



Interactive  
Comment

## ***Interactive comment on “Spatial variations of nitrogen trace gas emissions from tropical mountain forests in Nyungwe, Rwanda” by N. Gharahi Ghehi et al.***

**S. De Gryze**

sdegryze@gmail.com

Received and published: 19 January 2012

This study addresses an urgent need to understand the conditions under which N<sub>2</sub>O is emitted in African tropical rain forests, as well as reduce the uncertainty around the magnitude of the N<sub>2</sub>O fluxes from African tropical rain forests. It is indicated that the data presented in this study may assist the development of baseline information required for REDD activities. Currently, N<sub>2</sub>O fluxes from tropical forests are largely ignored during the GHG accounting of REDD projects. For the purpose of understanding the impact of including N<sub>2</sub>O in the GHG accounting of REDD projects, it would be very informative to know the change in N<sub>2</sub>O flux if a tropical rain forest is converted into a

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper



likely new land use, such as small-scale agriculture. The paper focuses mostly on soil properties as explaining parameters of N<sub>2</sub>O and NO fluxes. However, to what extent does the fact that the samples were taken from a forest system impact the measured N<sub>2</sub>O emissions. In addition, the experimental design allows to understand the relative impact of different parameters on N<sub>2</sub>O fluxes, but how representative are the absolute emissions from lab incubations to actual emissions in the forest given the seasonal patterns in rainfall, temperature and nutrient availability.

---

Interactive comment on Biogeosciences Discuss., 8, 11631, 2011.

**BGD**

8, C5396–C5397, 2012

---

Interactive  
Comment

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Discussion Paper](#)

