

Interactive
Comment

Interactive comment on “Contrasting biogeochemistry of nitrogen in the Atlantic and Pacific oxygen minimum zones” by E. Ryabenko et al.

E. Ryabenko et al.

eryabenko@ifm-geomar.de

Received and published: 2 November 2011

The second referee was expecting to find information on importance of anammox and anam-mox-denitrification ratios. This study, however, is concentrated on natural abundance of ni-trogen isotopes. Anammox-denitrification ratios cannot be extracted from isotope ratio pro-files as long as we are looking at nitrate and nitrite isotopic signature. Nitrite, produced by nitrate reduction, can be used as a source for anammox as well as for canonical denitrification. Thus no anammox-denitrification ratios can be calculated in this study.

In the surface waters (<20 m depth) south to Cape Verde nitrite concentration was

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Interactive
Comment

below the detection limit of $0.02\mu\text{mol/l}$, thus contamination via nitrite cannot be the reason for low $\delta^{15}\text{N}$ values. Nitrite concentrations $>0.1\mu\text{mol/l}$ was only observed in the Pacific study region. Each sample with low nitrate concentrations was measured at least five times with the standard deviation not exceeding 0.2%.

The $\delta^{15}\text{N-NO}_3^-$ - and $\delta^{15}\text{N-NO}_2^-$ - signals (fig.1) and their differences in the pacific region are indeed complicated (p8007, l.25). The expected difference between the two signals within OMZ lay around 30% due to denitrification and in the oxycline around 13% due to nitrification. With-in OMZ, however, we observe a larger difference between $\delta^{15}\text{N-NO}_3^-$ - and $\delta^{15}\text{N-NO}_2^-$ - signals. We infer in the article that this signal can be produced by nitrite oxidation and Referee#2 was asking if this signal may come from anammox. Yes, nitrite oxidation was observed in previous studies as a side-reaction of anammox (Strous 2006&1998, van de Graaf 1996). However, few weeks ago published article of Kartal et al (2011) discuss the mechanism of anammox, which include a step of nitrite reduction to NO. This process has positive fractionation factor of 5-25% (Casciotti 2009) and would lead also to increase $\delta^{15}\text{N-NO}_2^-$, decreasing the difference between $\delta^{15}\text{N-NO}_2^-$ - and $\delta^{15}\text{N-NO}_3^-$, which was not observed in this study. In the end, the only important factor is the combination of these processes and what “total” fractionation it would lead to.

P 8004, l.11: Water samples for $\delta^{15}\text{N}$ analysis of both nitrite and nitrate was meant. Cd-reduction/azide method does not require separate sampling for nitrite and nitrate $\delta^{15}\text{N}$ analysis (see p8004 l.19).

Further minor comments will be taken into consideration in the revised version and formulations will be changed.

Interactive comment on Biogeosciences Discuss., 8, 8001, 2011.

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

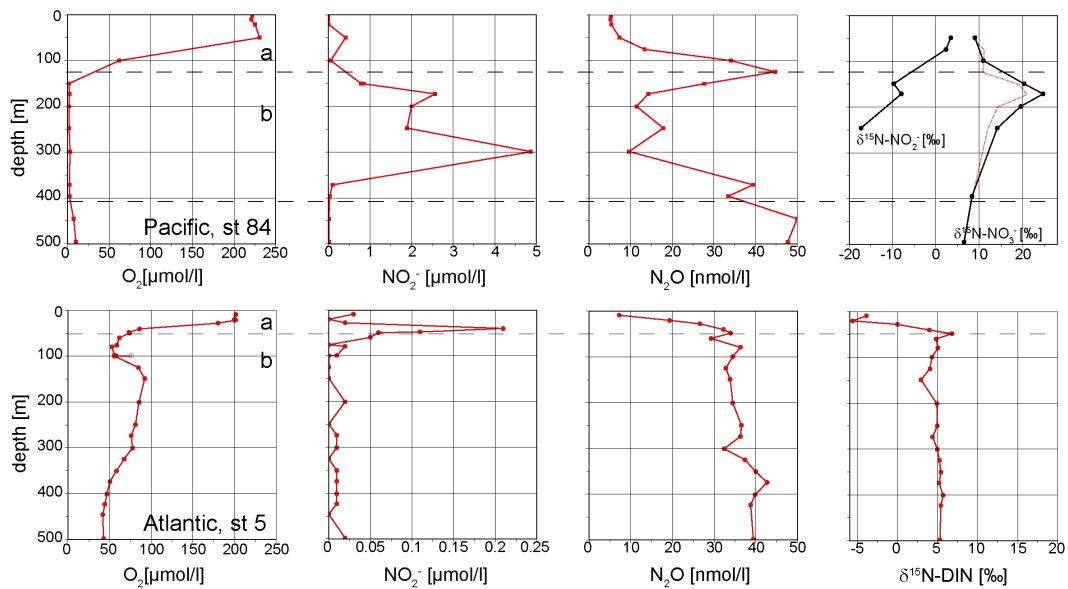

Interactive
Comment

Fig. 1.

C4100

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

