

1 **Carbon flux to woody tissues in a beech/spruce forest during**
2 **summer and in response to chronic elevated O₃ exposure**

3

4 Wilma Ritter¹, Christian P. Andersen², Rainer Matyssek¹ and Thorsten E. E. Grams¹

5

6 ¹ Ecophysiology of Plants, Department of Ecology and Ecosystem Management, Technische
7 Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany

8 ² US Environmental Protection Agency, Western Ecology Division, 200 SW 35th St.,
9 Corvallis, OR 97333, United States

10

11 Correspondence to: T. E. E. Grams (grams@tum.de)

12 **Abstract**

13 The present study compares the dynamics in carbon (C) allocation of adult deciduous
14 beech (*Fagus sylvatica*) and evergreen spruce (*Picea abies*) during summer and in response to
15 seven-year-long exposure with twice-ambient ozone (O_3) concentrations ($2xO_3$). Focus was
16 on the respiratory turn-over and translocation of recent photosynthates at various positions
17 along the stems, coarse roots and soils. The hypotheses tested were that (1) $2xO_3$ decreases
18 the allocation of recent photosynthates to CO_2 efflux of stems and coarse roots of adult trees,
19 and that (2) according to their different O_3 sensitivities this effect is stronger in beech than in
20 spruce.

21 Labeling of whole tree canopies was applied by releasing ^{13}C depleted CO_2 ($\delta^{13}C$ of
22 -46.9 ‰) using a free-air stable carbon isotope approach. Canopy air $\delta^{13}C$ was reduced for
23 about 2.5 weeks by *c.* 8 ‰ in beech and 6 ‰ in spruce while the increase in CO_2
24 concentration was limited to about $110 \mu\text{l L}^{-1}$ and $80 \mu\text{l L}^{-1}$, respectively. At the end of the
25 labeling period, $\delta^{13}C$ of stem CO_2 efflux and phloem sugars was reduced to a similar extend
26 by *c.* 3-4 ‰ (beech) and *c.* 2-3 ‰ (spruce). The fraction of labeled C ($f_{E,\text{new}}$) in stem CO_2
27 efflux amounted to 0.3 to 0.4, indicating slow C turnover of the respiratory supply system in
28 both species.

29 Elevated O_3 slightly stimulated the allocation of recently fixed photosynthates to stem
30 and coarse root respiration in spruce (rejection of hypothesis I for spruce), but resulted in a
31 significant reduction in C flux in beech (acceptance of hypotheses I and II). The distinct
32 decrease in C allocation to beech stems indicates the potential of chronic O_3 stress to
33 substantially mitigate the C sink strength of trees on the long-term scale.

34 1 **Introduction**

35 Tropospheric ozone (O_3) is a major component of global climate change (IPCC, 2007),
36 mitigating the carbon (C) sink strength of forest trees and ecosystem productivity (Sitch et al.,
37 2007; Matyssek et al., 2010b). Along with increased emissions of anthropogenic precursors,
38 in particular nitrogen oxides, tropospheric O_3 concentrations are predicted to rise over Central
39 Europe and at the global scale (Fowler et al., 1999, 2008; Prather et al., 2001). Elevated O_3
40 concentrations are known to negatively affect the metabolism and growth of a wide range of
41 tree species, including deciduous European beech (*Fagus sylvatica*) and evergreen Norway
42 spruce (*Picea abies*; Matyssek et al., 2010a,b; Wieser et al. 2002; Nunn et al., 2006).
43 Photosynthetic decline, impaired phloem loading, and increased C demand for repair have all
44 been observed in response to ozone exposure. Detoxification may curtail the tree-internal
45 assimilate flux to stems, roots and soils in response to O_3 (Andersen, 2003; Matyssek and
46 Sandermann, 2003; Wieser and Matyssek, 2007).

47 Since the flux of current photosynthates is considered an important driver of woody
48 tissue and soil respiration in forests (Ryan et al., 1996, Höglberg et al. 2001), limited C
49 availability caused by O_3 stress may affect the respiratory activity and growth of stems and
50 total belowground C allocation (Matyssek et al., 1992; Günthardt-Goerg et al., 1993; Coleman
51 et al., 1996; Spence et al., 1990). As a result, root biomass and sugar concentrations may be
52 reduced (Grulke et al. 1998, 2001). Highlighting the phototoxic potential of O_3 to Central-
53 European forests, Pretzsch et al. (2010) reported a 40 % decrease in stem growth of adult
54 beech upon eight years of twice-ambient O_3 exposure, whereas spruce showed no significant
55 growth response. Likewise, in phytotron experiments on juvenile beech, reduced allocation of
56 recent photosynthates to stems was identified as the mechanistic basis for reduced stem
57 growth in responses to $2xO_3$. (Kozovits et al., 2005a,b; Ritter et al., 2011).

58 Dynamics in C allocation of adult trees in response to chronically elevated O_3
59 concentrations are investigated and clarification is particularly needed for respiratory C fluxes

60 of woody tissues. Here, we compare the allocation of recent photosynthates to the respiratory
61 turn-over in stems, coarse roots and soils in adult beech and spruce in a naturally grown
62 forest.

63 In accordance with their contrasting O₃ sensitivity, we hypothesized that (1) 2xO₃
64 decreases allocation of recent photosynthates to stem and coarse root CO₂ efflux of adult trees
65 and (2) that this effect is stronger in beech than in spruce. To this end, we took advantage of a
66 unique free-air O₃ fumigation experiment employed in a mixed forest with adult beech and
67 spruce trees (Matyssek et al., 2010). Stable carbon isotope labeling was performed on these
68 trees using the isoFACE exposure system (Grams et al., 2011). In view of hypothesis
69 evaluation, focus was on translocation of recent photosynthates and CO₂ efflux at various
70 positions along the stems and coarse roots.

71 **2 Material and methods**

72

73 **2.1 Experimental design**

74 The study was carried out during August/early September 2006 in a 60 to 70-year-old
75 mixed beech/spruce stand at “Kranzberger Forst” in southern Bavaria, near Freising,
76 Germany (elevation 485 m a.s.l., 48°25'N, 11°39'E; Pretzsch *et al.* 1998). Trees of European
77 beech (*Fagus sylvatica* [L.]) and Norway spruce (*Picea abies* [L.] Karst.), about 25 to 28 m
78 high, were exposed to either unchanged ambient (1x) or experimentally increased twice-
79 ambient (2x) O₃ concentrations. The 2xO₃ regime had experimentally been enhanced since
80 2000, using a free-air O₃ exposure system (Werner and Fabian 2002, Karnosky *et al.* 2005). To
81 prevent risk of acute O₃ injury in the 2xO₃ regime, maximum O₃ concentrations were
82 restricted to < 150 nL L⁻¹ (cf. Matyssek and Sandermann, 2003). The exclusion of untypically
83 high O₃ peaks resulted in a chronically enhanced 2x O₃ regime with a higher frequency of O₃
84 levels that currently occur sporadically at the site, by this, simulating the widely observed
85 trend of currently increasing O₃ background concentrations (Fowler *et al.* 2008; Sitch *et al.*
86 2007; Vingarzan 2004). The forest grew on luvisol derived from loess over tertiary sediments
87 with high nutrition and water supply. Long-term mean (1970-2000) annual air temperature
88 and rainfall were 7.8 °C and 786 mm, respectively (monitored by Deutscher Wetterdienst at
89 climate station “Weihenstephan”, at 4 km distance from the research site; DWD Offenbach,
90 Germany; Matyssek *et al.*, 2007). Scaffoldings and a canopy crane provided access to the tree
91 canopies.

92

93 **2.2 Climate conditions and stable carbon isotope labeling**

94 After a warm and dry period in July 2006 air temperature decreased during the
95 labeling experiments in August and September (Table 1, Fig. 1). Correspondingly, highest O₃
96 concentrations occurred during July, and AOT40 (i.e. accumulated O₃ concentrations above a

97 threshold of 40 nL L⁻¹) exceeded the critical level of 5 µL O₃ L⁻¹ h under the 1xO₃ regime
98 already in May (LRTAP Mapping Manual 2004, Nunn et al., 2005a). O₃ concentrations in the
99 2xO₃ treatment were enhanced by a factor of 1.6 because of the maximum level of 150 µL L⁻¹
100 (see above). Continuous stable carbon isotope labeling was performed from August 18
101 through September 5 and August 26 through September 12 in beech and spruce, respectively,
102 using a free-air stable carbon isotope exposure system (“isoFACE”, for details see Grams et
103 al., 2011). In brief, from 7:00 through 19:00 LT, ¹³C-depleted CO₂ ($\delta^{13}\text{C}$ of c. -46.9 ‰) was
104 homogenously released into the canopy of three study trees in each O₃ regime and species
105 (total of 12 trees) by means of micro-porous tubes. During label exposure, O₃ concentrations
106 (means \pm SE) were 29.7 ± 6.9 (1xO₃) and 49.3 ± 11.9 nl L⁻¹ (2xO₃; Fig. 1a). Photosynthetic
107 photon flux density (PPFD) was moderate due to frequently overcast sky and occasional
108 precipitation (48 and 32 mm during beech and spruce labeling period, respectively, Fig. 1b).
109

110 2.3 Isotope-ratio mass spectrometry (IRMS)

111 Gas samples were analyzed for $\delta^{13}\text{C}$ within 48 hours by IRMS (GV-Isoprime,
112 Elementar, Hanau, Germany) coupled to a gas autosampler (Gilson 221 XL, Gilson Inc.
113 Middleton, USA). Dried plant material was analyzed in a combined elemental analyzer
114 (EA3000, Euro Vector, Milan, Italy) and IRMS. Carbon isotope ratios are expressed in delta
115 notation ($\delta^{13}\text{C}$) using the Vienna PeeDee Belemnite (VPDB) as a standard. For gaseous and
116 solid samples, the iterated measurements of a laboratory working standard showed a precision
117 of $\delta^{13}\text{C} < 0.1\text{‰}$ (SD, n=10).

118

119 2.4 Assessment of CO₂ concentration and $\delta^{13}\text{C}$ of canopy air

120 CO₂ concentration ([CO₂]) and C isotope composition ($\delta^{13}\text{C}$) of canopy air were
121 monitored at two heights (i.e. at 1 and 5 m underneath the upper canopy edge, corresponding

122 to sun and shade leaves). Canopy air from all sampling positions was sucked through PVC
123 tubes by means of membrane pumps, analyzed for CO₂ concentration (infra-red gas analyzer
124 (IRGA), Binos 4b.1, Rosemount AG, Hanau) and sampled once a day (~12:00 LT) using a
125 100 mL syringe. Gas samples were flushed through 12 ml Exetainer vials and analyzed as
126 detailed above.

127 During labeling, $\delta^{13}\text{C}$ of canopy air was effectively decreased. Compared to the
128 unlabeled beech control, mean reductions in sun and shade crowns under 1xO₃ were 8.1 ± 0.2
129 and $8.9 \pm 0.3 \text{ ‰}$, respectively, and under 2xO₃ 9.2 ± 0.4 and $8.4 \pm 0.5 \text{ ‰}$, respectively, (Table
130 2 B). In spruce, mean reductions under 1xO₃ were $6.0 \pm 0.6 \text{ ‰}$ and $6.3 \pm 0.8 \text{ ‰}$, respectively,
131 and under 2xO₃, $7.5 \pm 0.9 \text{ ‰}$ and $6.5 \pm 0.7 \text{ ‰}$, respectively (Table 2 A). CO₂ concentration in
132 the canopy air of beech under both O₃ regimes was increased by about $110 \mu\text{l L}^{-1}$ and in
133 spruce by about $80 \mu\text{l L}^{-1}$ (Table 2 A). In both species, [CO₂] and $\delta^{13}\text{C}$ of canopy air were
134 each similar before and on the last day of labeling. Release of CO₂ and thus label application
135 in beech exceeded that of the spruce experiment. The increase in CO₂ concentration of the
136 canopy air did not affect the sap flow of labeled trees, suggesting unchanged stomatal
137 conductance at the leaf level (Grams et al. 2011). Hence, the rate of CO₂ uptake was assumed
138 to rise to some extent, while the increase in leaf internal to external CO₂ concentration was
139 estimated to be small (< 0.02). Therefore, changes in photosynthetic discrimination against
140 ^{13}C were calculated to stay below 0.4 ‰ (Grams et al., 2011).

141

142 **2.5 Assessment of stem and coarse root CO₂ efflux**

143 Stem and coarse root CO₂ efflux (E) of labeled and unlabeled control trees was
144 assessed by means of a computer-controlled open gas exchange system (for details see Grams
145 et al., 2011). Plexiglas chambers (Plexiglas®, Röhm GmbH, Darmstadt, Germany) were
146 attached at a lower and upper stem position and at one coarse root per tree (except for the
147 unlabeled control spruce tree). Chambers were darkened with aluminized polyester foil to

148 avoid refixation of efflux CO_2 by corticular photosynthesis. For assessment of CO_2 efflux,
149 chambers were connected through PVC tubing to an IRGA (Binos 4b, Emerson Process
150 Management, Weißling, Germany). Stem CO_2 efflux was based on the volume (V in m^3) of
151 the stem sector behind the chamber (i.e. living tissue of bark and sapwood) and coarse root
152 CO_2 efflux on the totally enclosed coarse root volume, respectively (Desrochers et al., 2002;
153 Saveyn et al., 2008).

154

155 **2.6 $\delta^{13}\text{C}$ of stem and coarse root CO_2 efflux**

156 Data on $\delta^{13}\text{C}$ of CO_2 efflux ($\delta^{13}\text{C}_E$) sampled from stems and coarse roots are shown as
157 24h-means ($\pm \text{SE}$). Coarse root $\delta^{13}\text{C}_E$ was assessed once per day (between 10:00 and 13:00
158 LT) by means of a closed respiration system (for details see Grams et al., 2011). A total of six
159 12 ml Exetainer vials were subsequently flushed with chamber air of increasing CO_2
160 concentration and $\delta^{13}\text{C}_E$ of coarse roots was calculated according to the “Keeling Plot
161 approach” (Keeling, 1958, 1961). Air from stem respiration chambers was automatically
162 sampled in 12 ml Exetainer vials, which were flushed with sample gas for six minutes each, at
163 a flow rate of 0.15 L min^{-1} . A total of eight samples per day and chamber were assessed.
164 Isotopic signature of CO_2 efflux of the stem was calculated after Eq. 1 using a two end-
165 member mixing model.

$$166 \delta^{13}\text{C}_E = \frac{([CO_2]_{\text{sample}} * \delta^{13}\text{C}_{\text{sample}}) - ([CO_2]_{\text{reference}} * \delta^{13}\text{C}_{\text{reference}})}{([CO_2]_{\text{sample}} - [CO_2]_{\text{reference}})} (\text{\%}) \quad \text{Eq. (1)}$$

167

168

169

170 where,

171 $[CO_2]_{\text{sample}}$ = CO_2 concentration of sample gas from a stem respiration chamber ($\mu\text{l L}^{-1}$),
172 $[CO_2]_{\text{reference}}$ = CO_2 concentration of reference gas from an empty chamber ($\mu\text{l L}^{-1}$),
173 $\delta^{13}\text{C}_{\text{sample}}$ = $\delta^{13}\text{C}$ of sample gas from a stem respiration chamber (‰) and
174 $\delta^{13}\text{C}_{\text{reference}}$ = $\delta^{13}\text{C}$ of reference gas from an empty chamber (‰).

175

176 We considered that stem CO₂ efflux may not only consist of local tissue-respired CO₂,
 177 but may be biased by xylem-transported CO₂ deriving from lower stem parts and/or root
 178 respiration (Teskey et al., 2008). However, the absent correlation between xylem sap flow and
 179 stem respiration rate or $\delta^{13}\text{C}_E$ (data not shown) suggests xylem-transported CO₂ to only
 180 marginally interfere with sampled CO₂ or to originate from similar respiratory processes as
 181 the locally respiration CO₂ behind the stem chamber.

182

183 2.7 Fraction of labeled C in stem respiration

184 The fraction of labeled carbon ($f_{E, \text{new}}$) in CO₂ efflux (E) was calculated following
 185 Lehmeier et al. (2008) and Gamnitzer et al. (2009):

186

$$187 \quad f_{E, \text{new}} = (\delta^{13}\text{C}_{\text{sample}} - \delta^{13}\text{C}_{\text{old}}) / (\delta^{13}\text{C}_{\text{new}} - \delta^{13}\text{C}_{\text{old}}) \quad \text{Eq. (2)}$$

188

189 where, $\delta^{13}\text{C}_{\text{old}}$ represents the $\delta^{13}\text{C}$ of E before labeling and $\delta^{13}\text{C}_{\text{new}}$ the $\delta^{13}\text{C}$ of E of a tree
 190 grown (theoretically) continuously with labeled CO₂. The labeling period of 18 to 19 days
 191 was too short to fully achieve new isotopic equilibrium in E and therefore $\delta^{13}\text{C}_{\text{new}}$ was derived
 192 from C isotope discrimination ($\Delta^{13}\text{C}$) before labeling, following Eqs. 3 and 4:

193

$$194 \quad \Delta^{13}\text{C} = ([\delta^{13}\text{C}_{\text{unlabeled air}} - \delta^{13}\text{C}_{\text{old}}] / [1000 + \delta^{13}\text{C}_{\text{old}}]) * 1000 (\text{‰}) \quad \text{Eq. (3)}$$

$$195 \quad \delta^{13}\text{C}_{\text{new}} = ([\delta^{13}\text{C}_{\text{labeled air}} - \Delta^{13}\text{C}] / [1000 + \Delta^{13}\text{C}]) * 1000 (\text{‰}) \quad \text{Eq. (4)}$$

196

197 where, $\delta^{13}\text{C}_{\text{unlabeled air}}$ and $\delta^{13}\text{C}_{\text{labeled air}}$ represent the $\delta^{13}\text{C}$ of canopy air before and during the
 198 labeling, respectively.

199

200 Day-to-day variation in $\delta^{13}\text{C}_E$ may occur from variations in label incorporation and in

201 $\Delta^{13}\text{C}$ depending on weather conditions (Pate and Arthur 1998; Bowling et al. 2008). Thus,
202 $\delta^{13}\text{C}_E$ of the labeled trees were corrected for the day-to-day variations in $\Delta^{13}\text{C}$ (being rather
203 small, i.e. $< 0.5 \text{ ‰}$) of the unlabeled control trees, which showed rather stable $\delta^{13}\text{C}_E$
204 throughout the experiment, i.e. 22.4 ± 0.1 and $21.4 \pm 0.1 \text{ ‰}$ for the upper and lower stem
205 positions of beech, respectively, and $19.4 \pm 0.1 \text{ ‰}$ for the lower stem position of spruce.

206

207 **2.8 Assessment of phloem sugars**

208 Phloem sap was sampled on day 0 and during the last labeling day from the lower
209 stem position following the method of Gessler et al. (2004). Small pieces of bark with
210 adherent phloem tissue ($\varnothing 5 \text{ mm}$) were cored in the vicinity of the lower stem chamber and
211 incubated (5 h at $4 \text{ }^\circ\text{C}$) in 15 mM sodium polyphosphate buffer (Sigma-Aldrich, Munich,
212 Germany). After centrifugation (12,500 rpm, 5 min), phloem sap was analyzed for water
213 soluble sugars (sum of sucrose, fructose, glucose, raffinose and pinitol; i.e. C_{PS} in mg) by
214 means of HPLC (CARBOsep CHO-820 calcium column, Transgenomic, 219 Glasgow, UK).
215 Freeze-dried phloem sap was analyzed for stable carbon isotope ($\delta^{13}\text{C}_{\text{sample}}$ in ‰) and element
216 composition (C_{sample} in mg), and $\delta^{13}\text{C}$ of phloem sugars ($\delta^{13}\text{C}_{\text{PS}}$ in ‰) was calculated
217 according to Eq. 5:

218

$$219 \delta^{13}\text{C}_{\text{PS}} = \frac{\delta^{13}\text{C}_{\text{sample}} * \text{C}_{\text{sample}} - \delta^{13}\text{C}_{\text{NPS}} * \text{C}_{\text{NPS}}}{\text{C}_{\text{PS}}} \quad (\text{‰}) \quad \text{Eq. (5)}$$

220

221

222 with $\delta^{13}\text{C}_{\text{NPS}}$ representing $\delta^{13}\text{C}$ of non-sugar C (assuming $\delta^{13}\text{C}_{\text{NPS}}$ to correspond to $\delta^{13}\text{C}_{\text{sample}}$
223 before labeling, cf. Grams et al. 2011) and C_{NPS} (in mg) denoting the non-sugar C content after
224 labeling (calculated as difference between C_{sample} and C_{PS}) in the phloem sap.

225

226

227 **2.9 Sampling of leaves and fine roots**

228 Leaves and fine roots were sampled before and during the last labeling day. Leaves
229 were collected with different exposure to compass directions in sun and shade crowns.
230 Recently grown fine roots (≤ 2 mm diameter) were sampled from organic soil horizons (< 10
231 cm soil depth) and cleaned from soil with distilled water. Dried plant material (72 h at 65°C)
232 was fine-ground and weighed into tin capsules for $\delta^{13}\text{C}$ analysis.

233

234 **2.10 Assessment of soil respired CO₂**

235 Soil gas samples were collected as detailed by Andersen et al. (2010). In brief, specific
236 soil-gas sampling wells were placed belowground prior to tree labeling (distance from bole
237 base of about 0.2 to 0.5 m) at 8 cm and 15 cm depth. Teflon tubing was used to draw 5-8 mL
238 of soil gas from each sampler using a gas-tight syringe. Each beech and spruce tree served as
239 its own control by following the change in $\delta^{13}\text{C}$ of soil-respired CO₂ throughout 2.5 weeks of
240 labeling. In the case of beech, a total of four soil-gas sampling wells were additionally
241 installed at an unlabeled control plot. Gas samples were subsequently filled into 12 mL
242 Exetainer vials and analyzed for $\delta^{13}\text{C}$. Calculation of $\delta^{13}\text{C}$ of soil-respired CO₂ follows Eq. 1,
243 while CO₂ of ambient air above the soil served as reference. Note that soil CO₂ efflux was not
244 adjusted by -4.4‰ to account for the more rapid diffusion of ^{12}C compared to ^{13}C (Andersen
245 et al., 2010). $\delta^{13}\text{C}$ analysis of additional gas samples taken directly above the forest floor
246 indicated that CO₂ label was restricted to the crown and did not reach the forest soil (Grams et
247 al., 2011).

248

249 **2.11 Statistical analyses**

250 Statistical analysis was performed using the SPSS 16.0 software package (SPSS Inc.,
251 Chicago, USA). Individual study trees were regarded as experimental units, and beech and
252 spruce were analyzed separately. Data were statistically analyzed using General Linear Model

253 (GLM) approach and t-tests where appropriate. Statistical evaluation of the course in $\delta^{13}\text{C}_\text{E}$ of
254 stems and coarse roots and the fraction of labeled C in stem CO₂ efflux and coarse root CO₂
255 efflux of labeled trees was performed using repeated measures analysis of variance.
256 Differences at $p \leq 0.05$ were regarded as statistically significant, and at $p \leq 0.1$ as marginally,
257 and denoted by * and (*), respectively.

258 **3 Results**

259 **3.1 Stem and coarse root CO₂ efflux**

260 In general, both species displayed up to 4 times higher (beech) and up to 2 times
261 higher (spruce) CO₂ efflux rates at the upper compared to the lower stem position (Table 3),
262 whereas rates of coarse roots were 10 to 60 times higher than in stems. In beech, 2xO₃
263 significantly diminished the CO₂ efflux rate of the upper stem (by *c.* - 60 %), but caused a
264 pronounced, but non-significant ($p = 0.065$), increase in coarse roots (by *c.* + 65 %). In
265 spruce, CO₂ efflux rate of the upper stem position was significantly increased under 2xO₃ (by
266 *c.* 90 %), whereas the effect was much smaller (*c.* 20%) and statistically not significant at the
267 lower stem position. However, long-term exposure to 2xO₃ reduced the CO₂ efflux rate of
268 spruce coarse roots by *c.* 25 % (not statistically significant, $p = 0.157$).

269

270 **3.2 $\delta^{13}\text{C}$ in stem and coarse root CO₂ efflux**

271 Before labeling, daily means (\pm SE) of $\delta^{13}\text{C}_E$ in beech trees were -28.2 ± 0.1 and -27.9
272 $\pm 0.4 \text{ ‰}$ at the upper and lower stem position under 1xO₃, respectively (Fig. 2). Exposure to
273 2xO₃ slightly increased values by about 0.4 ‰ (not statistically significant). In spruce, $\delta^{13}\text{C}_E$
274 of the upper and lower stems were -27.1 ± 0.1 and $-26.6 \pm 0.1 \text{ ‰}$, respectively. Here 2xO₃
275 significantly reduced values by about 1.1 ‰. In both species, $\delta^{13}\text{C}_E$ of coarse roots were
276 similar to the values of the lower stems and responses to 2xO₃ were consistent with stems.

277 While unlabeled control trees displayed minor day-to-day variations in $\delta^{13}\text{C}_E$ of the
278 various organs during labeling (SD < 0.3 ‰), labeled trees displayed decreasing values upon
279 label application (Fig. 2). In beech, $\delta^{13}\text{C}_E$ of the stems decreased from day 2 onwards under
280 both O₃ regimes (Fig. 2a), with a significantly more pronounced decline under 1xO₃.
281 Likewise, coarse root $\delta^{13}\text{C}_E$ decreased from day 2 onwards (Fig. 2c), although this effect was
282 less prominent than in stems. Similar to beech, $\delta^{13}\text{C}_E$ of stems in spruce decreased from day 3

283 onwards under both O_3 regimes (Fig. 2b). Contrasting with beech, the decline was
284 significantly stronger under $2xO_3$ and more pronounced in the upper compared to the lower
285 stem position ($p < 0.05$, except for day 3). In coarse roots, the decline in $\delta^{13}C_E$ was somewhat
286 delayed, in particular under $1xO_3$ and somewhat stronger under $2xO_3$ ($p = 0.085$ at day 5, Fig.
287 2d).

288

289 **3.3 Fraction of labeled C in stem and coarse root CO_2 efflux**

290 In beech, the fraction of labeled carbon ($f_{E,new}$) in stem CO_2 efflux started to increase
291 during labeling day 2 and was significantly lower in $2xO_3$ compared to $1xO_3$ from day 3
292 onwards (Fig. 3a). At the end of the labeling period (day 19), $f_{E,new}$ had approached maximum
293 levels of 0.40 ± 0.01 under $1xO_3$, whereas under $2xO_3$ only 0.33 ± 0.06 and 0.26 ± 0.06 at the
294 upper and lower stem position, respectively, were reached. Lowest $f_{E,new}$ was observed for
295 coarse roots (maximum of 0.2), being significantly reduced under $2xO_3$ from day 5 onwards
296 (Fig. 3c). In spruce, $f_{E,new}$ of stem CO_2 efflux started to increase on labeling day 2, reaching
297 maximum levels of 0.37 ± 0.03 (upper stem) and 0.25 ± 0.05 (lower stem) under $1xO_3$, and
298 0.39 ± 0.06 and 0.30 ± 0.02 , respectively, under $2xO_3$ at the end of the labeling period (day
299 18, Fig. 3b). Increase of $f_{E,new}$ in spruce coarse roots started somewhat delayed (day 3) but
300 reached levels similar to those of the lower stem position (Fig. 3d). Contrasting with beech,
301 $2xO_3$ did not result in a consistently reduced $f_{E,new}$ in stems and coarse roots.

302

303 **3.4 $\delta^{13}C$ in leaves, phloem sugars, fine roots and soil respired CO_2 before labeling**

304 Before labeling, no apparent differences in $\delta^{13}C$ caused by the long-term $2xO_3$
305 exposure were found in the foliage, phloem sap of the stem, fine roots and soil respired CO_2
306 in either species (Table 4). In general, $\delta^{13}C$ in the sun leaves was significantly increased by *c.*

307 3 ‰ (beech) and 2 ‰ (spruce) compared with shade leaves each. The $\delta^{13}\text{C}$ of soil-respired
308 CO_2 underneath beech of about -24 ‰ was not affected by the O_3 treatment. In comparison
309 with beech, all samples from spruce were enriched in ^{13}C by 1 to 2 ‰ ($p \leq 0.05$). In spruce,
310 $\delta^{13}\text{C}$ of soil respiration CO_2 was reduced by about 1.2 ‰ under 2x O_3 and increased by about 1.0
311 ‰ at a soil depth of 15 cm compared to 8 cm.

312

313 **3.5 Shift in $\delta^{13}\text{C}$ of CO_2 efflux and organic material by the end of labeling**

314 During the 2.5 week labeling period, the $\delta^{13}\text{C}$ of stem and root CO_2 efflux, soil-
315 respired CO_2 and organic samples (phloem sugars, leaves and fine roots) in the unlabeled
316 control trees of both species was only marginally affected (< 0.5 ‰, Fig. 4). In labeled beech,
317 the drop in $\delta^{13}\text{C}_E$ at the end of label application in the upper stem position was unaffected by
318 O_3 (3.5 ± 0.2 ‰ in both O_3 treatments), but less pronounced at the lower stem position under
319 2x O_3 (3.3 ± 0.1 ‰ and 2.3 ± 0.5 ‰ under 1x and 2x O_3 , respectively) (Fig 4b,c). Phloem
320 sugars sampled from the lower stem position displayed similar shifts in $\delta^{13}\text{C}$ of 4.0 ± 1.4 ‰
321 and 3.5 ± 0.6 ‰ under 1x and 2x O_3 , respectively. In consistency with the reduced label
322 strength in spruce canopy air (about 6.0 ‰ compared to 8.2 ‰ in beech), the drop in stem
323 $\delta^{13}\text{C}_E$ of spruce was lower than in beech (Fig 4e,f). Conversely to beech, the drop was
324 somewhat increased by 2x O_3 : upper and lower stem position of 2.4 ± 0.2 ‰ and 1.8 ± 0.3 ‰
325 under 1x O_3 , respectively, and 2.8 ± 0.2 ‰ and 2.1 ± 0.2 ‰ under 2x O_3 , respectively. Again, a
326 similar shift was observed in phloem sugars (3.2 ± 0.3 ‰ and 2.5 ± 0.2 ‰ under 1x and 2x
327 O_3 , respectively). Corresponding changes of $\delta^{13}\text{C}$ in leaf bulk material were much smaller
328 (about 1.5 ‰).

329 Upon labeling, belowground allocation of recent photosynthates was not affected by
330 the O_3 treatment and, in general, was reduced compared to stem CO_2 efflux and phloem
331 sugars. The decline upon labeling in $\delta^{13}\text{C}_E$ of coarse roots was 1.8 ± 0.1 ‰ and 1.4 ± 0.1 ‰ in

332 beech and $1.7 \pm 0.9 \text{ ‰}$ and $2.1 \pm 0.8 \text{ ‰}$ in spruce under 1x and 2xO₃, respectively. Under
333 beech, changes in $\delta^{13}\text{C}$ of soil-respired CO₂ were similar to coarse roots $\delta^{13}\text{C}_E$ (about 1.5 to
334 2.5 ‰), whereas soil CO₂ under spruce remained unchanged. (Fig. 4e,f). Similar to leaf bulk
335 material, $\delta^{13}\text{C}$ of fine roots displayed smaller changes than sampled CO₂ efflux and was in the
336 range of 0.5 ‰, irrespective of the O₃ treatment.

337 **4 Discussion**

338 Our study compares the flux of recent photosynthates to the CO₂ efflux of stems and
339 coarse roots in adult deciduous beech and evergreen spruce during summer and in response to
340 seven-year long 2xO₃ treatment. The hypothesis I that long-term exposure to elevated O₃
341 reduces the flux of recently fixed C to CO₂ efflux of stems and coarse roots was accepted for
342 beech but rejected in the case of spruce, which is in accordance with their contrasting O₃
343 sensitivities (support for hypothesis II).

344 Long-term exposure to 2xO₃ for seven years did not significantly affect the δ¹³C of
345 beech and spruce leaves or sugars transported in the phloem sap during late summer (Tab. 4,
346 cf. Grams et al., 2007, Gessler et al., 2009). Nevertheless, δ¹³C of beech sun leaves displayed
347 a tendency similar to that reported by Kitao et al. (2009) in that 2xO₃ increased δ¹³C of leaf
348 dry matter caused by O₃-induced stomatal closure. Likewise, spruce displayed some
349 photosynthetic and stomatal limitation under 2xO₃ although varying from year to year (Nunn
350 et al., 2005b, 2006). In general, δ¹³C of leaf and fine root biomass was about 2 ‰ higher in
351 spruce compared to beech, likely resulting from higher leaf-level water-use efficiency in the
352 evergreen conifer compared to deciduous trees (Matyssek, 1986; Garten and Taylor, 1992;
353 Diefendorf et al., 2010).

354 In both beech and spruce, labeled photosynthates were detected in the upper and lower
355 stem CO₂ efflux from day 3 onwards (Fig. 2 and 3). The fraction of labeled C (f_{E,new}) in the
356 CO₂ efflux of beech stems was significantly reduced under 2xO₃ (support of hypothesis I),
357 indicating a higher dependency on C stores of the respiratory supply under 2xO₃ (cf. Ritter et
358 al. 2011). Such a response may be caused by (1) a direct adverse effect of O₃ on beech
359 photosynthesis and thus reduced label uptake, although reductions were typically small (Nunn
360 et al., 2005b; 2006), or (2) a changed C allocation pattern by e.g. an O₃-inhibited assimilate
361 transport from the leaves. As a consequence the respiratory activity of stem tissues may be
362 restricted (Matyssek et al., 2002) and C stores in stems and roots may decrease towards the

363 end of the growing season (Mc Laughlin et al., 1982). Consequently, re-growth and bud
364 development in spring may become limited (Matyssek and Sandermann, 2003). The
365 significantly decreased flux of recent photosynthates to beech stems represents the
366 mechanistic basis for the observed loss in stem productivity of 40% under long-term exposure
367 of 2xO₃ (Pretzsch et al., 2010). In consistency with model predictions (Sitch et al., 2007), this
368 indicates the potential of chronic O₃ stress to substantially mitigate the C sink strength of trees
369 (Matyssek et al., 2010b). Contrasting with beech, exposure to 2xO₃ in tendency increased the
370 fraction of labeled C ($f_{E,new}$) in stem CO₂ efflux of spruce, rejecting hypothesis I for spruce. At
371 the same time, the rate of stem CO₂ efflux was significantly increased under 2xO₃. Such a
372 stimulation following O₃ exposure has been reported in several studies on herbaceous plants
373 (Grantz and Shrestha, 2006; Reiling and Davison, 1992) and is known to sustain repair- and
374 detoxification processes (Matyssek et al., 1995; Rennenberg et al., 1996). The slightly
375 increased C allocation to such processes in spruce may relate to its overall lower O₃
376 sensitivity compared to beech (Kozovits et al. 2005a,b; Matyssek et al., 2010b; Pretzsch et al.
377 2010). Whereas under 2x O₃ allocation of C to reserves in beech stems may be restricted
378 (Ritter et al., 2011; Kuptz et al. 2011a) putatively reducing C supply for stem growth in the
379 following year.

380 We do not expect the observed O₃ effects to be counteracted by the short-term increase
381 in CO₂ concentration during labeling as CO₂ x O₃ interactions in beech are typically related to
382 reductions in stomatal aperture (Grams et al. 1999, Grams and Matyssek 1999) that were
383 absent during labelling (Grams et al. 2011). Moreover, structural adjustments of beech in
384 response to the long-term exposure (i.e. 7 years) to the 2x O₃ regime are unlikely to be
385 ameliorated by short-term (i.e. 2.5 weeks) increases in CO₂ concentration by about 100 µL L⁻¹
386 ¹.

387 Reduction of $\delta^{13}\text{C}$ in canopy air for 2.5 weeks by about 8 and 6 ‰ resulted in a drop
388 of stem $\delta^{13}\text{C}_E$ in beech of 3-4 ‰ and in spruce by 2-3 ‰, respectively (Fig. 4b-f).

389 Correspondingly, $f_{E,new}$ of stem CO₂ efflux amounted to about 0.3 to 0.4 in both species. In
390 parallel, $\delta^{13}\text{C}$ of labeled phloem sugars was reduced to a similar extent by about 4 and 3 ‰ in
391 beech and spruce, respectively, suggesting respiration of phloem sugars to be the main C
392 source for stem CO₂ efflux (Kuptz et al. 2011a). Unlabeled C in phloem sugars after 2.5
393 weeks of continuous labeling may derive from “old C” atoms in C skeletons of currently
394 synthesized sucrose as a consequence of slow turnover of precursor molecules or from
395 remobilized C stores (Gessler et al., 2008; Tcherkez et al., 2003). We note that CO₂ efflux
396 sampled from stems (and roots) may be affected by xylem-transported CO₂ deriving from
397 lower stem regions and/or root respiration (Teskey et al., 2008). We did not find a correlation
398 between sap flow and both rates of stem CO₂ efflux and stem $\delta^{13}\text{C}_E$ in our study (cf. Grams et
399 al., 2011, Kuptz et al., 2011a,b). Hence, contribution of xylem transported CO₂ to sampled
400 CO₂ efflux may be small or originate from similar respiratory processes as at the sampled
401 stem position. In fact, the contribution from soil CO₂ to stem CO₂ efflux was recently
402 concluded to be rather small (Gebhardt, 2008; Aubrey and Teskey, 2009; Ubierna et al.,
403 2009). However, contribution of respiratory CO₂ from lower parts of the stem or roots to
404 sampled CO₂ efflux can not be ruled out completely and the extent of this putative influence
405 remains obscure.

406 In consistency with the findings on $\delta^{13}\text{C}_E$ in stems, 2xO₃ distinctly reduced $f_{E,new}$ of
407 coarse root efflux of beech, supporting hypothesis I. The decrease in coarse root $\delta^{13}\text{C}_E$ during
408 the labeling in summer was about 1-2 ‰ smaller than in stems, indicating a lower dependence
409 of root CO₂ efflux on current photosynthates (Wingate et al., 2008; Bathellier et al., 2009;
410 Kuptz et al., 2011a). However, soil-respired CO₂, which includes large contributions by root-
411 respiration CO₂ of unlabeled neighboring trees and heterotrophic soil respiration (Högberg et al.,
412 2001; Andersen et al., 2005, 2010), was reduced in $\delta^{13}\text{C}$ by 1.5 to 3 ‰. Hence, beech fine
413 roots and associated microbes appear to be a relatively strong sink for recently fixed C during
414 summer (Högberg et al., 2001; Plain et al., 2009). Slightly pronounced shifts in soil-respired

415 CO₂ under 2xO₃ fit well with previously reported increases in fine-root turn-over of beech
416 under long-term O₃ exposure (Nikolova et al., 2010). Similar to C flux in spruce stems,
417 elevated O₃ did not reduce the allocation of recent photosynthates to coarse root CO₂ efflux
418 during summer (cf. Andersen et al., 2010). However, the C label was hardly detectable in the
419 soil-respired CO₂ around the trees (Andersen et al., 2010), which may indicate favored
420 allocation of labeled C to storage and/or structural pools in the fine roots during summer (cf.
421 Kuptz et al. 2011a), resulting in a drop of $\delta^{13}\text{C}$ in the fine root tissue during labeling (Fig.
422 4e,f).

423 In conclusion, the transfer of recently fixed C from beech and spruce crowns to stem
424 and coarse root CO₂ efflux within 2 to 3 days displays tight coupling with canopy
425 photosynthesis during summer. Our labeling approach for tracking of individual, isotopically
426 labeled sugar molecules through tall beech and spruce trees should not be confused with the
427 faster propagation of phloem pressure-concentration waves (Kuzyakov and Garvrichkova,
428 2010, Mencuccini and Hölttä, 2010). Chronic exposure to 2xO₃ reduced allocation of
429 photosynthates to the stem and coarse roots of beech and spruce in contrasting ways. The
430 conifer spruce significantly increased the flux of photosynthates to stems (rejection of
431 hypothesis I for spruce), whereas this flux was restricted in stems and coarse roots of
432 deciduous beech (acceptance of hypotheses I and II). The observed patterns in translocation of
433 recent photosynthates are interpreted as a mechanistic basis for observed reductions in beech
434 stem growth, highlighting the potential of chronic O₃ stress to substantially mitigate the C
435 sink strength of trees.

436 **Acknowledgements**

437 We gratefully acknowledge the skillful assistance of T. Feuerbach, H. Lohner, P.
438 Kuba, and J. Heckmair. The study was funded through SFB 607 "Growth and Parasite
439 Defense - Competition for Resources in Economic Plants from Agronomy and Forestry,
440 Projects B5" by the "Deutsche Forschungsgemeinschaft" (DFG). The authors also wish to
441 thank Drs. B. Ozretich and A. Bytnerowicz for helpful comments on an earlier version of the
442 manuscript. The information in this paper has been subjected to EPA peer and administrative
443 review, and it has been approved for publication as an EPA document. Mention of trade
444 names or commercial products does not constitute endorsement or recommendation for use.

References

Andersen, C. P.: Source-sink balance and carbon allocation below ground in plants exposed to ozone, *New Phytol.*, 157, 213-228, 2003.

Andersen, C. P., Nikolov, I., Nikolova, P., Matyssek, R., and Häberle K. H.: Estimating "autotrophic" belowground respiration in spruce and beech forests: decreases following girdling, *Eur. J. Forest Res.*, 124, 155-163, 2005.

Andersen, C. P., Ritter, W., Gregg, J., Matyssek, R., and Grams, T. E. E.: Below-ground carbon allocation in mature beech and spruce trees following long-term, experimentally enhanced O₃ exposure in Southern Germany, *Environ. Pollut.*, 158, 2604-2609, 2010.

Aubrey, D. P. and Teskey, R. O.: Root-derived CO₂ efflux via xylem stream rivals soil CO₂ efflux, *New Phytol.*, 184, 35-40, 2009.

Bathellier, C., Tcherkez, G., Bligny, R., Gout, E., Cornic, G., and Ghashghaie J.: Metabolic origin of the δ¹³C of respired CO₂ in roots of *Phaseolus vulgaris*, *New Phytol.*, 181, 387-399, 2009.

Bowling, D. R., Pataki, D. E., and Randerson, J. T.: Carbon isotopes in terrestrial ecosystem pools and CO₂ fluxes, *New Phytol.*, 178, 24-40, 2008.

Coleman, M. D., Dickson, R. E., Isebrands, J. G., and Karnosky, D. F.: Root growth and physiology of potted and field-grown trembling aspen exposed to ozone, *Tree Physiol.*, 16, 145–152, 1996.

Desrochers, A., Landhausser, S. M., and Lieffers, V. J.: Coarse and fine root respiration in aspen (*Populus tremuloides*), *Tree Physiol.*, 22, 725-732, 2002.

Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., and Freeman, K. H.: Global patterns in leaf ¹³C discrimination and implications for studies of past and future climate, *PNAS*, 107, 5738-5743, 2010.

Fowler D., Amann M., Anderson R., Ashmore M., Cox P., Depledge M., Derwent D., Grennfelt P., Hewitt N., Hov O., Jenkin M., Kelly F., Liss P., Pilling M., Pyle J., Slingo J., Stevenson D.: Ground-level ozone in the 21st century: future trends, impacts and policy implications, The Royal Society Policy Document, pp. 132., 2008.

Fowler, D., Cape, J. N., Coyle, M., Flechard, C., Kylenstierna, J., Hicks K., Derwent, D., Johnson, C., and Stevenson, D.: The global exposure of forests to air pollutants, in: *Forest Growth Responses to the Pollution Climate of the 21st Century* (Sheppard L.J., Cape J.N. eds.), Kluwer Academic Publisher, Dordrecht, pp. 5-32, 1999.

Gamnitzer, U., Schäufele, R., and Schnyder, H.: Observing ¹³C labelling kinetics in CO₂ respired by a temperate grassland ecosystem, *New Phytol.*, 184, 376-386, 2009.

Garten, C. T. and Taylor, G. E.: Foliar δ¹³C within a temperate deciduous forest: spatial, temporal and species sources of variation, *Oecologia*, 90, 1-7, 1992.

Gebhardt, T.: ¹³C/¹²C-Markierung von CO₂ im Boden: Methodenentwicklung und Nachweis im CO₂-Efflux des Stammes an *Picea abies*, Diploma thesis, School of Forest Science, Ecophysiology of Plants, Department of Ecology, Technische Universität München, Freising, p. 81., 2008.

Geßler, A., M. Löw, C. Heerdt, M. Op de Beeck, J. Schumacher, T. E. E. Grams, G. Bahnweg, R. Ceulemans, H. Werner, R. Matyssek, H. Rennenberg, and K. Haberer. Within-canopy and ozone

fumigation effects on $\delta^{13}\text{C}$ and $\Delta^{18}\text{O}$ in adult beech (*Fagus sylvatica*) trees: relation to meteorological and gas exchange parameters, *Tree Physiol.*, 1349-1365, 2009.

Gessler, A., Brandes, E., Buchmann, N., Helle, G., Rennenberg, H., and Barnard, R. L.: Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive, *Plant Cell Environ.*, 32, 780-795, 2009.

Gessler, A., Rennenberg, H., and Keitel, C.: Stable isotope composition of organic compounds transported in the phloem of European beech - Evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf-to-stem transport, *Plant Biol.*, 6, 721-729, 2004.

Gessler, A., Tcherkez, G., Peuke, A. D., Ghashghaie, J., and Farquhar, G. D.: Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in *Ricinus communis*, *Plant Cell Environ.*, 31, 941-953, 2008.

Grams, T.E.E., Anegg, S., Häberle, K.H., Langebartels, C., and Matyssek, R.: Interactions of chronic exposure to elevated CO_2 and O_3 levels in the photosynthetic light and dark reactions of European beech (*Fagus sylvatica*), *New Phytol.*, 144, 95-107, 1999.

Grams, T. E. E. and Matyssek, R.: Elevated CO_2 counteracts the limitation by chronic ozone exposure on photosynthesis in *Fagus sylvatica* L.: comparison between chlorophyll fluorescence and leaf gas exchange, *Phyton*, 39, 31-40, 1999.

Grams, T. E. E., Kozovits, A. R., Häberle, K. H., Matyssek, R., and Dawson, T. E.: Combining $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ analyses to unravel competition, CO_2 and O_3 effects on the physiological performance of different-aged trees, *Plant Cell Environ.*, 30, 1023-1034, 2007.

Grams, T. E. E., Werner, H., Kuptz, D., Ritter, W., Fleischmann, F., Andersen, C. P., and Matyssek, R.: A free-air system for long-term stable carbon isotope labeling of adult forest trees, *Trees*, 25, 187-198, 2011.

Grantz, D. A. and Shrestha, A.: Tropospheric ozone and interspecific competition between yellow nutsedge and *Pima cotton*, *Crop Sci.* 46, 1879-1889, 2006.

Grulke, N. E., Andersen, C. P., Fenn, M. E., and Miller, P. R.: Ozone exposure and nitrogen deposition lowers root biomass of ponderosa pine in the San Bernardino Mountains, California. *Environ. Pollut.*, 103, 63-73, 1998.

Grulke, N. W., Andersen, C. P., and Hogsett, W. E.: Seasonal changes in above- and belowground carbohydrate concentration of ponderosa pine along a pollution gradient, *Tree Physiol.*, 21, 173-181, 2001.

Günthardt-Goerg, M. S., Matyssek, R., Scheidegger, C., and Keller T.: Differentiation and structural decline in the leaves and bark of birch (*Betula pendula*) under low ozone concentrations, *Trees*, 7, 104-114, 1993.

Högberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A., Högberg, M. N., Nyberg, G., Ottosson-Löfvenius, M., and Read, D. J.: Large-scale forest girdling shows that current photosynthesis drives soil respiration, *Nature*, 411, 789-792, 2001.

IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by:

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp., 2007.

Karnosky ,D.F., Werner, H., Holopainen, T., Percy, K., Oksanen, T., Oksanen, E., Heerdt, C., Fabian, P., Nagy, J., Heilman, W., Cox, R., Nelson, N. and Matyssek, R.: Free-air exposure systems to scale up ozone research to mature trees, *Plant Biol.*, 9, 181-190, 2005.

Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas, *Geochim. Cosmochim. Acta*, 13, 322-334, 1958.

Keeling, C. D.: The concentration and isotopic abundance of carbon dioxide in rural and marine air, *Geochim. Cosmochim. Acta*, 24, 277-298, 1961.

Kitao, M., Löw, M., Heerdt, C., Grams, T. E. E., Häberle, K. H., Matyssek, R.: Effects of chronic ozone exposure on gas exchange responses of adult beech trees (*Fagus sylvatica*) as related to the within-canopy light gradient, *Environ. Pollut.*, 157, 537-544, 2009.

Kozovits, A. R., Matyssek, R., Blaschke, H., Göttlein, A., Grams, T. E. E.: Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO₂ and/or O₃ concentrations throughout two subsequent growing seasons, *Global Change Biol.*, 11, 1387-1401, 2005a.

Kozovits, A. R., Matyssek, R., Winkler, J. B., Göttlein, A., Blaschke, H., Grams, T. E. E.: Above-ground space sequestration determines competitive success in juvenile beech and spruce trees, *New Phytol.*, 167, 181-196, 2005b.

Kuptz, D., Fleischmann, F., Matyssek, R., Grams, T. E. E.: Seasonal patterns of carbon allocation to respiratory pools in 60-year-old deciduous (*Fagus sylvatica*) and evergreen (*Picea abies*) trees assessed via whole-tree stable carbon isotope labeling, *New Phytol.*, 191(1), 160-172, 2011a.

Kuptz, D., Matyssek, R., and Grams, T. E. E.: Seasonal dynamics in the stable carbon isotope composition ($\delta^{13}\text{C}$) from non-leafy branch, trunk and coarse root CO₂ efflux of adult deciduous (*Fagus sylvatica*) and evergreen (*Picea abies*) trees, *Plant Cell Environ.*, 34(3), 363-373, 2011b.

Kuzyakov, Y. and Garvrichkova, O.: Time lag between photosynthesis and carbon dioxide efflux from soil: a review, *Global Change Biol.*, 16, 3386-3406, 2010.

Lehmeier, C. A., Lattanzi, F. A., Schäufele, R., Wild, M., and Schnyder, H.: Root and shoot respiration of perennial ryegrass are supplied by the same substrate pools: Assessment by dynamic ¹³C labeling and compartmental analysis of tracer kinetics, *Plant Physiol.*, 148, 1148-1158, 2008.

LRTAP Mapping Manual: Manual on the methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends, UNECE, <http://www.icpmapping.org.>, 2004.

Matyssek, R.: Carbon, water and nitrogen relations in evergreen and deciduous conifers. *Tree Physiol.*, 2, 177-187, 1986.

Matyssek, R. and Sandermann, H.: Impact of ozone on trees: an ecophysiological perspective, *Prog. Bot.*, 64, 349-404, 2003.

Matyssek, R., Bahnweg, G., Ceulemans, R., Fabian, P., Grill, D., Hanke, D. E., Kraigher, H., Osswald, W., Rennenberg, H., Sandermann, H., Tausz, M., and Wieser, G.: Synopsis of the CASIROZ case study: Carbon sink strength of *Fagus sylvatica* L. in a changing environment - Experimental risk

assessment of mitigation by chronic ozone impact, *Plant Biol.*, 9, 163-180, 2007.

Matyssek, R., Günthardt-Goerg, M. S., Maurer, S., and Keller, T.: Nighttime exposure to ozone reduces whole-plant production in *Betula pendula*, *Tree Physiol.*, 15, 159-165, 1995.

Matyssek, R., Günthardt-Goerg, M. S., Saurer, M., and Keller, T.: Seasonal growth, $\delta^{13}\text{C}$ in leaves and stem, and phloem structure of birch (*Betula pendula*) under low ozone concentrations, *Trees*, 6, 69-76, 1992.

Matyssek, R., Günthardt-Goerg, M. S., Maurer, S., and Christ, R.: Tissue structure and respiration of stems of *Betula pendula* under contrasting ozone exposure and nutrition, *Trees*, 16, 375-385, 2002.

Matyssek, R., Karnosky, D. F., Wieser, G., Percy, K., Oksanen, E., Grams, T. E. E., Kubiske, M., Hanke, D., and Pretzsch, H.: Advances in understanding ozone impact on forest trees: Messages from novel phytotron and free-air fumigation studies, *Environ. Pollut.*, 158, 1990-2006, 2010a.

Matyssek, R., Wieser, G., Ceulemans, R., Rennenberg, H., Pretzsch, H., Haberer, K., Löw, M., Nunn, A.J., Werner, H., Wipfler, P., Oßwald, W., Nikolova, P., Hanke, D.E., Kraigher, H., Tausz, M., Bahnweg, G., Kitao, M., Dieler, J., Sandermann, H., Herbinger, K., Grebenc, T., Blumenröther, M., Deckmyn, G., Grams, T.E.E., Heerdt, C., Leuchner, M., Fabian, P. and Häberle, K.-H.: Enhanced ozone strongly reduces carbon sink strength of adult beech (*Fagus sylvatica*) – Resumé from the free-air fumigation study at Kranzberg Forest, *Environ. Pollut.*, 158, 2527-2532, 2010b.

McLaughlin, S. B., McConathy, R. K., Duwick, D., and Mann, L. K.: Effects of chronic air pollution stress on photosynthesis, carbon allocation and growth of white pine trees, *Forest Sci.*, 28, 60-70, 1982.

Mencuccini, M. and Hölttä, T.: The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked, *New Phytol.*, 185, 189-203, 2010.

Nikolova, P. S., Andersen, C. P., Blaschke, H., Matyssek, R., and Häberle, K. H.: Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (*Fagus sylvatica* L./*Picea abies* [L.] Karst), *Environ. Pollut.*, 158, 1071-1078, 2010.

Nunn, A. J., Kozovits, A. R., Reiter, I. M., Heerdt, C., Leuchner, M., Lütz, C., Liu, X., Löw, M., Winkler, J. B., Grams, T. E. E., Häberle, K. H., Werner, H., Fabian, P., Rennenberg, H., and Matyssek, R.: Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (*Fagus sylvatica*), *Environ. Pollut.*, 137, 494-406, 2005a.

Nunn, A.J., Reiter, I.M., Häberle, K.-H., Langebartels, C., Bahnweg, G., Pretzsch, H., Sandermann, H. and Matyssek, R.: Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies, *Environ. Poll.*, 136, 365-369, 2005b

Nunn, A. J., Wieser, G., Reiter, I. M., Häberle, K. H., Grote, R., Havranek, W. M., and Matyssek, R.: Testing the unifying theory of ozone sensitivity with mature trees of *Fagus sylvatica* and *Picea abies*, *Tree Physiol.*, 26, 1391-1403, 2006.

Pate, J. and Arthur, D.: $\delta^{13}\text{C}$ analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of *Eucalyptus globulus*, *Oecologia*, 117, 301-311, 1998.

Plain, C., Gerant, D., Maillard, P., Dannoura, M., Dong, Y. W., Zeller, B., Priault, P., Parent, F., and Epron, D.: Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after *in situ* $^{13}\text{CO}_2$ pulse labelling of 20-year-old beech trees, *Tree Physiol.*, 29, 1433-1445, 2009.

Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., and Wang M.: Atmospheric Chemistry and Greenhouse Gases, in: *Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on climate Change (IPCC)*, edited by: Houghton, J. T., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Dai, X., Maskell, K., and Johnson, C. A., Cambridge University Press, Cambridge & New York, pp. 239-287, 2001.

Pretzsch, H., Kahn, M., and Grote R.: The mixed spruce-beech forest stands of the "Sonderforschungsbereich" "Growth or Parasite Defence?" in the forest district Kranzberger Forst, *Forstwiss. Centralbl.*, 117, 241-257, 1998.

Pretzsch, H., Dieler, J., Matyssek, R., and Wipfler, P.: Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation, *Environ. Pollut.*, 158, 1061-1070, 2010.

Reiling, K. and Davison, A. W.: The response of native, herbaceous species to ozone - Growth and fluorescence screening, *New Phytol.*, 120, 29-37, 1992.

Rennenberg, H., Herschbach, C., and Polle, A.: Consequences of air pollution on shoot-root interactions, *J. Plant Physiol.*, 148, 296-301, 1996.

Ritter, W., Lehmeier, C. A., Winkler, J. B., Matyssek, R., Grams, T. E. E.: Contrasting carbon allocation responses of juvenile European beech (*Fagus sylvatica*) and Norway spruce (*Picea abies*) to competition and ozone during late summer, in preparation, 2011.

Ryan, M. G., Hubbard, R. M., Pongracic, S., Raison, R. J., and McMurtrie, R. E.: Foliage, fine-root, woody-tissue and stand respiration in *Pinus radiata* in relation to nitrogen status, *Tree Physiol.*, 16, 333-343, 1996.

Saveyn, A., Steppe, K., McGuire, M. A., Lemeur, R., and Teskey, R. O.: Stem respiration and carbon dioxide efflux of young *Populus deltoides* trees in relation to temperature and xylem carbon dioxide concentration, *Oecologia*, 154, 637-649, 2008.

Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.: Indirect radiative forcing of climate change through ozone effects on the land-carbon sink, *Nature*, 448, 791-794, 2007.

Spence, R. D., Rykiel, E. J., and Sharpe, P. J. H.: Ozone alters carbon allocation in loblolly pine: assessment with carbon-11 labelling, *Environ. Pollut.*, 64, 93-106, 1990.

Tcherkez, G., Nogues, S., Bleton, J., Cornic, G., Badeck, F., and Ghashghaie, J.: Metabolic origin of carbon isotope composition of leaf dark-respired CO_2 in French bean, *Plant Physiol.*, 131, 237-244, 2003.

Teskey, R. O., Saveyn, A., Steppe, K., and McGuire, M. A.: Origin, fate and significance of CO_2 in tree stems, *New Phytol.*, 177, 17-32, 2008.

Ubierna, N., Kumar, A. S., Cernusak, L. A., Pangle, R. E., Gag, P. J., and Marshall, J. D.: Storage and transpiration have negligible effects on $\delta^{13}\text{C}$ of stem CO_2 efflux in large conifer trees, *Tree*

Physiol., 29, 1563-1574, 2009.

Vingarzan R: A review of surface O₃ background levels and trends. *Atmos. Environ.*, 38, 3431-3442, 2004.

Vose, J. M. and Ryan, M. G.: Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis, *Global Change Biol.*, 8, 182-193, 2002.

Werner, H. and Fabian, P.: Free-air fumigation of mature trees - A novel system for controlled ozone enrichment in grown-up beech and spruce canopies, *Environ. Sci. Pollut. Res.*, 9, 117-121, 2002.

Wieser, G., Hecke, K., Tausz, M., Häberle, K. H., Grams, T. E. E., and Matyssek, R.: The role of antioxidative defense in determining ozone sensitivity of Norway spruce (*Picea abies* (L.) Karst.) across tree age: Implications for the sun- and shade-crown, *Phyton*, 42, 245-253, 2002.

Wieser, G. and Matyssek, R.: Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees, *New Phytol.*, 174, 7-9, 2007.

Wingate, L., Seibt, U., Maseyk, K., Ogee, J., Almeida, P., Yakir, D., Pereira, J. S., and Mencuccini, M.: Evaporation and carbonic anhydrase activity recorded in oxygen isotope signatures of net CO₂ fluxes from a Mediterranean soil, *Global Change Biol.*, 14, 2178-2193, 2008.

Tables

Table 1 Weather conditions and O₃ levels at the study site “Kranzberger Forst” during the growing season of 2006. Monthly sum of precipitation and average of daytime photosynthetic photon flux density (PPFD), relative air humidity (RH), air temperature (T_{air}), vapor pressure deficit (VPD) and soil moisture (\pm SE, n = 30 to 31). Ozone levels as monthly means \pm SE (n = 30 to 31), AOT40 (i.e. accumulated O₃ concentrations above a threshold of 40 nL L⁻¹) and SUM0 (i.e. daily sum of hourly O₃ concentrations).

2006	May	June	July	Aug	Sep	Oct
PPFD [μmol m ⁻² s ⁻¹]	458.6 \pm 29.7	565.3 \pm 28.7	601.1 \pm 23.7	345.6 \pm 20.4	363.4 \pm 23.1	217.7 \pm 12.4
RH [%]	69.8 \pm 2.2	68.5 \pm 2.0	66.2 \pm 2.3	80.7 \pm 1.2	77.7 \pm 1.4	80.7 \pm 0.6
T _{air} [°C]	12.8 \pm 0.5	16.9 \pm 0.9	21.4 \pm 0.4	14.5 \pm 0.4	16.2 \pm 0.4	11.5 \pm 0.5
Rainfall [mm]	82.4 \pm 0.7	92.1 \pm 1.3	29.0 \pm 0.4	113.8 \pm 0.9	12.6 \pm 0.3	35.6 \pm 0.8
VPD [hPa]	5.1 \pm 0.5	7.1 \pm 0.7	10.2 \pm 0.8	3.5 \pm 0.4	4.7 \pm 0.4	2.8 \pm 0.2
Soil moisture [vol %] at						
5 cm depth	30.7 \pm 0.2	28.4 \pm 0.5	22.5 \pm 0.8	21.4 \pm 0.4	17.5 \pm 0.2	17.1 \pm 0.1
30 cm depth	34.1 \pm 0.2	32.3 \pm 0.4	27.9 \pm 0.4	26.1 \pm 0.1	24.7 \pm 0.1	25.4 \pm 0.1
70-140 cm depth	29.6 \pm 0.2	27.9 \pm 0.2	25.0 \pm 0.3	22.9 \pm 0.1	21.5 \pm 0.1	21.7 \pm 0.1
1xO ₃ concentration [nL L ⁻¹]	47.5 \pm 2.8	45.3 \pm 1.8	53.0 \pm 1.7	29.5 \pm 1.5	26.0 \pm 1.6	15.5 \pm 1.4
2xO ₃ concentration [nL L ⁻¹]	67.0 \pm 3.3	72.6 \pm 3.7	86.2 \pm 3.6	47.9 \pm 2.3	44.1 \pm 2.9	23.5 \pm 2.2
AOT40 1xO ₃ [μL L ⁻¹ h]	5.7	4.7	7.4	0.8	0.6	0.0
AOT40 2xO ₃ [μL L ⁻¹ h]	13.0	17.1	23.2	6.7	5.1	1.0
SUM0 1xO ₃ [μL L ⁻¹ h]	33.0	30.1	36.8	21.6	18.6	8.7
SUM0 2xO ₃ [μL L ⁻¹ h]	47.7	52.2	64.1	35.6	31.7	13.4

Table 2 (A) CO₂ concentration (μL L⁻¹) and (B) δ¹³C (‰) in canopy air of labeled beech and spruce trees under 1x and 2xO₃ and one unlabeled control tree for each species. Data are presented for sun and shade crowns as means ± SE before (n = 12 h), during (n = 18 to 19 days) and after (n = 12 hours) label exposure.

Unlabeled Control		Labeled beech				Labeled spruce				
		1xO ₃		2xO ₃		1xO ₃		2xO ₃		
Sun	Shade	Sun	Shade	Sun	Shade	Sun	Shade	Sun	Shade	
A [CO₂] (μL L⁻¹)										
Before	384 ± 2	380 ± 2	383 ± 3	379 ± 4	384 ± 8	379 ± 1	382 ± 6	381 ± 9	382 ± 21	383 ± 14
During	384 ± 1	385 ± 1	488 ± 5	505 ± 9	508 ± 6	498 ± 7	455 ± 3	460 ± 5	473 ± 4	465 ± 8
After	385 ± 7	384 ± 7	380 ± 2	382 ± 2	380 ± 5	383 ± 7	383 ± 8	381 ± 10	381 ± 7	385 ± 3
B δ¹³C (‰)										
Before	-8.2 ± 0.1	-8.2 ± 0.1	-8.6 ± 0.3	-8.1 ± 0.2	-8.4 ± 0.3	-8.1 ± 0.5	-8.5 ± 0.6	-8.3 ± 1.2	-8.4 ± 1.0	-8.3 ± 1.1
During	-8.6 ± 0.1	-8.6 ± 0.1	-16.7 ± 0.3	-17.5 ± 0.5	-17.8 ± 0.4	-17.0 ± 0.4	-14.6 ± 0.2	-14.9 ± 0.3	-16.0 ± 0.3	-15.1 ± 0.5
After	-8.7 ± 0.2	-8.2 ± 0.2	-8.2 ± 0.1	-8.5 ± 0.3	-8.2 ± 0.5	-8.5 ± 0.4	-8.5 ± 0.5	-8.3 ± 0.4	-8.3 ± 0.8	-8.4 ± 0.2

Table 3 Stem and coarse root CO_2 efflux ($\mu\text{mol m}^{-2} \text{s}^{-1}$) of beech and spruce during the 2.5 weeks of labeling. Data are shown as means \pm SE ($n = 3$ trees). Within one species, lowercase letters denote significant differences among upper and lower stems (^a, ^b) and lower stems and coarse roots (^c, ^d), respectively ($p \leq 0.05$). Asterisks denote significant differences between O_3 regimes ($p \leq 0.05$). Statistical evaluation was performed using the t-test for paired comparisons.

	Beech		Spruce	
	1x O_3	2x O_3	1x O_3	2x O_3
Upper Stem	$14.1 \pm 2.7^{\text{a}}$	$5.5 \pm 1.1^{\text{a}*}$	$12.8 \pm 0.6^{\text{a}}$	$24.6 \pm 1.6^{\text{a}*}$
Lower Stem	$3.8 \pm 1.8^{\text{b}, \text{c}}$	$4.9 \pm 1.9^{\text{a}, \text{c}}$	$11.9 \pm 0.9^{\text{a}, \text{c}}$	$14.7 \pm 4.0^{\text{b}, \text{c}}$
Coarse root	$166.3 \pm 62.0^{\text{d}}$	$272.2 \pm 71.2^{\text{d}}$	$554.6 \pm 94.1^{\text{d}}$	$412.0 \pm 108.3^{\text{d}}$

Table 4 $\delta^{13}\text{C}$ (‰) of sun and shade leaves, phloem sugars, fine roots and soil respired CO_2 of beech and spruce before labeling. Data are shown as means \pm SE ($n = 3$ trees) (\pm SE). Lowercase letters denote significant differences between crown levels and soil depths ($p \leq 0.05$). Statistical evaluation was performed using the t-test for paired comparisons. ¹Data taken from Andersen et al. (2010).

	Beech		Spruce	
	1x O_3	2x O_3	1x O_3	2x O_3
Phloem sugars	-29.1 \pm 0.3	-29.5 \pm 0.3	-27.0 \pm 0.4	-27.5 \pm 0.5
Leaves				
Sun	-28.3 \pm 0.1 ^a	-28.0 \pm 0.3 ^a	-26.4 \pm 0.5 ^a	-27.3 \pm 0.2 ^a
Shade	-31.3 \pm 0.3 ^b	-31.6 \pm 0.3 ^b	-28.6 \pm 0.4 ^b	-29.6 \pm 0.6 ^b
Fine roots ¹	-28.6 \pm 0.2	-28.4 \pm 0.2	-26.4 \pm 0.3	-26.5 \pm 0.2
Soil-respired CO_2 ¹				
at 8 cm depth	-24.4 \pm 0.2	-24.0 \pm 0.6	-23.1 \pm 0.3 ^a	-24.2 \pm 0.5
at 15 cm depth	-24.5 \pm 0.2	-23.8 \pm 0.2	-22.0 \pm 0.4 ^b	-23.3 \pm 0.4

Figure captions

Fig. 1 Ozone concentrations and weather conditions during label exposure. (a) 1x (open circles) and 2xO₃ (closed circles). (b) Daily sums of photosynthetic photon flux density (PPFD) given as means of daylight hours \pm SE (hatched bars), daily means of air temperature (\pm SE, triangles) and sums of rainfall (black bars).

Fig. 2 Course in $\delta^{13}\text{C}_E$ of stems (triangles: upper stem, circles: lower stem) and coarse roots (diamonds) of labeled beech (a, c) and spruce (b, d) under 1x (white) and 2xO₃ (black) (daily means \pm SE, n = 3 trees) during labeling. Consideration was given to the initial difference in $\delta^{13}\text{C}_E$ by using data of day 0 as covariate. Dashed line indicates the initiation of the label application. Significant differences between O₃ regimes and stem positions at $p \leq 0.05$ are indicated by * and \circ , respectively. Marginal significance at $p \leq 0.10$ is denoted by (*). Statistical evaluation was performed using repeated measures analysis of variance.

Fig. 3 Fraction of labeled C in stem CO₂ efflux (triangles: upper stem, circles: lower stem) and coarse root CO₂ efflux (diamonds) of labeled beech (a, c) and spruce (b, d) under 1x (white) and 2xO₃ (black) (daily means \pm SE, n = 3 trees). Dashed line indicates the initiation of the label application. Significant difference between O₃ regimes at $p \leq 0.05$ is denoted by *. Marginal significance at $p \leq 0.10$ is denoted by (*). Statistical evaluation was performed using repeated measures analysis of variance.

Fig. 4 Shift in $\delta^{13}\text{C}$ of canopy air, upper and lower stem CO₂ efflux, soil respired CO₂ at 8 and 15 cm soil depth, phloem sugars, sun and shade leaves as well as fine roots of beech (a-c) and spruce (d-f) after 2.5 weeks of labeling. Data are shown as means (\pm SE) for three labeled trees under 1x and 2xO₃, respectively. In addition, data from one unlabeled control beech and spruce tree are included to confirm no effect of weather conditions on $\delta^{13}\text{C}$ during experimentation. Overall, the t-test for paired comparisons indicated no significant differences in $\delta^{13}\text{C}$ shift between O₃ regimes within CO₂ and solid samples of labeled beech and spruce.