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Abstract

Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial
ecosystems and the atmosphere, and they play a significant role in the global cycles of
carbon, nitrogen and water. Remote sensing data from satellites can be used to esti-
mate leaf area index (LAI), leaf chlorophyll (CHLl) and leaf nitrogen density (Nl). How-5

ever, methods are often developed using plot scale data and not verified over extended
regions that represent a variety of soil spectral properties and canopy structures. In
this paper, field measurements and high spatial resolution (10–20 m) remote sensing
images acquired from the HRG and HRVIR sensors aboard the SPOT satellites were
used to assess the predictability of LAI, CHLl and Nl. Five spectral vegetation indices10

(SVIs) were used (the Normalized Difference Vegetation index, the Simple Ratio, the
Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and
the green Chlorophyll Index) together with the image-based inverse canopy radiative
transfer modelling system, REGFLEC (REGularized canopy reFLECtance). While the
SVIs require field data for empirical model building, REGFLEC can be applied without15

calibration. Field data measured in 93 fields within crop- and grasslands of five Euro-
pean landscapes showed strong vertical CHLl gradient profiles in 20 % of fields. This
affected the predictability of SVIs and REGFLEC. However, selecting only homoge-
neous canopies with uniform CHLl distributions as reference data for statistical evalu-
ation, significant (p < 0.05) predictions were achieved for all landscapes, by all meth-20

ods. The best performance was achieved by REGFLEC for LAI (r2 = 0.7; rmse=0.73),
canopy chlorophyll content (r2 = 0.51; rmse=439 mg m−2) and canopy nitrogen con-
tent (r2 = 0.53; rmse=2.21 g m−2). Predictabilities of SVIs and REGFLEC simulations
generally improved when constrained to single land use categories (wheat, maize, bar-
ley, grass) across the European landscapes, reflecting sensitivity to canopy structures.25

Predictability further improved when constrained to local (10×10 km2) landscapes,
thereby reflecting sensitivity to local environmental conditions. All methods showed
different predictabilities for land use categories and landscapes. Combining the best
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methods, LAI, canopy chlorophyll content (CHLc) and canopy nitrogen content (Nc) for
the five landscapes could be predicted with improved accuracy (LAI rmse=0.59; CHLc

rmse=346 g m−2; Nc rmse=1.49 g m−2). Remote sensing-based results showed that
the vegetation nitrogen pools of the five agricultural landscapes varied from 0.6 to
4.0 tkm−2. Differences in nitrogen pools were attributed to seasonal variations, extents5

of agricultural area, species variations, and spatial variations in nutrient availability. In-
formation on Nl and total Nc pools within the landscapes is important for the spatial
evaluation of nitrogen and carbon cycling processes. The upcoming Sentinel-2 satel-
lite mission will provide new multiple narrow-band data opportunities at high spatio-
temporal resolution which are expected to further improve remote sensing predictabili-10

ties of LAI, CHLl and Nl.

1 Introduction

Nutrient availability is highly variable and related to land use, farming systems, soil type
and topography (Duretz et al., 2011) as well as the atmospheric deposition of ammonia
and nitrogen oxides (Churkina et al., 2010). Despite a nitrogen-use surplus in European15

croplands (Eurostat, 2012) which is one of the main causes for European agriculture to
be a net source of greenhouse gases (Ciais et al., 2010), water and nutrient resource
availability is responsible for large inter-plant-species spatial variation in photosynthetic
capacity and carbon exchange rates (Moors et al., 2010). This causes the carbon bal-
ance of fields to vary between being a source or a sink (Ciais et al., 2010). Remote20

sensing-based spectral vegetation indices (SVIs) calculated from broadband satellite
sensors have been used to represent the resource constrained Leaf Area Index (LAI)
and light absorption for photosynthesis modelling (Field et al., 1995; Zhao, M. S. et al.,
2005). However, the maximum light-use efficiencies as well as the maximum Rubisco
capacities, which are catalyzing the CO2 fixation, can vary by a factor of 2 for European25

crops (Chen et al., 2011; Moors et al., 2010). Because the bulk of leaf nitrogen is asso-
ciated with Rubisco, leaf nitrogen is considered a critical determinant of the maximum
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Rubisco capacity in photosynthesis modeling (e.g. Farquhar et al., 1980; dePury and
Farquhar, 1997; Boegh et al., 2002; Kattge et al., 2009), and it also plays an important
role for the NH3 exchange between vegetation and the atmosphere (Mattson et al.,
2009; Massad et al., 2010), which is an important component of the nitrogen (N) cycle
and closely coupled to the carbon cycle. Due to the characteristic spectral signature of5

leaf pigments and their N contents, remote sensing of leaf chlorophyll (CHLl) and leaf
nitrogen (Nl) is feasible (e.g. Blackburn, 1998; Broge and LeBlanc, 2000; Boegh et al.,
2002; Hansen and Schjoerring, 2002; Sims and Gamon, 2002; Gitelson et al., 2005;
Zhao, D. L. et al., 2005; Houborg and Boegh, 2008; Houborg et al., 2009; Dash et al.,
2010; Main et al., 2011; Peng and Gitelson, 2012), and it has been found that such10

products can be used as measures of the light-use-efficiency (Houborg et al., 2011;
Peng and Gitelson, 2012) and the maximum Rubisco capacity (Boegh et al., 2002) in
photosynthesis modeling.

Most remote sensing-based methods for estimating CHLl and Nl were developed for
single species using leaf-scale data to develop SVIs that are closely correlated with15

CHLl and Nl (e.g. Sims and Gamon, 2002; Zhao, D. L. et al., 2005; Main et al., 2011).
As for CHLl, remote sensing of Nl performs best in the visible spectral bands. Its es-
timation can be indirect due to Nl association with CHLl (Yoder and Pettigrew-Crosby,
1995), however nitrogen is also included in other pigments such as carotenoids and an-
thocyanin which have different spectral signatures than CHLl (Sims and Gamon, 2002).20

In the absence of nitrogen plants degrade their chlorophyll molecules and CHLl is deter-
mined by the availability of Nl (Filella et al., 1995), thereby causing a close relationship
between CHLl and Nl measurements (e.g. Boegh et al., 2002; Zhao, D. L. et al., 2005).
Physiological investment of nitrogen in light-harvesting chlorophyll and Rubisco aims
to maximize photosynthesis, and the nitrogen partitioning of leaves between CHLl and25

Rubisco is therefore light-dependent and varies with plant growth form and between
species (e.g. Hallik et al., 2012). For instance, leaves grown at high light intensity tend
to allocate more nitrogen to Rubisco, therefore increasing the photosynthetic capacity
per leaf area, whereas shade-tolerant species tend to have higher CHLl-Nl ratios.
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Photosynthesis optimization theory suggests that plants will distribute their nitrogen
resources in proportion to the light gradient within the canopy (e.g. dePury and Far-
quhar, 1997). This complicates the evaluation of remote sensing-based canopy CHLl
and Nl estimation methodologies because ground truth measurements are based on
leaf scale data. Some remote sensing studies measure CHLl of the upper leaf, which5

is then multiplied by the green LAI to represent canopy chlorophyll (CHLc) content (e.g.
Gitelson et al., 2005; Atzberger et al., 2010). Other studies use random sampling (e.g.
Darvishzadeh et al., 2008; Dash et al., 2010) or integrate over the canopy height (e.g.
Broge and LeBlanc, 2000). Measuring conditions at canopy and regional scales are
further complicated by variations in soil background reflectance and canopy structures10

of the different land cover types, and it is often found that different SVIs have different
capabilities for estimating LAI, CHLl and Nl (e.g. Broge and Leblanc, 2000). Mismatch
in the spatial resolution of ground truth field data and satellite based SVIs over ex-
tended regions also challenges the evaluation of SVIs (Garrigues et al., 2008; Dash
et al., 2010), and many studies have used leaf and canopy radiative transfer models15

(CRTMs) to study the sensitivity of SVIs when exposed to different external factors at
canopy scale (e.g. Carlson and Ripley, 1997; Broge and LeBlanc, 2000; Haboudane
et al., 2004). CRTMs are physically-based models that consider soil and leaf properties,
stand geometry and clumping for modeling spectral surface reflectance, however the
canopy is typically assumed to consist of a homogeneous layer of vegetation, allthough20

a 2-layer version of the CRTM model, SAIL has been developed (Verhoef and Bach,
2012). Furthermore, very few studies report on the vertical detection footprint of remote
sensors (Winterhalter et al., 2012). It is well-known that dense canopies effectively ab-
sorb red light, which leads to diminishing reflectance and saturation effect in the red
chlorophyll peak absorption band, and that most SVIs saturate at high LAI values (e.g.25

Yoder and Waring, 1994; Huete, 1988). A recent experiment aimed at detecting the
vertical footprint of a red edge SVI to provide information on Nl in a maize canopy
showed, however, that the remote sensor was able to detect Nl down to the lowest
levels (Winterhalter et al., 2012).
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Despite incomplete representation of within-canopy CHLl and Nl profiles in many re-
mote sensing data and model studies, the sensitivity of canopy reflectance to soil back-
ground reflectance and canopy geometry has been clearly demonstrated and points
to the need for land cover-specific conversions to estimate LAI from SVIs (Knyazikhin
et al., 1998). Furthermore, the incorporation of local soil parameters, describing the lin-5

ear relationship between red and nearinfrared (NIR) reflectance of bare soils, improve
the estimation of canopy “green-ness” (related to the product of LAI and CHLl) from
SVIs (Broge and Leblanc, 2000). Since the empirical “soil-line” parameters depend on
both the spectral characteristics of the background and canopy density and geometry,
which vary for different soil types and land use classes within landscapes, general-10

ized soil adjusted SVIs have been developed (Huete, 1988; Huete et al., 2002) which
show improved relationships with LAI (e.g. Boegh et al., 2002; Houborg and Soegaard,
2004; Huete et al., 2006). However, because SVIs require empirical calibration to as-
sess LAI, CHLl and Nl, such calibration may not be transferable to other canopies due
to variations in soil background and canopy structure. Therefore, methods have been15

developed to use physically based CRTMs for inverse model estimation of LAI and
CHLl (e.g. Jacquemoud et al., 2000; Darvishzadeh et al., 2008; Houborg et al., 2009;
Atzberger and Richter, 2012). The use of CRTMs is attractive because they are able to
represent canopy geometry and the various radiometric properties of leaves and soils,
and therefore, they do not require calibration. However, CRTMs require many soil and20

vegetation-specific model parameters, which may be unknown. Due to the number of
unknown variables exceeding the number of radiometric variables in the input data,
and because different parameter combinations can yield similar spectral reflectance
simulations, the model inversion process is mathematically ill-founded (Combal et al.,
2002). A priori information about model parameters or the use of additional input data25

types (hyperspectral or multi-angular data) can be used to constrain the model inver-
sion, however such information may not be available at large spatial scales, and the use
of additional radiometric input data can be redundant. Utilization of spatial information
content within remote sensing images can be an attractive solution (e.g. Houborg and
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Anderson, 2009; Atzberger and Richter, 2012). Houborg et al. (2007) developed an
image-based method for LAI and CHLl mapping which included automatic parame-
terization of a combined leaf optics-CRTM model (PROSPECT-ACRM). The method
identifies bare soil and dense vegetation fields, and the spectral signatures of these
fields are then used to constrain the model inversion for class-specific parameteriza-5

tion. Very good results were obtained for LAI (rmse=0.4–0.7) and CHLl (rmse=5–
9 µgcm−2) when applied at a regional scale (Houborg et al., 2007; Houborg and Boegh,
2008; Houborg and Anderson, 2009), and even better results were achieved when ap-
plied to field scale image data with 1 m spatial resolution (rmse=0.25 for LAI and
4.4 µgcm−2 for CHLl) due to the efficient model parameterization scheme (Houborg10

et al., 2009). The method has been developed into a userfriendly tool, REGFLEC
(REGularized canopy reFLECtance), which combines atmospheric and canopy radia-
tive transfer modeling to estimate LAI and CHLl directly from at-satellite radiance data
(Houborg and Anderson, 2009).

1.1 Objectives15

The purpose of this paper is to assess the utility of different remote sensing-based
methods for regional mapping of CHLl, Nl and LAI in crop- and grasslands. For this
purpose, five SVIs and the REGFLEC model were applied to high spatial resolution
(10–20 m) multispectral SPOT satellite images (Astrium, 2012) of five landscapes stud-
ied in the EU project NitroEurope (Sutton et al., 2007; Cellier et al., 2011) located in20

Denmark, Scotland (UK), Poland, The Netherlands and Italy. Field measurements of
LAI, CHLl and Nl were collected for crop- and grasslands in each landscape, and spa-
tial variations in vegetation N pools were quantified using field data and the high spatial
resolution SPOT satellite images of the landscapes. The overall aims were (1) to as-
sess the capability of the selected remote sensing methods to quantify LAI, CHLl and25

Nl over a large range of environmental conditions in Europe, and (2) to assess the dis-
tribution and size of vegetation N pools in the five European agricultural landscapes.
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Such information would be valuable to quantify resource availability for photosynthesis
modeling and nitrogen budget assessment.

2 Landscape sites

In 2006, arable land for crop production covered 25 % of the European land area,
and grassland pastures cover an additional 17 %, which add up to a total European5

agricultural land area of 2 286 931 km2 (EEA/ETC-LUSI, 2010). The five study areas
each represent an area of 10×10 km2 and are centered on the NitroEurope land-
scapes. They are geographically located across a European South-North gradient,
ranging from 40◦30′ N to 56◦20′ N and an West-East gradient from 3◦14′ W to 16◦46′ E
(Fig. 1), thereby representing 3 European climate zones: temperate/humid continental10

(Denmark and Poland), temperate oceanic (The Netherlands and the UK), and warm
Mediterranean (Italy) (Peel et al., 2007). The climate zones reflect the agricultural land
use patterns of the selected landscape sites, which are dominated by grassland in The
Netherlands (NL) and Scotland (UK), grain crops, maize and potatoes in Denmark (DK)
and Poland (PL), and maize, vegetables and fruit production in Italy (IT).15

At the UK site, agricultural land use comprises upland pasture (38 %) and crop fields
(10 %) which are intermixed with peat bogs (38 %), semi-natural grassland, heathland
and moorland (22 %) and some woodland (14 %). Agricultural production is dominated
by sheep, beef and poultry systems, although the latter does not contribute substan-
tially to agricultural land use and cropping patterns in the landscape, being dependent20

on feeds brought in from outside the area. The landscape is located in an upland area
(280 m a.s.l.), and the prevailing soil types are Dystric Cambisols, Dystric Histosols and
Dystric Gleysols (ESDB, 2010), which are indicative of acidic soils.

The Dutch lowland site (NL) is located just 2 m a.s.l. and dominated by cultivated
grassland and pasture (79 %). Only a few crop fields (maize) were observed. There is25

no woodland in the study area, but many tree belts. Urban/suburban land use covers
17 %, and 4 % of the area is taken up by water bodies and inland marshes. In this
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region, Gleyic Podzol is the dominant soil type (ESDB, 2010), indicating intermittent
water logging.

At the DK site, land use is dominated by croplands (70 %) intermixed with woodland
(21 %) and urban/suburban areas (6 %). The dominant crop type in this region is wheat,
but winter oilseed rape, barley and maize are also common. The area is a lowland area5

(60 m a.s.l.), with fertile soils composed by Haplic Podzols and Gleyic Luvisols (ESDB,
2010).

At the Polish site, 76 % of the land area is cultivated by crops, 8 % by grassland,
and woodland covers 13 % of the study landscape. Crop fields are generally very small
and managed as small family farms, but large fields are observed in the few but large10

former cooperative farms. The area is located 80 m a.s.l., and soils are classified as
Gleyic Luvisols and Gleyic Fluvisols (ESDB, 2010), indicating exposure to intermittent
waterlogging.

At the Italian site, agricultural production is dominated by horticulture and dairy buf-
falo farming. Approximately 90 % of the area is used for cultivation, with 12 % having15

a complex cultivation pattern. Cultivated areas include vineyards, fruit trees, maize
and vegetables. Vegetable fields are row-cropped with up to 1–2 m between rows, and
many plastic greenhouses and bare soil fields were observed in the area during the
July measurement campaign. The area is located 15 m a.s.l., and the dominant soil
type is Eutric Cambisol (ESDB, 2010).20

3 Materials and methods

3.1 Satellite data

Multi-spectral high spatial resolution satellite image data representing radiance in the
green (0.5–0.59 µm), red (0.61–0.68 µm) and NIR (0.79–0.89 µm) spectra, as mea-
sured by the HRG and HRVIR sensors aboard the SPOT-4 and SPOT-5 satellites were25

acquired within the NitroEurope project and used in this study (Table 1). One satellite
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image is available for each landscape for the period 31 May to 21 July 2008, and one
additional satellite image is available for the DK site during an intensive measurement
campaign for 19 April 2009. Image data are available at a 10 m spatial resolution for
most sites, except for UK and the Danish site in 2008 (DK08), where images are avail-
able with 20 m resolution. All satellite images were atmospherically corrected using5

data on aerosol optical depth, ozone and atmospheric precipitable water content from
the MODIS and AIRS/AMSU sensors aboard the Terra (EOS AM) and Aqua (EOS
PM) satellites. Atmospheric data were acquired as close as possible in time to the
acquisition of the SPOT data (Table 1). Surface reflectance is calculated consider-
ing directional multiple scattering using the 6SV1 atmospheric radiative transfer model10

(Kotchenova et al., 2006), which is included in the REGFLEC tool.

3.2 Field data

In each study landscape, field measurements of LAI and SPAD meter indices (related
to CHLl and Nl) or Nl were made in 7–22 fields over 1–2 days within 4–10 days of
the relevant satellite image acquisitions, to provide field reference data for evaluating15

the remote sensing-based SVIs and REGFLEC simulations. Field measurements were
conducted in a total of 93 homogeneous field plots (Table 2) within the five landscapes,
with each field plot being geographically referenced with an accuracy of 0.5 m using
GPS (Trimble Geo XT, Trimble, USA). Plots were generally located in different fields,
however at the Italian site, five plots were located within a large experimental maize20

field exposed to different stress treatments. Each field plot is represented by two sub-
areas of 3×3 m2 located within a 10×10 m2 region of the field.

3.2.1 LAI

LAI was measured with the LAI-2000 instrument (LAI-2000, LiCor, USA) which uses
canopy transmission data measured along a transect. Replicate LAI estimation was25

made in two neighbouring plots, with each LAI estimate being based on 4 light
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transmission measurements along a 3 m transect. If the LAI estimates of the 2 tran-
sects varied, a third transect was included. In most cases, LAI variation was very low,
but in a few cases at the grassland sites in NL, up to 4 transects were included due
to spatial variability. In these fields, the average LAI is used to represent the field plot.
In the UK landscape, LAI was estimated using light transmission measurements along5

a 10 m transect.

3.2.2 Chlorophyll and nitrogen

At the UK site, plant sampling was undertaken in the middle 2 m of the 10 m transect
within a 50 cm×50 cm square. Both green leaves and full plants were sampled. For
each, total C and N analysis was carried out after weighing and drying, and vegeta-10

tion N and dry biomass were measured. For conversion to area-based Nl of the natural
grasses, a leaf specific weight of 40 g m−2 was used. In the four other landscapes, non-
destructive measurements of CHLl and Nl were made using hand-held non-destructive
SPAD meter measurements. The SPAD meter (SPAD 502-DL, Minolta, USA) emits and
measures leaf transmittance in the red (0.6–0.7 µm) and NIR (0.86–1.06 µm) spectra15

and provides a ratio that is closely correlated with CHLl and Nl. In order to convert the
SPAD index to CHLl and Nl contents, calibration was conducted on sampled leaves
for maize, wheat, barley, oilseed rape, grasses, tomatoes, artichokes and alfalfa. For
SPAD meter calibration of tomatoes, artichokes and alfalfa, 10–15 SPAD indices were
measured for leaves of different “green-ness”, with the samples subsequently analysed20

in the laboratory for CHLl and Nl. For SPAD meter calibration of wheat, barley, grass,
maize and oilseed rape, SPAD indices were thoroughly measured in the laboratory
and leaves cut into small (1–2 cm) pieces for similar SPAD values. Leaf pieces were
divided into pools of similar SPAD index ranges (i.e. 6–10, 11–15, . . . , 66–70), and
each pool was further split into two samples for CHLl and Nl estimation, respectively.25

The samples for CHLl analysis were kept frozen until analysis, while the samples for
Nl estimation were oven dried at 80◦ for 24 h. Chlorophyll (a+b) content was extracted
using ethanol, and extinction coefficients published by Porra et al. (1989) were used for
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the calculation of chlorophyll concentrations. Nitrogen was estimated using a CHNS-O
Elemental Analyzer (CE Instruments, UK). Leaf areas were measured using a scanner
(EPSON Expression 1680 Professional, Seiko Epson Corporation, US), and specific
weights estimated for the same leaf samples were used to convert the mass-based
chlorophyll and leaf N concentrations to leaf area based CHLl and Nl. CHLl was found5

to be exponentially related to SPAD values (r2 = 0.73–0.93), as also shown in other
studies, while Nl was linearly related to the SPAD indices (r2 = 0.62–0.89). Due to the
close similarity of SPAD-CHLl calibration curves for all vegetation types (Fig. 2a), it
was decided to use one single calibration curve for all crops. The resulting calibration
curve fit all data quite well (r2 = 0.87), including the few data that were available for10

artichokes, tomatoes and alfalfa. Excellent agreement was also found when comparing
the calibration curve established for this study with that of the same SPAD meter in an
independent study (Houborg and Boegh, 2008). This strongly indicates that one sin-
gle SPAD-CHLl calibration curve can be used for area-based estimation of chlorophyll
over a large range of crop types, even when being at different development stages. It15

should be noted, however, that the range of leaf specific weights in this study is quite
narrow (52–58 g m−2). For Nl, species-specific calibration curves are needed (Fig. 2b).
Combining the SPAD-CHLl and SPAD-Nl calibration curves, the species-specific nitro-
gen partitioning is clearly illustrated (Fig. 2c). The CHLl-Nl relationships (Fig. 2c) were
used to convert REGFLEC CHLl simulations to Nl.20

In each field plot, 30–70 SPAD meter measurements were conducted depending on
the variability of the data. In order to assess the possible impact of vertical CHLl vari-
ability on the total chlorophyll content of the canopy (CHLc), measurements were con-
ducted on green leaves at 5 heights in the canopy (this was not always possible for
the NL grass fields, due to low canopy heights and narrow leaves). At each level, two25

measurements were conducted on the same leaf to identify deviating data caused by
erroneous data resulting from measurement on veins or, for small grass leaves, insuf-
ficient leaf cover of the sensor. If one of the paired measurements approached zero,
and the other did not, the lower measurement was discarded. Post-processing further
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included a power analysis to test the adequacy of sample sizes to represent the mean
SPAD index values of the canopies, i.e.

n = ((tασ)/(eµ))2 (1)

where n is the required number of measurements to achieve 95 % confidence for the
mean SPAD index, tα is the Student value (p < 0.05), σ is the sample standard devia-5

tion, µ is sample mean, and e is the accepted relative error. In total, SPAD meter data
were measured in 91 field plots, of which 83 samples satisfied the 10 % error margin,
and 54 samples had less than 5 % error. Eight samples with error levels exceeding 10 %
were discarded from further analysis. Most (five) of the discarded samples represent
grasslands at the NL site. Power analysis was also applied independently to SPAD me-10

ter data measured at the three upper measurement levels (ie at relative canopy heights
of 0.6, 0.8 and 1.0), and resulted in rejection of the same eight samples.

3.3 Spectral vegetation indices

Five different SVIs were calculated from each of the six satellite images. The Simplified
Ratio (SR) and the Normalized Difference Vegetation index (NDVI) were the earliest15

SVIs to be developed, and are frequently used indices. They are calculated as:

SR = ρNIR/ρred (2)

NDVI = (ρNIR −ρred)/(ρNIR +ρred) (3)

where ρ is spectral surface reflectance. Despite inherent normalization of NDVI to re-20

duce soil background and atmospheric sensitivity of SR, the NDVI remains sensitive to
soil reflectance. A Soil-Adjusted Vegetation Index (SAVI) was developed, which uses
a soil-adjustment factor to shift the origin of the NIR-red spectral space and accounts
for first-order soil-vegetation interactions and differential NIR and red radiative transfer
through a canopy (Huete, 1988). The Enhanced Vegetation Index (EVI) is derived from25

SAVI and includes a blue spectral band to reduce sensitivity to atmospheric aerosol
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contents (Huete et al., 2002). EVI was found to have a good correlation with LAI of
agricultural fields (Boegh et al., 2002). Both the NDVI and the EVI are available from
the MODIS satellite sensors as global 8-day products at a 1 km resolution. Because
many satellites, including the SPOT satellites, do not measure radiance in the blue
band, a 2-band EVI index (EVI2, Jiang et al., 2008) was developed, which is closely5

related to EVI. The EVI2 is calculated as:

EVI2 = 2(ρNIR −ρred)/(ρNIR +ρred +1) (4)

Since the strong absorption of red light by the bulk chlorophyll content of dense
canopies can cause data saturation in the peak (red) absorption band of chlorophyll,
the far-red or green reflectance was found to be more sensitive to canopy scale chloro-10

phyll variations than ρred (Yoder and Waring, 1994; Gitelson et al., 1996). This led to
the proposal of a Green NDVI which uses a green reflectance (ρgreen) instead of ρred
and was closely related to CHLl (Gitelson et al., 1996):

GNDVI = (ρNIR −ρgreen)/(ρNIR +ρgreen) (5)

A related measure, the green Chlorophyll Index (CI) was proposed to estimate the total15

canopy chlorophyll content (e.g. Gitelson et al., 2005):

CI = ρNIR/ρgreen −1 (6)

Many other SVIs for CHLl or Nl estimation combine three or more narrow band re-
flectance data in the the red-NIR transition zone of vegetation reflectance (the “red-
edge” region), such as the MERIS Terrestrial Chlorophyll Index (MTCI) (Dash et al.,20

2010). However, such data are not yet available with the spatial resolution and cover-
age required for the current study.

3.4 The REGFLEC model

REGFLEC (http://www.regflec.com) is an automatic image-based methodology for re-
gional CHLl and LAI mapping. REGFLEC version 1.0 (Houborg and Anderson, 2009) is25
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used here, which requires multi-spectral data measured in green, red and NIR bands.
REGFLEC combines the atmospheric radiative transfer model 6SV1 (Kotchenova et al.,
2006; Vermote et al., 1997), the canopy radiative transfer model ACRM (Kuusk, 2001)
and the leaf optical properties model PROSPECT (Baret and Fourty, 1997; Jacque-
moud and Baret, 1990) to predict CHLl and LAI directly from at-sensor radiance data.5

The strength of the REGFLEC tool is that it estimates vegetation- and soil-specific
parameters for mapped soil and vegetation types in the area. Following atmospheric
correction of satellite data, the ACRM-PROSPECT model is first run in forward mode
to build look-up tables representing relationships between spectral reflectance, CHLl
and LAI. The look-up tables are built using a wide parameter space representative of10

a full range of soil and vegetation parameters. REGFLEC then identifies bare soil pix-
els, and the model is run in inverse mode (simulation of surface reflectance) for the
bare soil pixels to estimate a single soil reflectance model parameter representative of
each soil class. Next, it is run in inverse mode for high NDVI pixels of each vegetation
class, to estimate four class-invariant vegetation parameters (leaf structure, leaf angle15

distribution, fraction of senescent leaves and Markov clumping parameter). Following
model parameterization of class-invariant soil and vegetation characteristics, ACRM-
PROSPECT is finally run in forward mode for pixel-wise mapping of LAI and CHLl.

Spectrally homogeneous land cover maps required by the REGFLEC model were
produced using the ISODATA unsupervised image classification algorithm of the image20

analysis software ENVI (ENVI 4.8, Exelis, UK). The number of land cover classes was
initially set high and then reduced stepwise until the classification algorithm provided
homogeneous classes which visually satisfied the representation of the surveyed fields
and other fields in the landscapes. Water bodies, forest, urban/suburban area, roads
and railways were further masked using the CORINE land cover map which has a spa-25

tial resolution of 100 m (Fig. 1) and the ESRI Streetmap Premium Europe Tele Atlas
data set, using buffer zones of one pixel (10 or 20 m). Greenhouses and polytunnels in
the IT landscape were visually identified and masked using the SPOT image data.
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Soil maps (1 : 1 000 000) from the European Soil Database (ESDB) of the Euro-
pean Soil Data Center (http://eusoils.jrc.ec.europa.eu/) were used as base soil maps
for all landscapes except for Denmark, where a more detailed map comprising three
classes (instead of two classes in the ESDB map) was available. For the UK site, it
was observed that the CORINE category “peat bogs” was not well represented by the5

European soil map. The high organic content of these soils is likely to influence soil
reflectance, and it was therefore decided to add the higher spatial resolution (100 m)
CORINE “peat bogs” class as an additional soil class.

The REGFLEC model was run using version 3 of the leaf optical properties model
PROSPECT (Baret and Fourty, 1997). The NDVI threshold for intermediate vegetation10

density was set to 0.65 (used for selecting dense canopy pixels), and the leaf dry matter
content was set uniformly to 55 g m−2 corresponding to the mean value estimated for
leaf samples.

4 Results

4.1 Landscape variations: vegetation index and LAI15

The mean and standard deviation (sd) of SPOT NDVI for the crop- and grassland areas
within each 10×10 km2 study landscape is shown in relation to the NDVI seasonality
represented by MODIS data (Fig. 3). The seasonality appeared quite similar in Den-
mark and Poland, with the maximal NDVI around 1 June 2008 corresponding to the
timing of the SPOT image acquisitions. However, MODIS NDVI time series indicate20

that harvesting occurs earlier in PL. Also, SPOT NDVI, MODIS NDVI and LAI measure-
ments (Table 3) all indicate larger vegetation cover in DK08 than in PL at the time of
satellite imaging, which suggests that crops in PL are in a more mature (senescent)
phase. From SPOT ρred–ρNIR scatterplots of the agricultural area, a larger data spread
occurs in PL compared with DK08 (Fig. 4), which is increasing the sd of NDVI and de-25

creasing the mean NDVI (Table 3). MODIS NDVI slowly increases towards the end of
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the year in both Denmark and Poland, due to emergence of autumn-sown crops such
as wheat, barley and oilseed rape. However, it takes longer for vegetation cover to re-
establish in Poland (Fig. 3), which may be related to variations in land use practice or
climate. Abrupt reductions in MODIS NDVI during winter are related to low solar angles
and high frequency of overcast weather.5

In the early-season SPOT image of DK09, peak NDVI has not yet been reached
(Fig. 3), and lower overall vegetation cover is indicated by both NDVI and LAI com-
pared with the DK08 landscape (Table 3). Nevertheless, the highest pNIR values are
observed in DK09, which indicates the presence of very dense fields (Fig. 4). Field
measurements of DK09 crops confirm the high “green-ness” of canopies, which are at10

an early development stage with no signs of senescence and no significant CHLl verti-
cal gradient profile (Fig. 5b). In contrast, more than 50 % of the field plots for DK08 show
a strong CHLl vertical gradient profile (Fig. 5a). Two other groupings of high-density
(red to dark green colours in Fig. 4) ρred–ρNIR data sets occur in the DK09 landscape:
one located at the lower boundary line of the ρred–ρNIR scatterplot (the “soil-line”), indi-15

cating presence of bare soils, and another, located in the intermediate ρNIR range with
relatively low ρred, indicating the presence of less densely vegetated fields. The mixture
of bare fields (maize not yet sown), intermediate density fields (winter-wheat) and very
dense fields (winter-oilseed rape) in DK09 results in largely contrasting values in this
early-season satellite image.20

Other landscapes with high-density soil-line formations (and exposure of bare soils)
are the IT and UK sites (Fig. 4). The UK site has a very short soil-line represented by
low reflectance data, which likely represents dark organic (peat) soils, whereas the IT
site has a much larger data spread (extended red region) along the soil-line, which indi-
cates larger spatial variability in soil background reflectance. The soil line of IT includes25

very low reflectance data, which is in good agreement with the prevailing cambisols,
also called brown soils, of this region. In IT, NDVI is lowest in summertime, and the
NDVI seasonality indicates that harvesting takes place 2–3 times per year (Fig. 3). The
low NDVI at the time of SPOT satellite imaging agrees with field observations of widely
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spaced row-cropped vegetables and bare soil areas. The LAI of such widely spaced
tomato fields in IT were not measured and therefore not included in the LAI estimates
in Table 3. However LAI of these fields are visually estimated to be <1 (LAI of one
relatively dense tomato field was measured and found to be 1.3). The overall lower
vegetation cover of IT is also visualized by the ρred–ρNIR scatterplot (Fig. 4), where5

ρNIR is clearly lower than for the other landscapes, and the bulk reflectance data (red
colours) are indicating a prevalence of bare soils and sparse-to-intermediate vegetation
cover.

In the Scottish landscape (UK), the MODIS NDVI time series indicate that vegetation
development started later in the year (23 April 2008), compared with the DK and PL10

landscapes. Vegetation growth accelerated approximately 2 weeks later than in Den-
mark, and it peaked around 26-June, which was 4–6 weeks later than the peak NDVI
of DK. SPOT satellite imaging took place about one month after peak NDVI is reached
in UK (Table 1). Despite the clear (high-density) soil-line formation at the UK site indi-
cating presence of bare soil areas, the average NDVI of this site was higher than for15

all the other landscapes. Compared with the LAI measurements of the UK landscape,
MODIS and SPOT NDVI are very high (Fig. 3 and Table 3) which indicates higher vege-
tation cover of the landscape than indicated by the LAI measurements of the seven field
plots (five grassland and two arable fields). NDVI is also sensitive to soil background
reflectance, and the low background reflectance of dark (organic-rich) soils tends to20

increase the NDVI relative to the NDVI of a similar vegetation canopy with a bright soil
background (Huete, 1988).

The grasslands of NL are characterized by high NDVI with low seasonal variation.
However, NDVI was slightly reduced at the time of the SPOT satellite imaging, which
may be indicative of recent grass cutting. A secondary group of high-density reflectance25

pairs (red colours) in the lower part of the ρred–ρNIR scatterplot (Fig. 4) supports the
presence of recently cut fields with low residual vegetation cover.

10167

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/10149/2012/bgd-9-10149-2012-print.pdf
http://www.biogeosciences-discuss.net/9/10149/2012/bgd-9-10149-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 10149–10205, 2012

Remote sensing of
LAI, chlorophyll and

leaf nitrogen

E. Boegh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.2 Landscape variations: chlorophyll and leaf nitrogen

Despite the low vegetation coverage in IT, the vegetables cultivated at this site were
characterized by the highest CHLl and Nl concentrations (Table 3). The largest mean
Nl concentrations occured in artichokes (7.82 g m−2), tomatoes (7.05 g m−2) and al-
falfa (4.37 g m−2), followed by oilseed rape (3.11 g m−2), wheat and barley (2.22 g m−2),5

grass (1.54 g m−2) and maize (1.44 g m−2). Measured canopy N contents (Nc) are low-
est in the UK landscape, which is dominated by semi-natural grassland, and high-
est in DK08 (Table 3). The Nc estimate of fields in IT (Table 3) does not fully repre-
sent the field sites, due to incomplete representation of LAI for widely spaced row-
cropped tomato fields. For CHLl, oilseed rape had the highest concentrations (mean10

842 mg m−2). This was followed by artichokes (743 mg m−2), tomatoes (608 mg m−2),
alfalfa (572 mg m−2), wheat and barley (390 mg m−2), potatoes (372 mg m−2) and
grasses (340 mg m−2).

Despite coefficients of variation (CV= sdmean−1) in the range 20–35 % for the mean
CHLl of fields within individual landscapes, the averaged within-field variation of CHLl15

and Nl exceeded the between-field variability at the DK sites (Table 3). This highlights
the importance of a consistent leaf measurement strategy for accurate ground-truth
estimation of mean CHLl.

For nitrogen, the CV for mean Nl of fields range between 8 % and 68 % for the differ-
ent landscapes. Due to the larger species-specific variations in Nl than CHLl, between-20

field variation of mean Nl grossly exceeded the mean within-field variation in Nl at the
IT and UK sites. The lowest between-field variability was observed in the DK09 (mostly
wheat) and NL (mostly grass) landscapes (Table 3), which were characterized by more
uniform land use.

4.3 Within-canopy variations25

Three major types of within-canopy vertical CHLl gradient profiles were evident in the
leaf measurements across the European landscapes, which contribute to increase
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within-field variability in CHLl and Nl. Profiles either had CHLl increasing from bottom
to top of the canopy (Fig. 5a), uniform vertical CHLl distributions (Fig. 5b) or decreasing
CHLl concentrations from bottom to top (Fig. 5c). Linear regression slope coefficients
(s) and the coefficients of determination (r2) describing the relationships between CHLl
data and relative measurements heights (hr) can be used to indicate whether CHLl pro-5

files are increasing, decreasing or uniform (Fig. 5). Distributions where CHLl-hr regres-
sion slopes are characterized by low r2 are often weakly S-formed or bell-shaped, but
are generally characterized by a poor vertical structure (Fig. 5b). In contrast, CHLl-hr re-
gression slopes with high r2 and s > 0 (Fig. 3a) or s < 0 (Fig. 5c) have strong CHLl ver-
tical gradient profiles with increasing or decreasing gradients. Defining a strong CHLl10

profile as a CHLl-hr relationship characterized by r2 > 0.68 (p < 0.1), it was found that
20 % of the total fields had strong vertical CHLl gradient profiles. Increasing CHLl con-
tents from bottom to top occurred particularly frequently in DK08, where more than
50 % of the fields (barley, wheat) showed strong CHLl vertical gradient profiles, and
in PL (oilseed rape, potatoes, alfalfa and barley), where 34 % of fields showed strong15

CHLl vertical gradient profiles. Decreasing (s < 0) CHLl profiles were observed in maize
fields in IT and NL. Generally the maize crops with lower canopies had more uniform
CHLl profiles, whereas tall (> 2 m), irrigated and fertilized maize crops had strong “neg-
ative” (s < 0) CHLl vertical gradient profiles. CHLl profiles are more uniform in the early
season (19 April) DK09 landscape (only one field showed significant CHLl vertical gra-20

dient profile), however decreasing CHLl contents in the upper 1–2 measurement levels
(hr = 0.8–1) are normal and contributed to increased within-field CHLl variability (Ta-
ble 3).

4.4 Remote sensing-based LAI

Statistically significant relationships (p < 0.01) were found between all remote sensing-25

based LAI predictions (SVIs and REGFLEC simulations) and LAI when considering
all LAI data in the landscapes sites (n = 93). The REGFLEC model performed best
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(r2 = 0.62) with a linear regression slope approaching unity (0.99) and a zero inter-
cept. When considering only uniform canopies with no CHLl vertical gradient profiles
(n = 72), the REGFLEC predictability of LAI further improved (r2 = 0.7). The improved
predictability was due to higher statistical correlation in DK08 and PL, where strong
positive (s > 0) CHLl vertical gradient profiles frequently occurred. Removal of (maize)5

canopies with negative (s < 0) CHLl vertical gradient profiles (Fig. 5c) improved the
predictability of EVI2 (r2 increased from 0.75 to 0.8) and REGFLEC (r2 increased from
0.52 to 0.78) only. The accuracy of REGFLEC LAI predictions for all homogeneous
canopies in all the landscapes was given by rmse=0.73. This is in the lower range
of prediction capabilities demonstrated in earlier REGFLEC applications (rmse=0.4–10

0.75).
LAI estimates generally improve (Table 4) when restricting the analysis to the major

European agricultural land use classes (wheat, maize, barley, grassland) separately,
thereby reducing effects due to different canopy structures. Different methods showed
the best capabilities for LAI estimation, depending on canopy structure. For homoge-15

neous canopies without significant CHLl vertical gradient profiles (Table 4), REGFLEC
had the highest determination coefficients for wheat (r2 = 0.75); GNDVI was best for
grass (r2 = 0.83); EVI2 worked best for maize (r2 = 0.8), and CI had the highest de-
termination coefficient for barley (r2 = 0.70). The rmse (calculated from measurements
and LAI predictions), showed that the best results for the individual land use categories20

had rmse’s ranging from 0.33 to 0.74 (Table 4).
Considering the individual landscapes separately further improved the predictabil-

ity of REGFLEC and SVIs. This is very likely due to the large range in soil types of
the different landscapes (Table 5). The exception to this was for IT, where REGFLEC
performed poorly. Poor performance can be due to row crops in this landscape. Row25

crops does not comply with the homogeneous (turbid medium) canopy representation
of CRTMs like ACRM (used by REGFLEC). It may also be due to a lack of image pixels
representing dense vegetation of these row-cropped vegetables. The REGFLEC model
requires the presence of dense vegetation fields of all land cover classes in order to
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parameterize the leaf and canopy properties that are required by the model to simulate
LAI and CHLl. Furthermore, the “background reflectance” of the IT site is very complex,
due to some vegetables and fruit trees being covered by nets for pest protection. In con-
trast to the SVIs, REGFLEC uses image information from the complete landscape, and
not only for the field plots, for model parameterization. All SVIs, however gave statis-5

tically significant results for LAI mapping of the IT site, and both REGFLEC and the
SVIs gave statistically significant results for LAI mapping of all other landscapes. For
landscape scale mapping of LAI, r2 ranged between 0.74 and 0.95, with EVI2 perform-
ing best in three out of six landscape images (Table 5). Generally EVI2 appeared to be
superior in landscapes comprising a majority of fields with large LAI and/or NDVI, such10

as DK08, NL and UK (Table 3). REGFLEC performed best when both bare soils and
very dense fields were present in the landscape, as was the case for DK09 (Fig. 4), and
SR performed best in IT, which is characterized by sparse-to-intermediate vegetation
covers.

Combining the methods with the highest r2 for the individual landscapes (Table 5)15

increased overall LAI predictability (Fig. 6a) for the six European landscape images
(homogeneous canopies only). In this case, 84 % of total data variability could be pre-
dicted with a rmse of 0.59 (n = 72). Within individual landscapes, rmse varied from
0.22 to 0.67 (Table 5). For comparison, Viña et al. (2011) evaluated the performance
of eight SVIs for LAI prediction of two crop types with contrasting canopy structures20

(maize and soybean) and found values of rmse in the range 0.58–2.53 (median 0.88).

4.5 Remote sensing-based CHLl and Nl

No significant relationships were found between remote sensing-based predictions
(SVIs and REGFLEC simulations) and leaf scale CHLl or Nl. Statistically signifi-
cant relationships (p < 0.05) were, however, found between all remote sensing-based25

methods and CHLc, with REGFLEC having the best overall predictability (r2 = 0.34,
p < 0.001) when considering all measurement sites (n = 77). When restricting the eval-
uation to canopies with uniform CHLl vertical gradient profiles (n = 61), REGFLEC
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predictability improved (r2 = 0.51; p < 0.0005). Generally the CV was higher for CHLc
than for LAI at landscape scale (Table 5), and remote sensing-based estimates were
generally less well related to CHLc than to LAI. Only for barley, where field measure-
ments of LAI were mostly high with low variability (Table 4), was the predictability for
CHLc (r2 = 0.9) clearly much better than for LAI (r2 = 0.7). In this case, the chlorophyll5

index CI was better than the other methods. For the other land use types, where the CV
for LAI was larger, predictabilities were generally better for LAI than for CHLc (Table 4).

For maize (Table 4), and more generally in PL and IT (Table 5), where 30–50 % of
field measurements represent maize, predictability of CHLc was not statistically sign-
ficant (p < 0.05) for any methods. However the predictability for Nc was much better10

than for CHLc for maize, and all methods were statistically significantly related to Nc

of maize. The predictability for CHLc of different land use types varied with r2 between
0.48 and 0.90 whereas the best predictabilities for Nc (all statistically significant) were
characterized by r2 between 0.53 and 0.91 (Table 4).

Overall, REGFLEC had the best capability to predict Nc for all landscapes with r2
15

increasing from 0.46 (n = 83) to 0.53 (p < 0.0005), when the data set was restricted
to homogeneous fields without strong CHLl vertical gradient profiles (n = 68). As for
the LAI estimations, REGFLEC generally worked best for CHLc and Nc estimation of
wheat. EVI2 worked best for Nc estimation of maize, and CI had the highest r2 for
CHLc and Nc estimation of the dense barley fields. For grass, REGFLEC gave the best20

results for CHLc, whereas CI provided the best results for Nc estimation.
When considering individual landscape sites separately, predictabilities for Nc fur-

ther increased for most landscapes, except for IT and PL which were characterized by
large variations in land use types (Table 2) and large species-dependent Nl variations
(Fig. 2). For IT there was a possible correlation (p < 0.1) between SR and Nc (r2 = 0.4)25

while for Nc in PL, the statistical confidence level for the correlation (r2 = 0.46) is just
78 %. For the other landscapes, 70–95 % of Nc data variability could be predicted with
high statistical confidence (p < 0.05) providing rmse in the range 1.12–1.55 g m−2.
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Combining the best methods (Table 5) results in being able to explain 70 % of total
CHLc data variability (Fig. 6b) and 76 % of total Nc data variability (Fig. 6c) within the
five European landscapes by the remote sensing methods (homogeneous canopies
only). This resulted in rmse of 346 mg m−2 for CHLc and 1.49 g m−2 for Nc. Within
individual landscapes, rmse varied across the range of 216–397 mg m−2 for CHLc5

and 1.12–2.35 g m−2 for Nc (Table 5). For comparison, Gitelson et al. (2005) found
rmse=320 mg m−2 when estimating CHLc for maize and soybean using an optimal
narrow-band red-edge SVI, whereas the use of broad-band (MODIS) reflectance for
CI evaluation resulted in rmse=690 mg m−2. Hansen and Schjoerring (2002) used
a partial least square regression technique to identify the best suited spectral bands10

for Nc prediction. They found that the use of optimal narrow-band NDVI resulted in
rmse=0.8 g m−2 for wheat.

4.6 Vegetation nitrogen pools of European landscapes

When different methods are combined, it was possible to explain large variations in
LAI, CHLc and Nc across the European study landscapes (Fig. 6). Model efficiencies15

(ME) expressed in terms of Sutton-Ratchliffe’s coefficient

ME = 1−
∑

(pi −oi )
2/

∑
(oi −oavg)2

where pi represents predictions, oi represents observations, and oavg is the observed
mean, confirmed that the spatial predictions were in all cases significantly better than
assuming mean values for the land use types: ME=0.84 for LAI; ME=0.70 for CHLc,20

and ME=0.73 for Nc. Note, ME=1 is a perfect prediction, and ME<0 means that
predictions are no better than the mean of the observed data. Maps of Nc predictions
further illustrated large spatial variations in land use structure with many small fields
responsible for small-scale variations in the vegetation N pools of crop- and grasslands
(Fig. 7).25
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Generally the largest vegetation N pools were found in DK08 and PL whereas the
smallest vegetation N pools were found in DK09 and UK (Table 6). However these
overall comparisons should be interpreted with care for PL and IT due to the lower sta-
tistical confidence of predictions in these landscapes (78 % probability for significant
correlation in PL, and 90 % for IT), lower r2 and larger rmse. Predicted Nc in PL ex-5

plained only 46 % of data variability and rmse was 1.93. In IT, rmse was even higher
(Table 5). The remote sensing-based predictions of mean Nc for PL and IT are however
in good agreement with the observed mean Nc (Fig. 8).

Mean Nc based on field measurements tended to exceed the landscape averaged
Nc predictions in DK09, UK and NL, but very good agreements are found for the other10

sites (Fig. 8). In DK09 and NL, lower predicted mean landscape Nc was due to the
presence of bare and sparsely vegetated fields (spring sown crops in the early-season
DK09 landscape; grass fields cut shortly before the image was taken in NL) while in
UK, fewer field measurements were available for comparison of mean values, and the
extensive grasslands contribute to the low Nc of this landscape (Fig. 8). The largest15

predicted mean landscape Nc were found for DK08, IT and PL (with lower confidence
in IT and PL) where an average of 5.66 tNc km−2 was estimated for the agricultural area
(Table 6). Due to the larger proportion of agricultural area in PL, the total landscape Nc

(4.01 tNc km−2) stored in crops was largest for this study area (Table 6). Large spa-
tial variations were found in both measured and predicted Nc within and between the20

landscapes which can be attributed to seasonal variations, land use and spatial varia-
tions in resource (water and nutrients) availability. Frequency distributions of Nc (Fig. 8)
are seen to be negatively skewed in DK08 and PL, indicating prevalence of fields with
dense vegetation, and with Nc reaching higher values in DK08 than in PL. Nc distri-
butions are positively skewed in NL and IT with largest spatial variation in IT; and it is25

strongly positively skewed in DK09 and UK due to the large fractional areas with sparse
vegetation (DK09) and/or low Nl contents of grasses (UK). It was not possible to find
measured or modelled estimates of Nc in the scientific literature for comparison.
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5 Discussion

5.1 Remote sensing predictabilities for LAI, CHLc and Nc

Generally it is recognized that site- or vegetation-specific empirical corrections or model
parameterizations are needed to achieve accurate LAI and CHLl estimations from re-
gional applications of remote sensing data. These findings are also reflected in the5

present study where the predictability of SVIs and REGFLEC generally improved when
constrained to single land use categories. Predictability improved further when con-
strained to local (10×10 km2) landscapes, with the exception of Nc prediction for very
heterogenous land use. Even though the REGFLEC model is designed to automatically
correct for soil- and vegetation-class specific properties, it was found to perform best10

in landscapes comprising large contrasts in vegetation cover, ranging from bare soil to
dense vegetation, such as for the DK09 study area. For individual landscapes, differ-
ent methods had different predictabilities. However for each landscape, it was possible
to establish statistically significant relationships with LAI using field data representing
a variety of land use types. The findings suggest that empirical calibration of SVIs using15

a variety of data representing different land uses can provide LAI estimates with rmse
in the range 0.2–0.7, and that land cover-specific SVIs or calibrations can further im-
prove LAI estimates within individual landscapes. For this purpose, detailed land cover
maps representing all vegetation types are needed.

Overall REGFLEC provided the best (statistically significant) LAI, CHLc and Nc pre-20

dictions for all six European landscape images with an accuracy for LAI (rmse=0.73)
better than what was found using broad-band SVIs in this and other studies (Atzberger
and Richter, 2012; Viña et al., 2012). One reason for the relatively good performance
of REGFLEC and SVIs is related to selecting a subset of field data so that only homo-
geneous canopies without CHLl vertical gradient profiles were used to evaluate pre-25

dictions. Strong CHLl vertical gradient profiles were observed in mature canopies, in
particular in DK08 and PL. Removal of canopies with CHLl vertical gradient profiles ful-
fills the prerequisites of CRTMs (used by REGFLEC) that leaves should have uniform
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properties, and this significantly improved the predictive capability of both REGFLEC
and SVIs for the DK08 and PL sites. Removal of maize canopies with “negative” (s < 0)
CHLl vertical gradients did not consistently improve the results of the different methods.
This may be related to the erectophile structure of maize canopies which allows the re-
mote sensor to measure reflectance at deeper levels in the canopy (Winterhalter et al.,5

2012). Effects of within-canopy CHLl variations on surface reflectance is typically not
considered in remote sensing studies, but this study showed that it could have a signif-
icant effect on the predictability of LAI, CHLc and Nc. Some CRTMs consider vertical
variation in canopy structure using two layers to represent color gradients, clumping
and tree crowns (Verhoef and Bach, 2008). Also, so-called functional-structural plant10

models (Godin and Sinoquet, 2005) are being used to study 3-D interaction between
light absorption and biological processes such as canopy growth. However these mod-
elling approaches have focused on representing light scattering effects of canopy struc-
ture (e.g. Casa et al., 2010). The sensitivity of surface reflectance to vertical variations
in CHLl and Nl has not been investigated previously and is not known.15

Considering the wide range of environmental conditions and land use types across
the six European land use cases, the results obtained in this study are relatively encour-
aging. However, better LAI accuracies (rmse down to 0.4) were obtained in previous
REGFLEC applications (Houborg et al., 2007; Houborg and Boegh, 2008; Houborg
and Anderson, 2009). Better LAI accuracies were also found by Atzberger and Richter20

(2012) who used pixel neighborhood information to regularize inverse model predic-
tions of LAI for three crops (rmse=0.54). Viña et al. (2012) used field-spectrometric
data to compare the LAI predictabilities of different SVIs for maize and soybean, and
they found that the best results were obtained using a narrow-band red-edge chloro-
phyll index (rmse=0.58). The higher accuracies reported for LAI in these studies were25

however comparable to the rmse of REGFLEC when applied to the DK09 site in the
current study (rmse=0.53). However, even better results were achieved by SVIs in this
study in some cases when restricting the evaluation to separate land use categories
(Table 4) or individual landscape sites (Table 5). In particular, EVI2 had superior LAI
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predictability in three out of six landscape images (DK08, NL and UK) characterized
by relatively high NDVIs (Table 3; Fig. 2); SR was superior for LAI prediction of the
sparsely vegetated IT site (Table 5), while REGFLEC worked best for DK09 where
a large range of vegetation covers was present. Generally, broad-band SVIs are more
sensitive to soil background than to accurate parameterization for atmospheric correc-5

tion of radiance data (Broge and Leblanc, 2000), however uncertainties related to the
atmospheric corrections of image data in the different landscapes can be contributing
to lower predictability for land use categories across the European landscapes rela-
tive to predictabilities within individual landscapes. Such effects could however not be
quantified in the present study.10

For CHLc and Nc estimation, field-spectrometric studies based on hyperspectral and
narrow-band reflectance data show that CHLc could be retrieved with rmse of 310–
320 mg m−2 when considering 1–2 species (Gitelson et al., 2005; Darvishzadeh et al.,
2008). However, when including more species, such as in a heterogeneous grass-
land, rmse increased to 440 mg m−2 (Darvishzadeh et al., 2008). This is compara-15

ble to the predictability of REGFLEC when applied to the six landscape cases in this
study (rmse=439 mg m−2). Improved accuracies were however found by SVIs and
REGFLEC when the evaluation was constrained to distinct land use categories and
individual landscapes (Tables 4–5). In this case, the best result for CHLc prediction
(rmse=117 mg m−2) and Nc prediction (rmse=0.59 g m−2) were provided by CI for20

barley fields.
The better results for CHLc prediction compared with LAI prediction of barley fields

(best by CI) may be due to LAI generally being high with low variation. In this case the
reflectance may be more sensitive to variations in leaf chlorophyll, xanthophyll and (for
the green band used in CI and GNDVI) anthocyanin. For all other vegetation types, the25

range of LAI data was higher, and the predictability for LAI was better than for CHLc
and Nc. Darvishzadeh et al. (2008) also found that predictability for LAI was better
than for CHLc (using inverse radiative modelling of hyperspectral data), but that CHLc
predictability exceeded LAI predictability when the number of species was increased.
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This is however not the case in the current study where landscape predictability of LAI
was better than that for the different land use categories, due to the large variations in
environmental conditions across the European landscapes.

Some studies have found that leaf scale chlorophyll can be predicted from image
data with rmse in the range 4–9 µgcm−2 (Houborg and Boegh, 2008; Houborg and An-5

derson, 2009; Atzberger and Richter, 2012). Even though REGFLEC has shown such
capabilities in previous studies, it was not possible to achieve statistical confidence
(p < 0.05) for CHLl prediction in this study. This may have been due to insufficient bare
soil pixels in the growing season to establish a robust soil parameterization for each
soil class. In this case, a solution could be to include a satellite image from before the10

growing season to improve the soil parameterization, as shown by Houborg and Boegh
(2008). Another requirement, the presence of dense vegetation cover of each land use
class, was not fulfilled at the IT site.

The use of narrow-band indices for a single species (without variations in soil back-
ground) has given significantly better estimates for Nc than those found for the sepa-15

rate land use categories in this study (rmse=0.66–2.38 g m−2). For instance, Fitzger-
ald et al. (2010) applied three spectral bands in the red-edge zone to a triangular
SVI approach and found that Nc of wheat could be retrieved with rmse=0.65 g m−2.
Hansen and Schjoerring (2002) used an optimal narrow-band NDVI to achieve Nc for
wheat with rmse=0.8 g m−2. Landscape scale estimates of Nc in this study resulted20

in rmse=1.12–1.66 g m−2 for DK08, DK09, UK and NL. For IT and PL, Nc estimates
were obtained with lower statistical confidence and larger rmse (1.93–2.35 g m−2) due
to large land use heterogeneity.

While similar CHLl regression equations could be established for different crops us-
ing leaf scale absorbance data measured by the SPAD meter, remote sensing-based25

Nl estimation is strongly species-dependent (Fig. 2). The use of species-specific CHLl-
Nl ratios of leaves further complicates the remote sensing-based Nc estimation due to
its dependence on local light climate. In this study, REGFLEC gave the best overall ca-
pabilities to predict Nc in all landscapes (r2 = 0.53; rmse=2.21 g m−2). When applying
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the simpler empirical-statistical SVI models jointly to all landscapes, Nc could be esti-
mated with rmse in the range 2.4–2.8 g m−2.

5.2 Remote sensing and carbon-nitrogen dynamics

The problem of scale is considered one of the largest challenges to provide robust
global and European greenhouse gas budgets for croplands (Osborne et al., 2010).5

Current global estimates use plot scale determinations which may have only local or
regional relevance or large-scale remote sensing techniques which do not resolve lo-
cal or regional differences (Osborne et al., 2010). Even though remote sensing data
are frequently used to assess chlorophyll and leaf nitrogen for crop precision man-
agement, methods are developed and tested using plot-scale data, and they are often10

considered to lack the required accuracy and precision to reflect temporal and/or spatial
heterogenity for regional carbon budget modelling of croplands (e.g. Wattenback et al.,
2010). The current study showed that high spatial resolution remote sensing of se-
lected landscapes representing crop- and grasslands over a large gradient of environ-
mental conditions in Europe can provide LAI predictions with a rmse of 0.73 (r2 = 0.7),15

CHLc predictions with rmse of 439 mg m−2 and Nc predictions with rmse of 2.2 g m−2

(r2 = 0.53). Better results could be obtained when restricting regression model build-
ing to individual landscapes. These findings support the use of remote sensing data
to characterize spatial variability in vegetation traits for regional carbon and nitrogen
cycle modelling. Whereas well-instrumented experimental sites can deliver the data to20

parameterize plot- or field scale agro-ecosystem models, remote sensing-based esti-
mates of LAI, CHLc and Nc provide spatial information on ecophysiological conditions
which can contribute to improve the realism and representation of site-specific effects
of field management practice for regional modelling and upscaling of water, carbon
and nitrogen cycling processes (e.g. Boegh et al., 2004, 2009; Houborg et al., 2007;25

Gitelson et al., 2009; Ciais et al., 2010). This paper demonstrated the capability of high
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spatial resolution data to provide such input with statistical confidence for a subset of
landscapes located over an extended region (Europe).

Leaf nitrogen is a key driver for biogeochemical cycling through its signficance for
photosynthesis and respiration modelling (e.g. Boegh et al., 2002; Kattge et al., 2009),
and it is also found to be important to assess the stomatal NH3 compensation point,5

which determines whether vegetation canopies act as a source or a sink for NH3 (Mas-
sad et al., 2008). In order to understand how nitrogen availability affects carbon and
ammonia fluxes of ecosystems, Nl is clearly important. In a global study of leaf nitrogen
variability (Freschet et al., 2011), it was found that as much as 50 % of the variability oc-
curred within communities whereas 15 % occurred between communities and 35 % of10

global variance occurred between biomes. These results indicate that a significant part
of global plant trait variation cannot be described using broad-scale influences (e.g. cli-
mate and topography) but that variations exist within plant communities at a fine spatial
scale. High spatial resolution remote sensing data of LAI, CHLc and Nc have potential
to assess the spatial variability of plant functional traits, though methods still remain15

to be thoroughly verified for forest ecosystems, and to study the significance of such
variability on the interacting carbon and nitrogen cycles.

While many natural ecosystems are nutrient-limited, the nitrogen balance of agricul-
tural areas is generally positive in Europe. This means that there is a nitrogen surplus
which contributes to nitrogen leaching, nitrous oxide emission (Schelde et al., 2012)20

and ammonia volatilization (Sutton et al., 2007). However, there are large variations
within different European landscapes that are dependent on agricultural systems such
as livestock production and the use of manure and inorganic fertilizers (e.g. Dalgaard
et al., 2012). Since foliage Nl is closely related to nitrogen additions and soil mineral
availability, as observed for forbs and grasses (Song et al., 2011), remote sensing-25

based Nc estimates may provide useful information to design field sampling strategies
and adjust the simulations of agro-ecosystem models to partition deposited nitrogen
between plants and soils. Vegetation (Nc or biomass) maps can also be used to as-
sess spatial variation in nitrogen uptake of crop fields which is important for the soil
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nitrogen balance. Together with measurements of nitrogen emissions and flows in land-
scapes, spatial information of biomass nitrogen pools are important to improve the un-
derstanding of nitrogen availability effects on the green house gas budget of terrestrial
ecosystems (e.g. Schulze et al., 2010). In this study, biomass nitrogen pools varied
widely within and between five European agricultural landscapes, with the lowest ni-5

trogen pool found in the early-season DK09 landscape (64.72 t), and the largest pool
found in PL (401.29 t) due to the larger proportion of agricultural area. Despite DK hav-
ing the lowest proportional area of agricultural land, the second-highest nitrogen pool
was found here (DK08, 31 May). The largest nitrogen concentrations within agricultural
areas were found in DK08, IT and PL.10

The hydrological cycle also has a critical impact on the greenhouse gas balance
(e.g. Schulze et al., 2010). In this context, remote sensing can provide spatial informa-
tion on vegetation development and ecophysiological condition to improve the regional
simulation of evapotranspiration, photosynthesis and vegetation growth (e.g. Boegh
et al., 2002b, 2004, 2009; Houborg et al., 2007, 2011; Peng and Gitelson, 2012). The15

current study indicates that high spatial resolution remote sensing-based estimates of
LAI, CHLc and Nc can be applied over extended regions with sufficient statistical con-
fidence for such purposes. The sensitivity of model studies relative to the accuracy of
remote sensing-based predictions should however be assessed.

With the launch of the upcoming European Sentinel-2 satellite mission (scheduled20

for 2013), 13 spectral bands should be available in the red-shortwave infrared at high
spatial resolution (10–60 m) with three new bands located in the red-edge region. This
would support the use of additional narrow bands with optimized sensitivity to changes
in CHLl and with reduced sensitivity to confounding factors. The availability of Sentinel-
2 data would significantly advance the ability to monitor plant physiological condition25

both in terms of retrieval accuracy and spatio-temporal resolution (20 m every 2–5 days)
using SVIs and a tool such as REGFLEC.
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6 Conclusions

The capabilities of five SVIs (NDVI, SR, EVI2, GNDVI and CI) and the REGFLEC model
were found to be statistically significant for LAI, CHLc and Nc mapping when applied at
high spatial resolution for five contrasting European crop- and grasslands. This strongly
supports the applicability of such products to characterize spatial variability in vegeta-5

tion traits for regional simulation and upscaling of water, carbon and nitrogen cycles.
The best results over the large range of environmental conditions represented by

the five landscapes were achieved using an automatic spatial regularization technique
(REGFLEC) to parameterize an image-based atmospheric-leaf optics-CRTM model
(LAI rmse=0.73; CHLc rmse=439 mg m−2; Nc rmse=2.2 g m−2). The use of simpler10

SVI approaches also provided statistically significant results when calibrated against
field data representing a variety of grasses and crop types, albeit with lower accu-
racies. Generally predictabilities improved when restricting the evaluation to separate
land use categories, and they improved further when restricting the evaluation to lo-
cal (10×10 km2) landscapes, thereby reflecting sensitivity to canopy structures and15

local environmental conditions (i.e. soil background reflectance). At landscape scale,
REGFLEC and the SVIs had different preditabilities. Combining the best methodolo-
gies for each landscape, improved predictabilities were achieved for LAI (rmse=0.59),
CHLc (rmse=346 mg m−2) and Nc (rmse=1.49 g m−2) of the European agricultural
landscapes which were comparable with or better than results reported in other stud-20

ies using field spectrometric studies. One exception was for Nc for which much better
predictabilities were found in field-spectrometric studies using narrow-band reflectance
data. The Nc prediction is further complicted by a strong species-specific relationship
between spectral leaf reflectance and Nl, as shown by the SPAD meter data in the
current study.25

Vertical CHLl gradient profiles within canopies were found to reduce the predictabil-
ity of remote sensing methods. The existence of vertical CHLl gradient profiles violates
the assumptions of CRTMs, including the ACRM used by REGFLEC, but also reduced
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the predictability of SVIs. In order to establish an effective groundtruth reference data
set for evaluating remote sensing-based predictions, canopies should be characterized
by uniform CHLl development. The current study used homogeneous canopies without
positive or negative CHLl vertical gradients as reference data to evaluate remote sens-
ing predictions. In the future, field spectrometric studies should be designed to examine5

the effect of CHLl vertical gradients on spectral canopy reflectance and remote sensing
predictions of LAI, CHLl and Nl.

Despite the demonstrated capability of REGFLEC to simulate CHLl in previous stud-
ies, it was not possible to achieve statistically significant (p < 0.05) results for leaf scale
predictions in this study. The ill-posed nature of the model inversion significantly com-10

plicates the process of extracting the CHLl (and LAI) signal from remote sensing ob-
servations. The current study took place in the middle of the growing season, except
for DK09 where REGFLEC results were best, and it is expected that the availability of
an out-of-season satellite image with larger soil exposure would improve the results.

Results achieved in the current study for Nc prediction of European agricultural land-15

scapes (r2 = 0.76; rmse=1.49) showed large spatial variations within and between
landscapes which are attributed to seasonal variations, extent of agricultural area, dif-
ferent species, and spatial variation in nutrient availability. Such spatial information is
important to improve understanding, modelling and upscaling of carbon and nitrogen
budgets. With the launch of the European satellite mission Sentinel-2 in 2013, new20

narrow-band data opportunities are expected to improve the accuracies of LAI, CHLl
and Nl assessments. With these data, the mapping of seasonal variations in LAI, CHLl
and Nl with a high spatial resolution will be possible.
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Table 1. Overview of SPOT satellite data including geographical, sensor and atmospheric data
estimated from MODIS and AIRS satellite data. Atmospheric data include aerosol optical depth
(τ), ozone content (O3) and total precipitable water content (TPW). Spatial resolutions (∆x) of
the SPOT images are also shown.

Country Site Latitude Longitude Elevation SPOT SPOT SPOT SPOT SPOT MODIS MODIS AIRS AIRS AIRS
acronym (◦ N) (◦ E) (m.a.s.) Date Time Satellite Sensor ∆x Time τ Time O3 TPW

(h) (m) (h) (–) (h) (Dobson) (kgm−2)

Denmark DK08 56.34 9.66 60 31 May 2008 10.50 SPOT-4 HRVIR1 20 11.10 0.234 11.25 322.8 18.82
Poland PL 52.04 16.78 80 1 Jun 2008 10.20 SPOT-4 HRG1 10 10.20 0.177 12.06 353.4 15.43
Netherlands NL 53.14 6.13 2 9 Jun 2008 10.46 SPOT-5 HRG2 10 11.05 0.091 11.19 327.9 22.95
Italy IT 40.51 14.94 15 27 Jun 2008 10.03 SPOT-5 HRG1 10 9.20 0.459 11.30 340.6 27.20
Scotland UK 55.78 −3.24 280 21 Jul 2008 11.09 SPOT-4 HRVIR1 20 11.55 0.021 11.55 330.0 15.00
Denmark DK09 56.35 9.66 60 17 Apr 2009 10.45 SPOT-5 HRG1 10 11.55 0.053 12.11 385.5 10.36
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Table 2. Number of field plots and vegetation types represented by field measurements in the
landscape sites.

Site n Vegetation types

DK08 20 winter wheat, barley, maize
DK09 22 winter wheat, winter oilseed rape
NL 22 grass, maize
PL 13 maize, barley, alfalfa, potatoes, rye, oilseed rape
IT 9 maize, tomato, arthichoke, alfalfa
UK 7 grass, wheat
all 93
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Table 3. Means and standard deviations (sd) of SPOT NDVI for the crop- and grasslands, mea-
sured leaf area index (LAI), leaf chlorophyll density (CHLl), leaf nitrogen density (Nl), canopy
chlorophyll density (CHLc) and canopy nitrogen density (Nc) within the European landscape
sites. Standard deviations of leaf scale measurements are shown to represent between-field
variability (sd1) which is the “standard deviation of the mean CHLl or Nl of different fields”
and within-field variability (sd2) which is the averaged “CHLl or Nl standard deviation of data
measured in individual fields”.

NDVI NDVI LAI LAI CHLl CHLl CHLl Nl Nl Nl CHLc CHLc Nc Nc
mean sd mean sd mean sd1 sd2 mean sd1 sd2 mean sd1 mean sd1

(–) (–) (–) (–) (mg m−2) (mg m−2) (mg m−2) (g m−2) (g m−2) (g m−2) (mg m−2) (mg m−2) (g m−2) (g m−2)

DK08 0.73 0.34 2.9 1.4 391 78 105 2.13 0.33 0.47 1095 588 6.10 3.24
DK09 0.72 0.39 2.2 1.1 434 96 164 2.27 0.19 0.24 1041 733 4.97 2.37
NL 0.73 0.34 3.0 1.5 350 121 121 1.71 0.23 0.22 1037 698 5.12 3.15
PL 0.67 0.42 2.1 1.1 402 102 67 2.27 0.97 0.35 832 633 5.10 5.36
IT 0.49 0.42 2.0* 0.7* 647 151 131 4.20 2.87 0.45 1370* 498* 5.51* 2.92*
UK 0.74 0.3 1.8 1.9 – – – 1.11 0.44 – – – 2.52 3.38

* Tomato fields not included.
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Table 4. Determination coefficients (r2) and root mean square errors (rmse) quantifying the
capability of REGFLEC and SVIs (NDVI, SR, EVI2, GNDVI, CI) to estimate LAI, total canopy
chlorophyll content (CHLc) and total canopy nitrogen content (Nc) of distinct vegetation classes
across the European landscape sites. The evaluations are using data from homogeneous
canopies without strong CHLl profile development. Number of observations (n), and the mean
and standard deviation (sd) of these field data are also shown. Bold numbers indicate sta-
tistically significant (p < 0.05) results, and the superscripts symbolize the type of regression
equation (l= linear; e=exponential). Italic numbers highlight the best predictabilities for each
vegetation class and objective.

data data NDVI NDVI SR SR EVI2 EVI2 GNDVI GNDVI CI CI REGFLEC REGFLEC
n mean sd r2 rmse r2 rmse r2 rmse r2 rmse r2 rmse r2 rmse

LAI (–)
All 72 2.38 1.35 0.39l 1.04 0.56l 0.89 0.50l 0.95 0.43e 0.99 0.52l 0.93 0.70 l 0.73
Wheat 27 2.69 1.8 0.43e 1.00 0.39e 1.03 0.47l 0.92 0.41e 1.02 0.40e 1.03 0.75 l 0.63
Grass 20 2.53 1.71 0.63l 1.01 0.75l 0.83 0.61l 1.05 0.83e 0.74 0.79l 0.76 0.78l 0.78
Maize 10 1.34 0.79 0.57l 0.49 0.63l 0.46 0.80 l 0.33 0.54l 0.51 0.62l 0.46 0.78l 0.35
Barley 7 2.53 0.87 0.68e 0.52 0.63l 0.49 0.61e 0.57 0.63l 0.49 0.70 l 0.44 0.52l 0.56
CHLc (mg m−2)
All 61 1021 631 0.28e 552 0.40l 487 0.35e 497 0.29e 548 0.38l 494 0.51l 439
Wheat 24 993 507 0.27l 423 0.28l 422 0.32l 408 0.36l 398 0.40l 385 0.66 l 290
Grass 15 1126 696 0.67e 415 0.73e 369 0.68e 400 0.69e 393 0.73e 370 0.91l 201
Maize 9 687 487 0.34l 372 0.29l 386 0.40e 481 0.37l 365 0.35l 369 0.41l 353
Barley 6 925 349 0.79e 176 0.86e 136 0.70e 204 0.85e 151 0.90e 117 0.83l 130
Nc (g m−2)
All 68 5.03 3.13 0.23e 2.79 0.40l 2.41 0.30l 2.6 0.30e 2.63 0.42l 2.37 0.53l 2.21
Wheat 26 5.79 2.65 0.36e 2.14 0.34l 2.1 0.36e 2.28 0.39e 2.02 0.42l 1.98 0.67 l 2.38
Grass 20 4.37 3.41 0.59l 2.12 0.75l 1.68 0.52l 2.29 0.76e 1.45 0.78l 1.56 0.81l 1.68
Maize 9 2.03 1.16 0.54l 0.74 0.53l 0.75 0.66 l 0.63 0.55l 0.73 0.58l 0.71 0.62l 1.03
Barley 6 5.42 1.97 0.78e 0.96 0.85e 0.77 0.69e 1.15 0.85e 0.78 0.91e 0.59 0.85l 1.82
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Table 5. Determination coefficients (r2) and root mean square errors (rmse) quantifying the
capability of REGFLEC and SVIs (NDVI, SR, EVI2, GNDVI, CI) to estimate LAI, total canopy
chlorophyll content (CHLc) and total canopy nitrogen content (Nc) of different European land-
scapes. The evaluations are using data from homogeneous canopies without strong CHLl pro-
file development. Number of observations (n), and the mean and standard deviation (sd) of
these field data are also shown. Bold numbers indicate statistically significant (p < 0.05) results,
and the superscripts symbolize the type of regression equation (l= linear; e=exponential). Italic
numbers highlight the best predictabilities for each landscape and objective.

data data NDVI NDVI SR SR EVI2 EVI2 GNDVI GNDVI CI CI REGFLEC REGFLEC
n mean sd r2 rmse r2 rmse r2 rmse r2 rmse r2 rmse r2 rmse

LAI (–)
DK08 14 2.85 1.38 0.93e 0.56 0.85l 0.52 0.94e 0.64 0.93e 0.56 0.83l 0.55 0.79l 0.60
DK09 21 2.24 1.06 0.59e 0.78 0.58e 0.73 0.69e 0.68 0.62e 0.74 0.63e 0.70 0.74l 0.53
UK 7 1.78 1.89 0.86e 0.60 0.88l 0.62 0.95e 0.31 0.93e 0.76 0.88e 1.20 0.88l 0.61
PL 10 1.91 0.86 0.79e 0.39 0.77l 0.39 0.77e 0.45 0.82e 0.38 0.76l 0.40 0.70l 0.45
NL 16 2.99 1.58 0.78e 0.83 0.81e 0.74 0.86e 0.67 0.80e 0.80 0.82e 0.73 0.82l 0.65
IT 6 1.89 0.63 0.82l 0.24 0.85 l 0.22 0.73e 0.30 0.79e 0.26 0.79e 0.29 0.29l 0.48
CHLc (mg m−2)
DK08 12 1087 590 0.94l 247 0.84l 223 0.94e 273 0.94e 247 0.81l 246 0.87l 207
DK09 20 1070 739 0.39e 588 0.41e 573 0.70 l 397 0.48e 550 0.50l 527 0.66l 418
UK 0 – – – – – – – – – – – – – –
PL 9 696 332 0.57e 216 0.55l 211 0.57e 225 0.61e 216 0.55e 225 0.48l 226
NL 16 1080 697 0.67e 419 0.75e 358 0.67e 405 0.65e 416 0.73e 364 0.71l 366
IT 6 1280 739 0.50l 298 0.55 l 282 0.29l 355 0.40l 338 0.43l 320 0.18 l 383
Nc (g m−2)
DK08 12 6.05 3.20 0.95e 1.12 0.88l 1.07 0.95 l 1.33 0.94e 1.21 0.85l 1.20 0.87l 2.49
DK09 20 5.68 2.88 0.41l 2.16 0.46l 2.07 0.70l 1.55 0.46e 2.02 0.50l 1.90 0.77 l 1.93
UK 7 2.52 3.38 0.83e 1.61 0.90e 1.30 0.91e 1.32 0.86e 1.74 0.90e 1.58 0.91l 4.37
PL 9 3.72 2.44 0.40e 1.97 0.36 e 1.95 0.42 e 1.99 0.47 e 1.93 0.39 e 1.99 0.21 l 1.98
NL 16 5.36 3.07 0.79e 1.52 0.82e 1.26 0.85e 1.25 0.82e 1.45 0.84e 1.26 0.83l 1.63
IT 6 5.30 3.32 0.14l 2.82 0.12l 2.85 0.40e 2.35 0.21e 3.01 0.17l 2.77 0.00 l 5.28

10196

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/10149/2012/bgd-9-10149-2012-print.pdf
http://www.biogeosciences-discuss.net/9/10149/2012/bgd-9-10149-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 10149–10205, 2012

Remote sensing of
LAI, chlorophyll and

leaf nitrogen

E. Boegh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 6. Percentage agricultural area (A), remote sensing based estimates of the average
canopy nitrogen content (Nc) of agricultural regions, and the total Nc of the agricultural region
within each of the 10×10 km2 landscape sites.

A Nc Nc

(%) (g m−2) (t)

DK08 48 5.93 307.33
DK09 48 1.40 64.72
UK 77 1.43 110.56
PL 78 5.14 401.29
NL 69 4.04 277.97
IT 49 5.91 198.34
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 1 

 1 

 2 

Figure 1 3 

Fig. 1. Land cover and locations of 5 European landscape sites. Courtesy: CORINE land cover
(CLC2000), European Environment Agency. (http://www.eea.europa.eu/legal/copyright).
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 2 

 1 

Figure. 2 2 

 3 

 4 

 5 

Fig. 2. SPAD meter calibration curves for (a) leaf chlorophyll (CHLl) and (b) leaf nitrogen den-
sity (Nl), and (c) empirical relationships between Nl and CHLl derived by combining SPAD
calibration equations for CHLl and Nl.
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 3 

 1 

Figure 3 2 

Fig. 3. Time series of average and standard deviation of NDVI for the agricultural area of each
landscape extracted from MODIS data. The average and standard deviation NDVI calculated
from each SPOT image of the agricultural region of NitroEurope landscapes is also shown. Due
to different spatial resolutions of land use maps used for masking non-agricultural areas (1 km
for MODIS), SPOT NDVI and MODIS NDVI are not representing exactly same areas.
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 4 

  1 

 2 

Figure 4.  3 

4 

Fig. 4. Density scatterplots of nearinfrared (NIR) versus red surface reflectance of crop and
grassland areas within each of the landscape sites calculated from SPOT satellite data.
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 5 

 1 

Figure 5.   2 
Fig. 5. Examples of three different characteristic vertical leaf chlorophyll (CHLl) profiles based
on field measurements within the studied landscape sites. The plots show mean and standard
deviation CHLl at relative measurement heights (hr =measurement height divided by canopy
height) and linear regression lines. Leaf area index (LAI), canopy height (h), and the slope (s)
and determination coefficient (r2) of linear regression slopes are indicated in each graph. Note
that the slope in (b) is not statistically significant.
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 6 

 1 

Figure 6 2 
Fig. 6. Comparison of field measurements and remote sensing-based estimates of (a) leaf
area index (LAI), (b) canopy chlorophyll content (CHLc) and (c) canopy nitrogen content (Nc)
of homogeneous canopies without strong chlorophyll vertical profile development. The remote
sensing-based estimates for each landscape are based on the methods that were best corre-
lated with the field measurements. Correlation coefficients representing predictability for indi-
vidual countries are shown in Table 5.
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 7 

  1 

Figure 7.  2 

Fig. 7. Remote sensing-based maps of canopy nitrogen contents (Nc) of NitroEurope agri-
cultural landscape sites located in Denmark (DK08, DK09), Scotland (UK), Poland (PL),
the Netherlands (NL) and Italy (IT). Colour legend is shown in the DK08 image. Water, ur-
ban/suburban (incl streets) and forest areas are shown in grey. Frequency distributions of Nc
are shown in Fig. 8.
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 8 

 1 

Figure 8.  2 

Fig. 8. Frequency distributions of canopy nitrogen (Nc) contents of crop- and grasslands in
NitroEurope landscapes (mapped in Fig. 7) estimated using remote sensing for the (a) Danish
site, 31 May 2008, (b) Danish site, 19 April 2009, (c) Scottish site, 21 July 2008, (d) Polish
site, 1 June 2008, (e) Dutch site, 9 June 2008 and (f) Italian site, 27 June 2008. The means of
field measurements are also indicated (white dot), and the mean and standard deviation of the
remote sensing based estimations are shown (black dot).
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