-TEM GPP 0.95 41.89 

SAT-TEM NEP 0.91 38.21 

TEM GPP 0.88 54.13 

TEM NEP 0.72 59.84 

Willow Creek (WI, USA) 2000-2003 

SAT-TEM GPP 0.96 35.15 

SAT-TEM NEP 0.83 38.62 

TEM GPP 0.71 55.38 

TEM NEP 0.73 57.70 

Kendall Grassland (AZ, USA) 2005-2007 

SAT-TEM GPP 0.61  37.35 

SAT-TEM NEP 0.39 17.05 

TEM GPP 0.12 166.23 

TEM NEP 0.02 32.60 

Walnut River (KS, USA) 2002-2003 

SAT-TEM GPP 0.76 57.04 

SAT-TEM NEP 0.58 25.43 

TEM GPP 0.36 75.22 

TEM NEP 0.02 46.99 

Sky Oaks Old (CA, USA) 2004-2006 

SAT-TEM GPP 0.09 16.42 

SAT-TEM NEP 0.19 14.21 

TEM GPP 0.01 35.57 

TEM NEP 0.01 30.41 

Santa Rita Mesquite Savanna 

(AZ, USA) 
2004-2006 

SAT-TEM GPP 0.68 24.78 

SAT-TEM NEP 0.12 20.59 

TEM GPP 0.50 21.87 

TEM NEP 0.03 22.78 

Rosemount G21 Conventional 

Management Corn Soybean 

Rotation (MN, USA) 

2004-2006 

SAT-TEM GPP 0.69 93.04 

SAT-TEM NEP 0.56 55.58 

TEM GPP 0.51 138.89 

TEM NEP 0.27 73.11 

Mead Irrigated Rotation (NE, 

USA) 
2002-2005 

SAT-TEM GPP 0.66 128.83 

SAT-TEM NEP 0.29 105.89 

TEM GPP 0.56 180.60 

TEM NEP 0.26 116.52 

913 



41 
 

Table 6. Estimated annual GPP, NPP and NEP across conterminous United States over 2000-2005. The 914 

units of the carbon fluxes are Pg C yr-1. 915 

Year 
GPP NPP NEP 

SAT-TEM TEM SAT-TEM TEM SAT-TEM TEM 

2000 7.24±0.33 8.85 3.85±0.63 4.87 0.33±0.18 -0.31 

2001 7.35±0.35 9.32 4.06±0.63 5.27 0.41±0.17 0.02 

2002 7.02±0.34 9.38 3.81±0.62 5.32 0.08±0.17 0.18 

2003 7.44±0.35 10.11 4.12±0.65 5.86 0.40±0.17 0.70 

2004 7.75±0.34 8.96 4.38±0.65 4.96 0.73±0.18 -0.19 

2005 7.78±0.35 10.35 4.20±0.69 6.04 0.53±0.18 0.69 

Average 7.43±0.34 9.49 4.07±0.65 5.39 0.41±0.18 0.18 

 916 

 917 
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Table 7. Comparison of carbon fluxes between TEM estimated and other existing estimates in the conterminous United States  918 

Method Reference 
Time 

Period 

Estimated 

averaged 

annual GPP 

(Pg C yr-1) 

Estimated 

averaged 

annual NPP 

(Pg C yr-1) 

Estimated 

averaged 

annual NEP 

(Pg C yr-1) 

Comments 

SAT-TEM 

Ecosystem Model 

combining satellite 

observations 

 2000-2005 7.43 4.07 0.41 Estimated in this study. 

TEM 

Ecosystem Model 

(McGuire et al., 

1992;Zhuang et 

al., 2003) 

2000-2005 9.49 5.39 0.18 Estimated in this study. 

MOD17 

Remote Sensing 

Products 

(Zhao et al., 

2005;Running et 

al., 2004) 

2000-2005 6.2 3.3  
Aggregated form MODIS primary production 

products (MOD17) 

NASA-CASA 

Remote sensing 

driven ecosystem 

model 

(Potter et al., 

2007;Potter et al., 

1993) 

2000-2004  2.65 0.13  

EC-MOD 

Regression tree 

approach 

(Xiao et al., 

2010;Xiao et al., in 

press) 

2001-2006 7.06  1.21 

The author presented 0.63 Pg C yr-1 as the total 

carbon sink for considering the carbon assimilated 

by crops would be released back to atmosphere. We 

added the cropland contribution 0.58 Pg C yr-1 here 

to be consistent with our study region. 

Nested inverse 

modeling 
(Deng et al., 2007) 2003   0.63 

Calculated by subtracting Canada sink from the 

North America total sink 
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Table 8. TEM estimated annual carbon fluxes for each vegetation type in the conterminous United 919 

States during 2000-2005.  920 

Vegetation 

Type 

Total 

Annual 

GPP 

(PgC yr-1)

Total 

Annual 

NPP 

(PgC yr-1) 

Total 

Annual 

NEP 

(PgC yr-1)

Mean 

Annual 

GPP 

(kgCm-2yr-1)

Mean 

Annual 

NPP 

kgCm-2yr-1

Mean 

Annual 

NEP 

kgCm-2yr-1 

Land 

Area 

(km2) 

Evergreen 

Forest 
1.50 0.57 0.038 1.46 0.55 0.037 1,028,790

Deciduous 

Forest 
1.28 0.95 0.110 1.53 1.13 0.131 838,203 

Grassland 1.31 0.83 0.075 0.75 0.48 0.043 1,745,960

Shrubland 0.25 0.08 0.015 0.18 0.06 0.011 1,355,240

Savannas 0.39 0.27 0.012 1.34 0.93 0.041 290,155 

Cropland 2.85 1.45 0.178 1.25 0.63 0.078 2,287,000

921 
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Figure 1. 922 

 923 

 924 

925 
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Figure 2.  926 
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Figure 3. 940 
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Figure 4.  965 
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Figure 5. 968 
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Figure 6.   970 
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Figure 7. 974 
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Figure 8. 977 

 

(a) EVI anomalies (b) SAT-TEM estimated GPP anomalies 

 

 

(c) TEM estimated GPP anomalies  
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