

Interactive
Comment

Interactive comment on “Methanotrophic activity and diversity in different *Sphagnum magellanicum* dominated habitats in the southernmost peat bogs of Patagonia” by N. Kip et al.

N. Kip et al.

h.opdencamp@science.ru.nl

Received and published: 8 December 2011

Rebuttal: Anonymous Referee #1 This is a nice paper that describes methanotroph diversity in Sphagnum dominated peatbogs in Patagonia. This has been achieved by studying 16S rRNA gene sequences and particulate methane monooxygenase sequences using a comprehensive pmoA microarray plus complementary pmoA clone library analysis. The work has been carefully done and the manuscript is clear and concise. The only problem I have with the work is that the authors perhaps play down the potential importance of facultative methanotrophs in this environment. There are

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

now primer sets specific for the facultative methanotroph *Methylocella* and if these have not been used, the possibility of their use in the future could be mentioned. Also, the fact that *mmoX* was not detected is surprising (again there are other *mmoX* primer sets that could be tried, including for *Methylocella*) given the abundance of *Methylosinus* and *Methylocystis*, many of which have a soluble methane monooxygenase. So do some *Methylococcus* and *Methylomonas* species. This is at least worth a comment.

REPLY: Many thanks for the interest in our work. To detect *Methylocella* spp and other methanotrophs, containing the *mmoX* gene, we performed a PCR using five different *mmoX* primer combinations derived from the literature (Miguez et al., 1997; McDonald et al., 1995; Auman et al., 2000) with DNA from the different peat ecosystems and the reference strain *Methylocella palustris* as a template. No PCR product was obtained from the environmental samples. The new primers for real-time quantitative PCR developed by Rahman et al. 2011 were not used, because we preferred more general *mmoX* primers, instead of species specific ones. Indeed besides *Methylocella* we would maybe expect to find *mmoX* genes of *Methylosinus*, *Methylocystis* and *Methylomonas* spp. which were detected with the *pmoA* methods, but it is not sure whether these detected species possess a *mmoX* gene. We already suggest it might be due to the primers that detection failed, but we will include a paragraph dealing with the *mmoX* topic in the Discussion section of the manuscript. Suggested text is as follows:

"No *mmoX* possessing methanotrophs were detected despite using different *mmoX* primer combinations (Miguez et al., 1997; McDonald et al., 1995; Auman et al., 2000). This might indicate a low abundance of *Methylocella* species. However, several *Methylomonas* and *Methylocystis* spp. also posses the *mmoX* gene but remained undetected. This might be caused by a limited detection range for the primers or because the methanotrophs present indeed do not possess a *mmoX* gene. For future studies it could be worthwhile to test the recently described more specific *Methylocella* spp. real time quantitative *mmoX* PCR primers (Rahman et al., 2011)."

BGD

8, C4766–C4768, 2011

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

References:

McDonald et al., 1995 and Rahman et al., 2011 references were added to the list of references.

Interactive comment on Biogeosciences Discuss., 8, 9357, 2011.

BGD

8, C4766–C4768, 2011

Interactive
Comment

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Discussion Paper](#)

