Author response to all referees' comments for Manuscript BG-2011-31 "Climate dependent diatom production is preserved in biogenic Si isotope signatures"

We really thank two anonymous referees and George Swann for providing us very insightful and constructive comments, which helped improve this manuscript. We have tried our best to carefully consider and respond to all the comments raised by the referees. We have now revised the manuscript substantially to improve the presentation of our data from the Bothnian Bay. Below, each review comment is listed in the left column of tables and our response/action is written in the right column of the tables. The necessary revised figures for this response letter are shown at the end.

Anonymous Referee #1

Comments	Response/Actions
Major c	omments
My biggest concern is related to the temperature	Regarding the comment on "While air temperature
model (Eq.3); How are air and sea surface	varied considerably, the mean sea surface temperature
temperature related? The temperature model (Eq.3)	was very constant", this observation is very common
uses air temperature, which appears to be more	in open oceans. However, the Bothnian Bay can be
variant than the surface water temperature. For	considered as a lake system with the salinity of less
instance, considering the period between 1961-	than 2 psu, in which the air temperature is strongly
1990; According to figure 6b, the air temperature	correlated the water temperature. In the revised
during the summer months varied somewhere	manuscript, we add new Fig. 8 to support this. Air and
between values as low as 6degC and as high as	water temperatures are there shown to correlate very
17degC. For the same period the authors state in	well in a strong linear regression. The correlation
section 2: "During the periods of 1961-1990, the	between the air and water temperature shows $r^2=0.78$
summer time average maximum surface	and 0.93 for daily measurements and average summer
temperature varied between 16 and 16.5 degC".	temperature, respectively between 1948 and 1963.
While air temperature varied considerably, the	
mean sea surface temperature was very constant. If	Regarding the question about stratification of the
nutrients were not limited due to other processes, or	water column, we add Fig. 9 where the pycnocline
bio-productivity was not impaired by seasonal ice-	depth vs. surface temperature is plotted to clarify that
cover, it is not obvious to me how diatom	surface temperatures are correlated with air
productivity should related (or respond) to air-	temperature and therefore have influence on the depth
temperature, whilst sea surface temperature remains	of the mixed layer (above pycnocline) where diatom
more or less constant. Once would assume that	production mainly occurs. High surface water
kinetics of Si utilization and accompanied isotopic	temperature leads to a shallow mixed layer and low
fractionation by diatoms were a first-order response	surface water temperature expands the deep mixed
to the sea water temperature and not the air	layer. The development of the mixed layer has been
temperature. This is in my opinion the weakest	shown by Wasmund et al. (Wasmund N., Nausch G.,
point of this study and the authors need to	Matth äus W. 1998. Phytoplankton spring blooms in
drastically improve the train of thought here. It is	the southern Baltic Sea—spatio-temporal development
mentioned somewhere in section 4.4 that colder (air	and long-term trends. J. Plankton Research, 20, 6,
or water?) temperatures might impair stratification	1099-1117) to control diatom blooms in the Baltic
of the water column hence dampening bio-	Sea.
productivity - is there any evidence for that?	
Figure 6a shows the calculated f values vs. time	We have clarified how to calculate f values by
depending on different river Si isotope compositions.	changing the text in Section 4.4: "The f values can be
From reading the manuscript it is not quite clear to	calculated by using δ^{30} Si values according to Eq.3
me how the "measured f" values were derived -	δ^{30} Si _{BSi} is the values shown in Fig. 4 and initial δ^{30} Si
please add a brief discussion. The only river data for	river input value used is +1.1‰ derived from
this area are from the Kalix River (Engstroem et al	measurements of an unregulated boreal river, the
2010), and average close to 1.1pmil. The Kalix is	Kalix River, data from other rivers are not available".

unregulated and gives a constraint on the natural Si isotope composition delivered to the Bothnian Bay. In order to match their calculations to observation in figure 6a, the authors assume a shift in river Si isotope composition due to anthropogenic impact on watersheds. Although this is possible, we have however no idea what the effects of hydraulic engineering would be. Without having data for these rivers, it is difficult to say what the effect might be. Hence the assumption that the post 1950 river have higher Si isotope compositions is somewhat unjustified and in my opinion not valid. The Si isotope composition of rivers is, albeit some good research, still a very complex system and we are far from understanding the interactions between different Si-carrying pools. I'm not saying that enhanced diatom productivity due to dammed lakes is impossible, I just don't think that large scale river systems are that easy and straight forward to interpret.	We know that it is difficult to interpret river system in such a simple way and it is also a pity that we do not have water samples from other rivers to prove there is a shift. However, according to the current studies of the Bothnian Bay, there are no notable changes in its land cover including the vegetation and bedrock, which means there is no source change of Si isotope signatures. Therefore, if there is a change in the Si isotope composition, it is likely to occur during the transport to the Bothnian Bay, which in our case damming on the major rivers could be considered as the most important effect. We do not deny any other possibilities in such a complex system, here we would like to emphasize that a shift in the Si isotope values in river water is the most plausible explanation for our observations. We have tried to clarify this by changing the text in Section 5.5: "The shift coincides with a period of large scale hydroelectric and flood control projects in the major rivers draining into Bothnian Bay (Humborg et al., 2002; Humborg et al., 2006), leaving only a few rivers unregulated today. Since there is no change of bedrock (of course) and vegetation in the catchment of the Bothnian Bay, it suggests that the isotope composition of Si is constant. The shift is thus most likely to occur during the transport of DSi to the Bothnian Bay. Damming of rivers increases diatom production in the reservoirs behind the dams (Humborg et al., 2006) and leaves the remaining DSi in the river water enriched in the heavier Si isotopes, ultimately leading to the increased δ^{30} Si
My next concern is related to the data variability; Taking into account the uncertainty of the Si isotope measurements the actual data barely vary at all. The relation between BSi content and Si isotope composition is far from being a linear correlation, and should not be addressed as such. The regression in figure 5 is rather a spurious correlation based on	We agree with the reviewer's comment here "BSi content and Si isotope values should not be addressed as such". After reconsidering this part, we have removed the original Fig. 5, i.e. the plot of BSi against δ^{30} Si values, because it is true that there is no obvious correlation and that this does not have any influence on our conclusion.
two distinct data point cluster. Adding error bars to figure 5 and one will immediately see that this is actually not a correlation. The authors write that the uncertainly of the calculated f values takes into account the 2SD errors of the Si isotope data. I assume the propagated uncertainties be very large, and think this should be added to the plots 6a and 7. Furthermore, the calculated temperatures in figure 6b must also have some uncertainty and it would be good to add them to the plot. Is the 5- year-moving average (dashed line) in Figure 6b	We have done Monto Carlo analysis to examine the error in f values derived from δ^{30} Si values and found that the first quartile and third quartile for each f value derived from δ^{30} Si _{BSi} was calculated and shown in updated Fig.6, which gives us 50% f values in the range of f ±0.05 in average. We have tried to reformulate this part in Section 5.4 as follows: "The error of the calculated f values due to the uncertainty of the measured δ^{30} Si _{BSi} is examined by Monto Carlo analysis. 10,000 random δ^{30} Si _{BSi} values were
based on observations from the data monitoring program or actually derived from the relationship in figure 7? Please clarify. It would be certainly very helpful to plot the data from the monitoring program against	generated producing 10,000 f values calculated by $\delta^{30}Si_{BSi}$. The first quartile and third quartile for each f value was calculated and shown in Fig.6 as error bars, which mean that 50% of f values fall in this range defined by error bars It should also be noted

calculated temperature data derived from the	that the calculated f values are independent of the α -
relation in figure 7. As is, it looks like the dashed	value, i.e. the absolute number of f values will
line is simply the average of the monitoring	change with the α -value but the variations will be
program data, if so, where is the point in plotting it?	unchanged."
	We have complied summer temperature data
	collected from 1820 to 2000. The data are plotted vs.
	the calculated f values in Fig. 6. Therefore, no
	temperature data are derived from the relationship in
	Fig. 7 and all of the calculated 5-year moving
	average values are based on the field observations.
Actually I think the authors could tremendously	We are working on developing a box model using Si
enhance this manuscript by adding some more	isotopes. However, we will write this as a separate
modeling. One very interesting model could be a	story in another manuscript.
simple S1 isotope transient model (box-model), for	
example similar to De La Rocha et al 2005, but	
only for the Bothnian Bay and obviously not for the	
whole ocean. Section 2 describes the sampling site	
and it already contains most data required for such a	
then be used to test some forcing of the distom	
productivity due to variations of air temperature and	
the resulting Si isotope fractionation. This would be	
a very strong way of testing the sensitivity of the	
Bothnian Bay system to temperature variations and	
could in my opinion add a lot of value to this study.	
Other	comments
Section 1: The Si isotope fractionation by diatoms is	We are not sure of any Si isotope effects beyond this
stable between 12-22 degC (De La Rocha et al.	temperature range. Generally speaking, lower
1997), but some of the samples analysed here fall	temperature gives high isotope fractionation. This
beneath that range. Are there any isotope effects	means that in our case that the variations of the
that the reader must be aware of?	calculated f values might be larger i.e. we might
	underestimate the variations in diatom production
	because some samples are obtained below 12 °C but
	no samples above 22 °C.
Section 2: The decrease of DSi fluxes due to	We have rephrased Section 5.3 as follows: "The BSi
hydraulic engineering is mentioned. Later	content of the sediment core is approximately
in the manuscript (section 4.3) the authors say that	3.5% It increases to a maximum 7.8%This is
the BSi content increased since the 1950s, probably	due to increased diatom production probably caused
due to an anthropogenic enhanced input of	by anthropogenic nutrient enrichment in the Baltic
nutrients. I assume they mean macro-nutrients, such	Sea, especially nitrogen and phosphorus.".
as P and N? This is a bit contradictory and maybe	
one additional sentence could be added.	
Section 3: What is the uncertainty of the Pb activity	Added error bars in Fig. 3A show uncertainty of Pb
data? Should be added.	
Section 3.2: I'm aware that MilliQ-e water is	We have changed 'MilliQ-e water' to defonized
supposed to be 18.2m, but some readers might not	water.
know unal. Willing-e is not an official term for high	
quanty deformized water, and the authors should use	
(18 2m MilliOre Milli Pore)" Plasse change!	
Section 3.3: Silicon concentration data are given in	We have changed all Si concentration units to mg/I
mg/L applies in the manuscript they are given in	
1 119/1, called 11 11c mannscript they are viven in	we have changed an St concentration units to hig/L.

text.	
Section 3.4: Were any other reference materials analyzed, such as Diatomite, or some USGS rock standards? There are now quite a few reference material data published and I think the authors could considerably strengthen their work by presenting standard data. In fact, it is my opinion that data-sets without standard data are not to be published.	We did measure other standard materials i.e. IRMM- 18 and Big Batch. The results were presented and discussed in the publication: Sun, X., Andersson, P., Land, M., Humborg, C., and Mörth, CM., 2010, Stable silicon isotope analysis on nanomole quantities using MC-ICP-MS with a hexapole gas- collision cell: JAAS, 25, 156-162. We have added one sentence in Section 4.1 to make this more clear: "the internal reproducibility was tested by measuring IRMM-18 and Big Batch"
Section 4.4: Somewhere in section 4.4 the authors discuss the relation between f values and cold weather periods: "The largest amount of remaining corresponds to a period with very cold summer". Is that so? How can the authors know that? Please add references here!	During the summer in the Bothnian Bay, diatom production is the major reason for regulating the concentration of DSi in the water column. This has been well examined and discussed by a study using Redfield ratio changing and trend analysis (Danielsson, Papush, L., and Rahm, L., 2008, Alterations in nutrient limitations Scenarios of a changing Baltic Sea: Journal of Marine Systems, v. 73, p. 263-283).
Section 4.5: "This isotone shift is also consistent	The relation between f values and hot/cold summers are concluded from our observations (Fig. 6). We have rephrased the text in Section 5.4 and added the reference to support as follows: "An explanation for the diatom-temperature relationship is that diatom bloom is controlled by ML (mixed layer), i.e. hot summers with high water temperature result in shallow ML and cold summers with low water temperature results in deep ML. Wasmund et al. (1998) showed that diatom blooms were triggered by the reduction in the ML depth. Water temperature is in the studied area positively correlated with air temperature (Fig.8). Fig.8A shows daily air temperature between 1948 and 1963 plotted vs. daily water temperature giving a linear correlation coefficient of R^2 =0.78. The correlation is better if average summer temperatures is used, R^2 =0.93 (Fig.8B). This means that the air temperature indirectly controls the ML depth and light penetration in the deep ML in cold summers are restricted, limiting diatom production (Wasmund et al., 1998). Therefore, the net diatom production in hot summers is higher than that in cold summers."
with what is expected to occur". As I wrote above, is there any evidence for that? This section is in general rather weak and does require considerable improvement.	As we mentioned above, damming may lead to trapping and sinking of BSi behind dams which ultimately causes the reduction of the Si riverine input to the Bothnian Bay. This has been shown by Humborg, C., Pastuszak, M., Aigars, J., Siegmund, H., Mörth, C.M., and Ittekkot, V., 2006, Decreased Silica Land-sea Fluxes through Damming in the Baltic Sea Catchment-Significance of Particle Trapping and Hydrological Alterations:

	Biogeochemistry, v. 77, p. 265-281.
Closing remarks: In general I think that the scope of this study is actually very intriguing and of hot topic. However, the data set and the modeling is simply not convincing and fails to win me over. It also seems that only samples from one site in the Bay were samples. The implications of this work could be very important and therefore I think it would be mandatory to confirm the observed trends in other locations from within the Bay. For example, De La Rocha et al (1998) present data for a few sites from the Southern Ocean, and so does Brzezinski et al (2002) etc. I understand that sampling sea sediments is logistically quite challenging, but I also assume that sampling the shallow waters of the Bothnian Bay is less of an enterprise than say the deep Southern Ocean.	There is of course no change in bedrock composition and vegetation in the catchment of the Bothnian Bay, indicating that the source of Si remains the same (i.e. no change in Si isotope values). We only have one sediment core from the Bothnian Bay, so there is nothing we could do about this right now. The Bothnian Bay is relatively a small area. As a result of a relatively homogenous bedrock and vegetation around the Bothnian Bay as well as the rather 'homogenous' bottom topography, it makes us believe that the sediment core analysed is representative.
What about O-isotope data? With the diatoms being	Due to instrument and resource limitation, we cannot
already separated, why not taking some splits to get	do O-isotope analysis for the moment.
O-isotopes analysed? This might add weight to this	
study.	

George Swann

Comments	Answers/Actions
1) The authors suggest that air temperature is the	Yes, δ^{30} Si values does vary with changes in air
main driver of changes in the silicon isotope record,	temperature. We think, however, that it is better to
presumably through reductions in seasonal sea-ice	compare variations between f values and air
cover. If air temperature is the main driver, why do	temperature. This is a more straightforward way to
changes in the actual δ ³⁰ Si core record (Fig. 4b) not	evaluate diatom production.
co-vary with changes in air temperature (Fig 6b)?	
2) The authors state in Section 4.1 that the analytical	In Fig.4, we now have used 95% confidence intervals
error on their δ^{29} Si measurements is up to 0.2‰	of δ^{29} Si values multiplied with 1.96 to get δ^{30} Si
(2σ) . Since the data are then converted to δ 30Si	values. Seven measurements of each sample were
$(\delta 30\text{Si} = \delta 29\text{Si} * 1.96)$, we can therefore presumably	done during analysis together with standards in
conclude that the error on the reported δ 30Si data is	between giving in total 60 measurements for a
up to 0.39‰. Given an observed range in the δ 30Si	complete sample/standard cycle.
core record of c. 0.4-0.5‰ this would imply that all	
measurements are within analytical error of one	The detailed measurement process was documented
another. Maybe I'm missing something obvious, but	in Sun, X., Andersson, P., Land, M., Humborg, C.,
there is nothing else in the methodology (Section	and Mörth, CM., 2010, Stable silicon isotope
4.1) to suggest so. In fairness the authors do state	analysis on nanomole quantities using MC-ICP-MS
that errors for $\delta 29$ Si are "better than 0.2‰" so	with a hexapole gas-collision cell: JAAS, v. 25, p.
perhaps the authors just need to provide more detail	156-162.
here on what the errors are for each sample.	
	In principle, errors cannot be handled as simple
	multiplication since the error in this case is
	distributed. From the error estimation we have done

	in this way it is still obvious that several peaks statistically differ significantly from each other.
3) Have the authors looked at what diatom species are in the analysed samples? These will presumably have changed over the analysed interval in response to environmental changes and may allow the authors to further strengthened their arguments/interpretations.	We have not identified the diatom species in this sediment core. In another study, an identification of diatom species was done at each centimetre of the sediments in Gulf of Bothnian (Olli, K., Clarke, A., Danielsson, Å., Aigars, J., Conley, D.J., and Tamminen, T., 2008, Diatom stratigraphy and long- term dissolved silica concentrations in the Baltic Sea: Journal of Marine Systems, v. 73, p. 284-299). The diatom assemblages were in that study dominated by planktonic taxa, i.e. high numbers of Skeletonema spp. and Chaetoceros vegetative cells (weakly silicified taxa) indicate good preservation conditions. Pauliella taeniata (a cold-water species) and T. levanderi were the most common taxa. C. choctawhatcheeana was present in the sediments as well.

Anonymous Referee #2

Comments	Answers/Actions
Major c	omments
1. It would be better to describe advantages of this method (Si isotope analyses) over the previous studies. For example, in the previous studies, lacustrine BSi flux was also used to reconstruct air temperature. Is the estimate of air temperature from the Si isotope more accurate than that from BSi flux?	We have added a new part to discuss the advantages and limitations of this method in the revised text as follows: "This method can also be used for other diatom dominated closed aquatic systems, such as lakes. In comparison to other BSi-based method for reconstructing air temperature, the advantage of this method would be to reconstruct relative diatom production (f values) and temperature at the same time in a high-resolution and more accurate way. The measured sedimentary BSi is a balance of diatom production and dissolution. High diatom production induced by high temperature would lead to high diatom dissolution, which might increase uncertainty when reconstructing the temperature using sedimentary BSi. The Si isotope-based method is to reconstruct relative diatom production by calculating how much DSi is transformed into BSi since the Si isotope values of diatoms does not change with its dissolution and sedimentation. Certainly, this Si isotope-based method also has some limitations. It is really dependent on the isotope fractionation factor (α in Eq.3), which might differ in different areas. In another word, we need a reliable α before applying this method. We would like to show in this study how this idea and method could be applied although we were not able to measure the exact α - value for the Bothnian Bay. Meanwhile, the validation
	value for the Bothnian Bay. Meanwhile, the validation

	indicates that the α -value of 0.9989 used in our study could represent the Si isotope fractionation factor for the Bothnian Bay. For other areas, the form of Eq.4 might change. In addition, this method is valid as long as the Rayleigh model for a closed system could be applied"
2. I think that the Bothnia Bay would be a suitable	We have added the discussion of the application of this method in the revised text combined with the
useful to discuss the application of this method to	discussion of Comment 1 above as follows: "This
other oceans. In	method can also be used for other diatom dominated
applied to other diatom dominated aquatic systems.	is needed when applying this method because
But, I couldn't find such a discussion in the text.	changes in nutrient concentrations and other
	environmental conditions may also alter diatom Si
	uptake, e.g. mixing of water bodies with different
	also shows seasonality, i.e. temperature controlled
	ecological systems, especially remote area, such as
	Arctic and Antarctic region and Alpine area, where
	availability"
3. You assumed that the increase of air temperature	We add Fig. 8 to show that the summer air and water
(between May - September)	temperatures are highly correlated and in the range of
melted the sea ice, resulting in the enhanced light	3-20 °C. This means that most of the sea ice can
Therefore, the diatom production could increase.	that the influence of sea ice could be neglected.
But I think winter cooling (or air temperature	C
during winter) and annual wind patterns, as well as	Meanwhile, light penetration is the most important
air temperature during summer, could contribute to summer sea ice distributions. Probably, we need	Tactor affecting diatom production in summers of the Bothnian Bay. We think that the stratification
evidence to agree with your assumption. In	influence the light penetration in the water column,
addition, you also mentioned that the cold	therefore we add Fig. 9 plotting pycnocline depth
temperatures likely limited diatom production by	against surface temperature to clarify that surface
Please show a threshold value of the stratification	influence on the depth of the mixed layer (above
or air temperature that limited the diatom	pycnocline) where diatom production mainly occurs.
production. Which is the determinant factor for the	High surface temperatures lead to shallow mixed
diatom production, light availability or water	layer, where light can fully penetrate. In contrast,
column stratification?	lawer which could cause light limitation to diatom
	production. This has been shown by Wasmund N.,
	Nausch G., Matthäus W. 1998. Phytoplankton spring
	blooms in the southern Baltic Sea—spatio-temporal
	Research, 20, 6, 1099-1117. We have tried to discuss
	in our revised text in Section 5.4 as follows: "An
	explanation for the diatom-temperature relationship
	is that diatom bloom is controlled by the mixed layer (ML) . We around at al. (1002) showed that distance
	blooms were triggered by the reduction in the MI
	depth. Water temperature is in the studied area
	positively correlated with air temperature (Fig.8)
	This means that the air temperature indirectly
	the deep ML in cold summers is restricted thus

	limiting diatom production"
	In summary, the determinant factor for diatom production is light penetration which is strongly affected by air/water temperature which influences the mixed layer depth.
4. The value of _30Si increased after 1950 (Fig.	We do not have enough data to conclude about this,
4b), which was explained by the	especially the Si isotope values in the rivers draining
anthropogenic putrient enrichment and the	that increased δ^{30} Si values after 1950 is caused by
increase of 30Si river input. Please add a	increased diatom production behind dams, which
quantitative discussion of their contributions	ultimately increase the δ^{30} Si values in the river input
to the increase of _30Si.	to the Bothnian Bay, we have reasons to say that "the
	shift of Si isotope values coincides with a period of damming of the major rivers leaving only a few
	rivers unregulated today. Meanwhile, no change of
	bedrock and vegetation in the catchment of the
	Bothnian Bay have occurred suggests that the isotope
	composition of 'initial' Si is constant. Hence, the
	shift is most likely to occur during the transport of DSi to the Bothnian Bay, Damming of rivers
	increases diatom production in the reservoirs behind
	the dams and leave the remaining DSi in the river
	water enriched in the heavier Si isotopes, ultimately
	leading to the increased δ_{30} Si _{river input} values." To
	validate our hypothesis, more river samples should be
	the future.
Other of	comments
Page 3773, Line11: What are the ongoing	In comparison to paleoclimatic and
environmental changes?	paleoceanographic studies, ongoing environmental
	changes here means those processes which are
	environment conditions, such as diatom-inferred Si
	untilization in the oceans, the formation of modern
	sediments tracked by opal preservation,
	eutrophication caused by excessive nutrient emission
	to water bodies and the change of global Si cycle etc
	This also includes the changes occurring recently and having influence on the access from now to the
	future such as in our study damming on rivers
	which is possibly causing the increased Si isotope
	values in the Bothnian Bay and ultimately leading to
	the ecological shift in the system.
Page 3773, Line 17: Please define DS1 here.	We have defined DS1 in the revised text.
Page 3778 Line 26: Lean't understand the reason	The field data of diatom flux in the Rothnian Ray is
why changes in detritus sedimentation	still lacking. However, here we mean that the nearly
rate were minor in comparison to diatom flux. Can	linear relation shown in Fig 3 suggests minor
•	inical relation shown in Fig.5 suggests inition
you show the data that the	variability of the sedimentation rate in the past 200
you show the data that the diatom flux was larger than the detritus	variability of the sedimentation rate in the past 200 years. This implies that the sedimentation rate does not
you show the data that the diatom flux was larger than the detritus sedimentation rate?	variability of the sedimentation rate in the past 200 years. This implies that the sedimentation rate does not control the variability of BSi content in sediments. In particular, there is a large increase of BSi content in

	isotope values of diatoms do not vary during
	sedimentation, hence, the variability of sedimentation
	rate will not cause large uncertainty to our study.
Page 3779, Line 11: Do you mean low nutrient at	Low nutrient concentrations lead to low
the bottom? That is, low remineralisation	remineralisation rate at the water bottom, which
at the bottom?	could help the preservation of diatoms in the
	sediments. We have rephrased this sentence to make
	it more clear as follows "Although no diatom
	dissolution rate estimates exists for the Bothnian Bay,
	the excellent preservation of diatoms and low
	mineralization rate caused by low nutrient
	concentrations at the water bottom combined with a
	shallow water depth of 112 m and rapid
	sedimentation rate imply that dissolution of BSi are
	less than 20%."
Page 3780, Lines 1, 4, 9: Not Eq. 2, but Eq. 3.	We have corrected equation numbers in the revised
	text.
Page 3782, Lines 5, 10, 12, 13: Not Eq. 3, but Eq.	We have corrected equation numbers in the revised
4.	text.
Page 3782, Line 9: Eq. (4) was derived from the	We are sorry for the confusion with the equations and
data between 1896 and 1955. However,	data. In the revised version of the manuscript, we
you compared the f values calculated from Eq. (4)	retrieve the summer temperature data from 1820 to
with that obtained from the	2000, they are plotted against the calculated f values
field observations between 1980 and 2000. Can Eq.	in updated Fig. 6. Now Eq.4 is derived using data
(4) be extended to the years after	from 1824 to 1955 from the relation between f values
1955?	and temperature, so there is, although a shift of Si
	isotope values in river input, it does not affect this f -
	temperature relation, i.e. this relationship between f
	and temperature is independent on Si isotope values.
	Eq.4 is supposed to be valid for all the years as long
	as we have f values. Si isotope values are only used
	to reconstruct diatom production (represented by f
	values in this study).

Necessary revised figures

Fig 4 Sediment profiles of Bothnian Bay sediments, A. BSi content (%); B. δ^{30} Si in BSi. The error bars in B represent 95% confidence interval of δ^{29} Si multiplying 1.96 for δ^{30} Si.

Fig.6 Fraction of the remaining DSi (f) in the water column of the Bothnian Bay calculated using a Rayleigh distillation equation (Eq.3) and f values derived from DSi observations during the summers between 1980 and 2000 are plotted together with average summer air temperature through years. The inferior and superior error bars on f values are the first quartile and third quartile for each f value. The δ^{30} Si river input value is -1.1‰ from the pristine boreal Kalix River (Engström et al., 2010) before 1950. For the time period after 1950 the data are adjusted to +1.4‰. Each point is measured and calculated from 1 cm sediment slices, which correspond to ca. 5 years of deposition

Fig. 8A Plot of daily air temperature against daily water temperature between 1948 and 1963. B. Plot of average summer air temperature against average summer water temperature between 1948 and 1963. The linear regression lines are shown for both figures.

Fig. 9 Plot of pycnocline depth against water surface temperature for May (A), June (B), July (C) and August (D). An F-test is done with p value of better than 8.5×10^{-7} for the four figures, indicating there is equal variance between pycnocline depth and surface temperature.