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Abstract. The terrestrial biosphere is currently a strong sink for anthropogenic CO2 emissions.

Through the radiative properties of CO2 the strength of this sink has a direct influence on the ra-

diative budget of the global climate system. The accurate assessment of this sink and its evolution

under a changing climate is, hence, paramount for any efficient management strategies of the terres-

trial carbon sink to avoid dangerous climate change. Unfortunately, simulations of carbon and water5

fluxes with terrestrial biosphere models exhibit large uncertainties. A considerable fraction of this

uncertainty is reflecting uncertainty in the parameter values of the process formulations within the

models.

This paper describes the systematic calibration of the process parameters of a terrestrial biosphere

model against two observational data streams: remotely sensed FAPAR provided by the MERIS sen-10

sor and in situ measurements of atmospheric CO2 provided by the GLOBALVIEW flask sampling

network. We use the Carbon Cycle Data Assimilation System (CCDAS) to systematically calibrate

some 70 parameters of the terrestrial biosphere model BETHY. The simultaneous assimilation of all

observations provides parameter estimates and uncertainty ranges that are consistent with the obser-
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vational information. In a subsequent step these parameter uncertainties are propagated through the15

model to uncertainty ranges for predicted carbon fluxes.

We demonstrate the consistent assimilation at global scale, where the global MERIS FAPAR

product and atmospheric CO2 are used simultaneously. The assimilation improves the match to

independent observations. We quantify how MERIS data improve the accuracy of the current and

future (net and gross) carbon flux estimates (within and beyond the assimilation period).20

We further demonstrate the use of an interactive mission benefit analysis tool built around CCDAS

to support the design of future space missions. We find that, for long-term averages, the benefit of

FAPAR data is most pronounced for hydrological quantities, and moderate for quantities related

to carbon fluxes from ecosystems. The benefit for hydrological quantities is highest for semi-arid

tropical or sub-tropical regions. Length of mission or sensor resolution is of minor importance.25

1 Introduction

The terrestrial biosphere is a significant sink for atmospheric CO2 and thus plays a key role in the

radiative budget of the global climate system (Denman et al., 2007). Prognostic terrestrial vegetation

models are used to simulate the strength and distribution of this sink and its response to climate

change. These prognostic models solve the equations governing the evolution of the carbon, water,30

and energy balance. In their formulation, these equations rely on a set of constants, which we call

process parameters. There is uncertainty in both the correct formulation of the equations and then

the correct values of the process parameters. This uncertainty yields significant uncertainties in the

simulated terrestrial carbon sinks on decadal and longer time scales (Denman et al., 2007). On

shorter time scales parameter uncertainty is reflected in large uncertainties in the hydrological cycle35

on all spatial scales.

The use of observational information is required to reduce this uncertainty. Systematic model

calibration through inversion procedures can infer parameter ranges that are consistent with the

observations and exclude parameter ranges that are inconsistent with observations (Tarantola, 1987).

Remaining inconsistencies can be attributed to weaknesses in the formulation of the model equations40

or errors in the observational data. For such calibration procedures it is desirable to use multiple data

streams and sample at multiple locations and points in time. To assure consistency, it is then essential

to impose all observational constraints simultaneously, an approach we call consistent assimilation.

In a non-linear model, any step-wise inclusion of the observational information typically yields

a suboptimal estimate of final parameter values, i.e. consistency with the observational information45

used in early steps is not assured.
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The first mathematically rigorous calibration of a prognostic terrestrial biosphere model was

performed within the Carbon Cycle Data Assimilation System (CCDAS, http://CCDAS.org) built

around the Biosphere Energy Transfer HYdrology scheme (BETHY, Knorr, 2000; Knorr and

Heimann, 2001). CCDAS estimates the values of BETHY’s process parameters including their un-50

certainty ranges and maps them onto simulated carbon and water fluxes. The system was first used

with 20 yr of atmospheric carbon dioxide observations provided by the GLOBALVIEW flask sam-

pling network (GLOBALVIEW-CO2, 2008). The system evaluated the effect of this observational

constraint on the net and gross fluxes of CO2 over the assimilation period (Rayner et al., 2005), and

also on their predictions from years (Scholze et al., 2007) to decades (Rayner et al., 2011).55

The above studies showed that the flask sampling data can only constrain part of BETHY’s param-

eter space. Fortunately there is an ever-increasing set of observational constraints on the terrestrial

biosphere becoming available. One of the requirements for assimilation of a given data stream is

the capability to simulate (by a so-called observation operator) its counterpart in the model. For

the assimilation of atmospheric carbon dioxide the role of the observation operator was taken by an60

atmospheric transport model (TM2, Heimann, 1995) that was coupled to BETHY.

A further observational constraint on the terrestrial biosphere is provided by “Fraction of Ab-

sorbed Photosynthetically Active Radiation” (FAPAR) (Gobron et al., 2008) products. FAPAR is

an indicator of healthy vegetation, which exhibits a strong contrast in reflectance between the visi-

ble and the near-infrared domains of the solar spectrum (Verstraete et al., 1996). FAPAR products65

can thus be derived from observations provided by space-borne instruments, e.g. by ESA’s Medium

Resolution Imaging Spectrometer (MERIS). The extensions of CCDAS for assimilation of FAPAR

are detailed by Knorr et al. (2010), who also demonstrate the consistent assimilation of FAPAR at

multiple sites. These extensions include modules for simulation of hydrology and leaf phenology

and, as observational operator, a two flux scheme of the radiative balance within the canopy.70

Here we report on the first consistent assimilation of flask samples of atmospheric CO2 and FA-

PAR at global scale, i.e. the simultaneous assimilation of both data streams. To limit the computation

time in development, testing, and debugging, this challenging exploration of uncharted territory was

conducted in BETHY’s fast, coarse spatial resolution.

A further application of advanced assimilation systems that can propagate uncertainties from the75

observations to target quantities of interest is quantitative network design (QND). QND is partic-

ularly appealing because it can evaluate the benefit of hypothetical data streams based on their as-

sumed uncertainty. Kaminski and Rayner (2008) describe the methodological framework and present

a set of examples related to the global carbon cycle. Within CCDAS, the QND concept was applied

to support the design of an active LIDAR mission sampling atmospheric CO2 from space (Kaminski80

et al., 2010). For FAPAR assimilation at site-scale the concept was applied to evaluate the effect of

modifications of sensor characteristics on uncertainties in current and future carbon fluxes (Knorr

et al., 2008). In this paper we describe the development of an interactive mission benefit analysis

3



(MBA) software tool based on the global version of CCDAS. The MBA tool quantifies the benefit of

space missions in terms of their constraint on various carbon and water fluxes, and we demonstrate85

the effect of design aspects such as mission length and sensor resolution.

The remainder of the paper is organised as follows. Section 2 describes first CCDAS (Sect. 2.1)

and then the MBA tool (Sect. 2.2). The observational data are presented in Sect. 3. Next, Sect. 4 de-

scribes the consistent global-scale assimilation of MERIS FAPAR and atmospheric CO2 (Sect. 3.2),

and Sect. 5 presents our simulations for mission design. Finally, we draw conclusions and give90

perspectives in Sect. 6.

2 Methods

2.1 CCDAS

The Carbon Cycle Data Assimilation System (CCDAS) is a variational assimilation system built

around the Biosphere Energy Transfer HYdrology scheme. The system is described in full detail95

elsewhere (Scholze, 2003; Kaminski et al., 2003; Rayner et al., 2005; Scholze et al., 2007; Knorr

et al., 2010).

In brief, BETHY, simulates carbon uptake and plant and soil respiration embedded within a full

energy and water balance and phenology scheme (Knorr, 2000). The model is fully prognostic

and is thus able to predict the future evolution of the terrestrial carbon cycle under a prescribed100

climate scenario. The process formulation distinguishes 13 plant functional types (PFTs) based on

the classification by Wilson and Henderson-Sellers (1985). Each model grid cell can be populated

by up to three different PFTs. Driving data (precipitation, minimum and maximum temperatures,

and incoming solar radiation) were derived from a combination of available monthly gridded and

daily station data (R. Schnur, personal communication, 2008) by a method by Nijssen et al. (2001).105

As mentioned above, assimilation of atmospheric CO2 requires, as an observation operator, an

atmospheric transport model (TM2, Heimann, 1995) coupled to BETHY. CO2 fluxes from processes

not represented in BETHY, i.e. fossil fuel emissions, exchange fluxes with the ocean and emissions

from land use change, were prescribed as in Scholze et al. (2007). The observation operator for

FAPAR calculates the vertical integral of the absorbed photosynthetically active radiation (PAR)110

by healthy green leaves between the canopy top and the canopy bottom, divided by the incoming

radiation. FAPAR thus equals the net PAR flux entering the canopy at the top (incoming minus

outgoing) minus the net PAR flux leaving the canopy at the bottom (outgoing minus incoming, i.e.

reflected from soil background), divided by the incoming PAR flux at the top of the canopy. The PAR

flux is calculated by a two-flux scheme (Sellers, 1985), which takes into account soil reflectance,115

solar angle and incoming amount of diffuse radiation.

Equating satellite and model FAPAR means that given the same illumination conditions, the same

number of photons enter the photosynthetic mechanism of the vegetation, even if some of the as-
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sumptions differ between BETHY and the model used to derive FAPAR (Gobron et al., 2000). It

also means that FAPAR in the model is defined based on the assumption that the canopy consists120

only of photosynthesising plant parts (Pinty et al., 2009), which is consistent with the definition used

for deriving the MERIS FAPAR product. The resultant LAI is one that ensures measured and mod-

elled absorbed PAR are consistent. BETHY also assumes that the conductance of the leave pores,

or “stomata”, for both CO2 and water vapour adapts to the available PAR across the canopy. This

means that shaded sections of the canopy do not only absorb less PAR, they also have a lower leaf125

conductance. This assumption is well supported by the fact both whole-canopy conductance and

FAPAR show a similar saturating behaviour for increasing leaf area index (Schulze et al., 2001). We

therefore assume that adjusting the leaf area index to match measured FAPAR will also improve the

consistency between modelled and actual canopy conductance to water vapour.

Assimilation of FAPAR required the extension of CCDAS by components included in BETHY130

for simulating hydrology and leaf phenology. In the previous CCDAS setup, these components were

used in a preliminary assimilation step that provided input to CCDAS. This extension was necessary

to allow consistent assimilation of FAPAR and atmospheric CO2.

CCDAS implements a probabilistic inversion concept (see Tarantola, 1987) that describes the state

of information on a specific physical quantity by a probability density function (PDF). The prior in-135

formation on the process parameters is quantified by a PDF in parameter space and the observational

information by a PDF in the space of observations. Their respective means are denoted by x0 and d

and their respective covariance matrices by C0 and Cd, where Cd accounts for uncertainties in the

observations as well as uncertainties from errors in simulating their counterpart (model error). If

the prior and observational PDFs were Gaussian and the model linear, the posterior PDF would be140

Gaussian, too, and completely characterised by its mean xpost and covariance matrix Cpost. Further

xpost would be the minimum of the following cost function:

J(x)=
1

2
[(M(x)−d)T C−1d (M(x)−d)+(x−x0)

T C−10 (x−x0)] , (1)

where M(x) denotes the model operated as a mapping of the parameters onto simulated counterparts

of the observations. Further Cpost would be given by:145

C−1post = J′′(xpost) , (2)

where J′′(xpost) denotes the Hessian matrix of J , i.e. the matrix composed of its second partial

derivatives ∂2J
∂xi∂xj

.

Our model is non-linear, and we approximate the posterior PDF by a Gaussian with xpost as the

minimum of Eq. (1) and Cpost from Eq. (2).150

The inverse step is followed by a second step, the estimation of a diagnostic or prognostic target

quantity y. The corresponding PDF is approximated by a Gaussian with mean

y=N(xpost) (3)
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and covariance

Cy =N′(xpost)CpostN′(xpost)
T +Cy,mod , (4)155

where N(x) is the model operated as a mapping of the parameters onto the target quantity. In other

words, the model is expressed as a function of the vector of its parameters x and returns a vector of

quantities of interest, for example the uptake of carbon integrated over a region and time interval.

The linearisation (derivative) of N around xpost is denoted by N′(xpost) and also called Jacobian

matrix. Cy,mod denotes the uncertainty in the simulation of y resulting from errors in N . If the model160

was perfect (a hypothetical case), Cy,mod would be zero, and only the first term would contribute

to Cy . Conversely, if all parameters were known to perfect accuracy (an equally hypothetical case),

Cpost would be zero and only the second term would contribute to Cy .

The minimisation of Eq. (1) and the propagation of uncertainties are implemented in a normalised

parameter space with Gaussian priors. The normalisation is such that parameter values are speci-165

fied in multiples of their standard deviation, i.e. C0 is the identity matrix (for details see Kaminski

et al., 1999; Rayner et al., 2005). In addition, for some bounded parameters a suitable variable

transformation is included.

Technically, the minimisation of J is performed by a powerful iterative gradient algorithm, where,

in each iteration, the gradient of J is used to define a new search direction. The gradient (plus J170

itself) are efficiently evaluated by a single run of the so-called adjoint code of J . The associated

computational cost is independent of the number of parameters and is in the current case comparable

to 3–4 evaluations of J . Likewise J′′(xpost) is evaluated by a single run of the derivative code of

the adjoint code (Hessian code). Here the associated computational cost grows roughly linearly with

the number of parameters (more precisely an affine function of the number of parameters). In the175

present case of 71 parameters the cost is comparable to about 60 evaluations of J . These numbers

are only a rough indication of performance as they vary with platform, compiler, and even compiler

flags. For performance numbers of the previous CCDAS implementation we refer to Kaminski et al.

(2003). All CCDAS derivative code (adjoint, Hessian, Jacobian) is generated from the model code

by the automatic differentiation tool Transformation of Algorithms in Fortran (TAF, Giering and180

Kaminski (1998)). The Hessian code is generated by reapplying TAF to the adjoint code.

2.2 Mission benefit analysis

Our mission benefit analysis is based on the Quantitative Network Design (QND) methodology

presented by Kaminski and Rayner (2008). The approach exploits the fact that the uncertainty prop-

agation from the observations to the parameters (via Eq. 2) and then further to the target quantities185

(Eq. 4) can be performed independently from the parameter estimation. The requirements for the

evaluation of J′′ in Eq. (2) are the data uncertainty (Cd), the capability to simulate (expressed by

M(x)) a counterpart of the data stream via an appropriate observational operator, and a reasonable
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parameter vector. We can then evaluate the benefit of hypothetical or planned observational data

streams on the uncertainty reduction in relevant target quantities.190

A QND system for mission benefit analysis (MBA tool) was built around the extended CCDAS

framework for global scale assimilation described in Sect. 4. The tool can combine prior informa-

tion, flask samples of atmospheric carbon dioxide, and global coverage FAPAR within a single cost

function (see Fig. 1). For the tool, the sensitivity of each data item (each observation of FAPAR or

atmospheric CO2) with respect to the process parameters was precomputed and stored for a run of195

14 yr. These sensitivities are the derivatives of M(x) (see Eq. 1), which are evaluated for the optimal

parameter vector x determined by the assimilation run (see Sect. 4). To approximate the posterior

parameter uncertainty (Eq. 2) resulting from a user-defined data uncertainty (Cd of Eq. 1), requires

just matrix multiplications and a matrix inversion. In this inversion step, the user can choose the

length of the mission. This will determine how many of the 14 yr of data for which sensitivities were200

precomputed are actually used in the assessment. Further, the user can choose to include or exclude

the information from the atmospheric CO2 observations.

Evaluation of Eq. (4) yields posterior uncertainties for any target quantity that can be simulated by

the model. The target quantities offered by the MBA tool are annual mean values of net ecosystem

production (NEP), net primary production (NPP), evapotranspiration, and plant available soil mois-205

ture averaged over five years. Each of these quantities is available for six regions of the globe. The

Jacobian matrix N′ (of Eq. 4) representing the derivative of the target quantities with respect to the

model parameters was also precomputed and stored. For this step, just as for the previous step, the

tool only requires matrix multiplications.

In summary, all steps to assess a mission configuration from the precomputed CCDAS output only210

involve matrix algebra. On a standard notebook these operations take only a few seconds, which en-

ables the tool to run in interactive mode. The options for the configuration comprise the uncertainty

in the FAPAR product, the length of the mission, and whether atmospheric CO2 observations are

included or excluded. Based on the same methodology a similar tool (including a web interface,

see http://imecc.ccdas.org) was set up for the design of networks composed of in situ measurements215

(direct measurements of the biosphere-atmosphere exchange flux as well as flask and continuous

samples of the atmospheric CO2 concentration) of the carbon cycle (Kaminski et al., 2012).

3 Observational data

3.1 MERIS FAPAR

We use FAPAR products derived from the Medium Resolution Imaging Spectrometer (MERIS)220

of the European Space Agency (ESA). We use the Level 3 product for the period June 2002

to September 2003. The data were processed at ESA’s Grid Processing on Demand (GPoD,

http://gpod.eo.esa.int) facility on a global 0.5 degree grid in the form of monthly composites and
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then interpolated to the model’s coarse resolution 10 by 8 degree grid.

We use an uncorrelated data uncertainty of 0.1 for the definition of Cd in Eq. (1) irrespective of225

how many observations where used in the spatial averaging of the FAPAR pixels (Gobron et al.,

2008).

3.2 Atmospheric CO2

We use monthly mean values of atmospheric CO2 concentrations provided by the GLOBALVIEW

flask sampling network (GLOBALVIEW-CO2, 2008). We use data for the period from 1999 to 2004230

at two sites, Mauna Loa (MLO) and South Pole (SPO). We use the time series of residual standard

deviations (RSD) from the compilation to assign a data uncertainty to the observations. We only

use data from years when sufficient measurements are made to assign values without the gap-filling

procedures in the GLOBALVIEW compilation.

4 Assimilation experiments235

The consistent assimilation uses both data streams, the MERIS FAPAR product and the atmospheric

CO2 observations, as simultaneous constraints. Figure 1 displays the flow of information in the

forward sense, i.e. from process parameters to the cost (or misfit) function. As mentioned we use

the computationally fast, 8 by 10 degree resolution with about 170 land grid cells. Our assimilation

interval is the five year period from 1999 to 2004.240

Several approaches to address the problem of bias in the FAPAR data product have been inves-

tigated. For the global-scale assimilation, we resolved to the following solution: we computed the

average FAPAR over three years for each model grid cell and compared this value to the average

observed value. We then multiplied the cover fraction of each PFT within the grid cell concerned

by the ratio averaged observed FAPAR divided by average model FAPAR. If this ratio was above 1,245

which only occurred in very few grid cells, no correction was applied.

In order to investigate the occurrence of multiple minima, we started five minimisations of the

cost function from different starting points including the prior parameter value. Out of these five

minimisations, four find the same minimum. The minimisation starting from the prior parameter

value takes 153 iterations to reduce the cost function J from from 4574 to 2829 and the norm of250

its gradient by more than eight orders of magnitude from 4×103 to 2×10−5. At the minimum

the respective contributions (see Eq. 1) of the prior term, the CO2 observations, and the MERIS

observations to the total cost function J are 124, 61, and 2644.

At both stations, MLO (left hand panel of Fig. 2) and SPO (left hand panel of Fig. 2) the fit to

atmospheric CO2 has improved considerably. The trend and both the amplitude and the phase of255

the seasonal cycle have improved. Figure 3 displays the change in simulated FAPAR through the

assimilation (posterior – prior) for four months of 2003. FAPAR is reduced over the Amazon forest,
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increased over Australia, and exhibits an increased seasonal cycle over East Asia and the North

American high latitudes.

For validation of the calibrated model, i.e. the model with the posterior parameter values, we need260

independent information. This information is provided by flask samples of the atmospheric CO2

concentration at extra sites withheld from our assimilation procedure. Figure 4 displays observed

concentration (black) together with concentrations simulated with prior (blue) and posterior (red)

parameter values for Point Barrow, a marine site in Alaska (left hand panel), and Izaña, a mountain

site on the Canary Islands (right hand panel). We note that the posterior provides a considerably265

better fit than the prior, i.e. the validation confirms that the calibrated model performs better than the

uncalibrated model.

The uncertainty reduction for the parameters is displayed in Fig. 5. Parameters 1 through 71 are

control parameters of BETHY, while Parameter 72 is the initial atmospheric CO2 concentration used

by the transport model. Of the BETHY parameters, numbers 57 to 71 relate to the phenology model,270

which controls leaf area and thus has an immediate impact on simulated FAPAR. While the site-

scale assimilation of Knorr et al. (2010) constrained the parameters outside the phenology model

only marginally, in the current global scale assimilation of FAPAR and atmospheric CO2 ten of

these parameters show an uncertainty reduction of about 20 % or more.

Of more general interest are uncertainty reductions in target quantities such as predicted fluxes,275

because they are less specific to the model used than the process parameters. Here, we select net

ecosystem production and net primary production (NEP and NPP) integrated over the period from

1999 to 2003 and six regions (Fig. 6). For all regions and both target quantities, we find a consid-

erable degree of uncertainty reduction, where fluxes in Australia are somewhat less constrained by

the data than it is the case for the other continents. It is interesting to note that, even though the280

observed atmospheric CO2 is more closely related to the net atmosphere-biosphere flux (NEP) than

to only one component of it (NPP), the impact of the two data sets is to constrain NPP more than

NEP compared to the prior case.

5 Mission benefit analysis

As a first example we analyse the individual information content in our two data streams (Fig. 7).285

We assume a long mission of 14 yr. For simulation of regional NEP (left hand panel) we note that

the FAPAR constraint is marginal, and that most of the uncertainty reduction can be attributed to the

atmospheric CO2 observations. The same holds for NPP (right hand panel).

Interestingly the picture is reversed for hydrological target quantities (Fig. 8), i.e. evapotranspira-

tion (left hand panel) and plant available soil moisture (right hand panel). It appears that FAPAR is290

a powerful constraint for those parameters with a strong effect on hydrological fluxes while atmo-

spheric CO2 is powerful in constraining parameters with a strong effect on the carbon fluxes for the
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case of long-term averages.

Next we investigate why the constraint of FAPAR on carbon fluxes is weak. Mathematically, this

weak constraint is reflected by a sub-space within the overall parameter space that is at the same295

time crucial to simulate long-term carbon fluxes and either not at all or only weakly constrained by

the MERIS FAPAR data (Fig. 7). In the first case the model simulated FAPAR data would have zero

sensitivity to this part of the parameter space, while in the second case the sensitivity would be only

small. There is an important difference between both cases: unlike the zero sensitivity, the weak

sensitivity can be compensated for by a reduced data uncertainty.300

Such a reduced data uncertainty would correspond to a new hypothetical mission concept. We

investigate two hypothetical sensor concepts: the first sensor has higher spatial resolution than the

MERIS sensor and the second is a hypothetical sensor with ideal resolution. We reproduce the char-

acteristics of the sensor with higher resolution by reducing the data uncertainty for FAPAR from 0.1

(corresponding to our data uncertainty for the MERIS sensor, see Sect. 3.1) to 0.05. For the sensor305

with ideal resolution, we use a data uncertainty of 0.001. We stress that this low value is selected

to explore an extreme case, not a case we can hope to achieve in reality. Even if future instruments

might allow considerably higher precision, the theoretical limitations imposed by radiative transfer

through heterogeneous canopy would prevent data uncertainties as low as this.

Figure 9 shows the reduction in parameter uncertainty for the MERIS sensor and both hypothet-310

ical mission concepts. We see that while for some parameters the uncertainty reduction improves

with sensor resolution, a large fraction of the parameters remains unobserved. Figure 10 shows the

corresponding uncertainty reductions in annual NEP and NEP averaged over the mission period of

14 yr (note change of scale on y-axis). Indeed the uncertainty reduction improves only marginally

with sensor resolution, i.e. the unobserved parameters are important for constraining these carbon315

fluxes.

We further studied the effect of mission length. Figure 11 indicates that for the hydrological

target quantities the gain in uncertainty reduction through a mission length extension from 3 to

14 yr is hardly larger than 10 percentage points. Underlying this result is a similar mechanism as in

the enhanced resolution experiment. Extending the mission length does improve the constraint on320

those parameters that influence FAPAR but it cannot reduce uncertainties of parameters that don’t

influence FAPAR. The residual uncertainty in the hydrological target quantities can be attributed to

uncertainty in these unobserved parameters.

6 Conclusions and perspectives

The study demonstrates the potential of consistent assimilation of multiple data streams, i.e. as a si-325

multaneous constraint on the process parameters of a terrestrial biosphere model. This is the first

study to combine in a mathematically rigorous framework observed FAPAR and atmospheric CO2.
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The most important result of this study is that the MERIS-derived FAPAR product can be used

to constrain quantities of the global water cycle. In more general terms, FAPAR can be highly

valuable and beneficial for local to global scale ecosystem, hydrology and carbon cycle modelling330

when applied within a data assimilation framework. This includes prognostic studies, where data

from climate simulations are used and predictions are made beyond the period of observations.

Validation of the calibrated model resulting from the assimilation against independent observations

shows a clear performance improvement.

The systematic application of the mathematically rigorous uncertainty propagation capability im-335

plemented by CCDAS allows to support the design of space missions with maximised benefit ex-

pressed in terms of uncertainties of inferred carbon or water fluxes. The study has developed an

interactive mission benefit analysis (MBA) tool that allows instantaneous evaluation of a range of

potential mission designs. Applying the MBA tool, the study showed that the benefit of FAPAR

data is most pronounced for hydrological quantities, and moderate for quantities related to carbon340

fluxes from ecosystems. In semi-arid regions, where vegetation is strongly water limited, the con-

straint delivered by FAPAR for hydrological quantities was especially large, as documented by the

results for Africa and Australia. Sensor resolution is less critical for successful model calibration,

and with even relatively short time series of only a few years, significant uncertainty reduction can

be achieved. The enhanced constraint through a higher resolution or an extended mission length can345

only achieve an extra uncertainty reduction in the part of the parameter space that impacts FAPAR.

The residual uncertainty in the hydrological or carbon fluxes reflects uncertainty in the unobserved

parameters. The unobserved part of the parameter space can only be illuminated by a complementary

type of observation. Obviously the parameter space will differ between models and even between

setups of the same model. Also the link between the parameters and a specific data stream obviously350

depends on details of the process formulation. The mechanism that creates residual uncertainty from

parameters not observed by a given observational network is, however, general.

We also note that the approach used here to constrain process parameters of a global model can

be considered an automated procedure for scientific investigation of the processes the parameters

represent. We further note that the approach of multi-data stream assimilation presented here could355

easily be extended to include more than one data stream from remotely sensed products. Obvi-

ous candidates are land surface temperature from the Advanced Along-Track Scanning Radiometer

(AATSR), surface soil moisture from the Soil Moisture and Ocean Salinity (SMOS) mission, and

possibly column-integrated CO2 observations. This would allow a rigorous assessment of the con-

sistency of multiple data streams (as done here for FAPAR and atmospheric CO2). Use of SMOS is360

particularly interesting, as it would allow comparing the benefits of SMOS soil moisture data to the

already considerable benefit of FAPAR for hydrological quantities.

The complementary nature of existing and potential future data streams could be explored by an

extension of the MBA tool. A prominent candidate observation would be a column-integrated CO2
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product. The MBA tool could be extended such that observational data uncertainty and sampling365

strategy for the mission are assessed in terms of the uncertainty reduction in the tool’s target quan-

tities, i.e. terrestrial carbon fluxes but also hydrological quantities. The tool’s concept is, however,

general and thus also applicable to other sensor types, such as RADAR (e.g. BIOMASS, SMOS, or

the Advanced Orbiting Satellite, ALOS) or LIDAR (e.g. the Geoscience Laser Altimeter System,

GLAS, on ICEsat), individually or combined.370

While the study emphasised improvement of process parameters, the highly flexible structure of

the variational approach allows, as a slight modification of the existing CCDAS framework, to devise

a soil moisture monitoring system that adjusts state variables through time such as soil moisture

instead of static parameters. If input data for the ecosystem model can be derived from near-real

time sources such as weather forecasting analyses or satellite data, this could result in an effective375

operational monitoring system for soil moisture.
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Fig. 1. Flow of information for evaluation of the cost function. J is the sum of the cost function contributions

from the individual information items. Ovals denote data and rectangular boxes denote processing (i.e. code

modules).
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Fig. 2. Atmospheric CO2 at Mauna Loa (left hand panel) and South Pole (right hand panel) in ppm: Observa-

tions (black), prior (blue), and posterior (red).
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Fig. 3. Posterior-prior FAPAR for 4 months in 2003: January (upper left panel), April (upper right panel), July

(lower left panel), and October (lower right panel).

17



1999 2000 2001 2002 2003 2004
Year

350

360

370

380

390

C
O

2 
[p

pm
]

1999 2000 2001 2002 2003 2004
Year

350

360

370

380

390

C
O

2 
[p

pm
]

Fig. 4. Atmospheric CO2 at Point Barrow (left hand panel) and Izaña (right hand panel) in ppm: observations

(black), prior (blue), and posterior (red).
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Fig. 5. Uncertainty reduction in process parameters.
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Fig. 6. Uncertainty reduction in simulated NEP (left hand panel) and NPP (right hand panel) over six regions.
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Fig. 7. Reduction in uncertainty in NEP (left hand panel) and NPP (right hand panel) over six regions from

MERIS sensor for a 14-yr mission. For assimilation of CO2 (red) and FAPAR (brown) separately and jointly

(green).
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Fig. 8. Reduction in uncertainty in evapotranspiration (left hand panel) and plant available soil moisture (right

hand panel) over six regions from MERIS sensor for a 14-yr mission. For assimilation of CO2 (red) and FAPAR

(brown) separately and jointly (green).
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Fig. 9. Reduction in parameter uncertainty for a 14-yr mission for FAPAR data from the MERIS sensor (left hand panel) a hypothetical

higher resolution sensor (middle panel) and from a hypothetical ideal resolution sensor (right hand panel).
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Fig. 10. Reduction in uncertainty in NEP (left hand panel) and NPP (right hand panel) over six regions from

three sensor concepts: the MERIS sensor (green), the higher resolution sensor (brown), and the ideal resolution

sensor (red).
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Fig. 11. Reduction in uncertainty in evapotranspiration (left hand panel) and plant available soil moisture (right

hand panel) over six regions from MERIS sensor for a mission length of 3 yr (green), 5 yr (brown) and 14 yr

(red).
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