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Abstract

This paper presents the application of the Linear Quadratic Optimal Control (LQOC)
method for a parameter optimization problem in a marine ecosystem model. The
ecosystem model simulates the distribution of nitrogen, phytoplankton, zooplankton
and detritus in a water column with temperature and turbulent diffusivity profiles taken
from a three-dimensional ocean circulation model. We present the linearization method
which is based on the available observations. The linearization is necessary to apply
the LQOC method on the nonlinear system of state equations. We show the form of the
linearized time-variant problems and the resulting two algebraic Riccati Equations. By
using the LQOC method, we are able to introduce temporally varying periodic model
parameters and to significantly improve — compared to the use of constant parameters
— the fit of the model output to given observational data.

1 Introduction

Marine ecosystem models describe biogeochemical processes in the ocean and are
used, e.g. for calculating the effect of marine photosynthesis on the global carbon cy-
cle. Typically, such kind of models have several parameters, for example growth and
mortality rates for the different species taken into account. Since most of these pa-
rameters are not known exactly and difficult to measure, parameter identification or
estimation is an important tool to calibrate a model and thereby improve its quality to
the extent that reasons other than inappropriate parameter values must be responsible
for remaining model deficiencies, see for example Fasham and Evans (1995); Hurtt
and Armstromg (1996); Fennel et al. (2001); Prunet et al. (1996). Parameter identifica-
tion means to perform an optimization in order to minimize the misfit between model
output and given data, commonly represented by a least-squares type cost functional.
Additionally, uncertainty estimates corresponding to data errors may be computed. The
computational effort to perform such kind of optimization runs for the three-dimensional
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coupled system of ocean circulation and marine biogeochemistry is quite high. Thus
several simplifications may be used: One of them is to compute the marine biogeo-
chemistry in a so-called offline mode, i.e. to solve the transport equations for the tracers
with precomputed ocean circulation fields (velocity, temperature, salinity) as forcing or
input. The other one is to use models for a single water column only. This simplification
is motivated by the fact that most of the ecosystem processes (as for example growth
and dying) are happening locally in space and that the main spatial interactions are
vertical mixing and sinking of organic matter. Nevertheless, it has been shown that the
locally optimized parameters can also be beneficial when used in three-dimensional
computations, see Oschlies and Schartau (2005). The work presented in this paper is
motivated by results obtained for a typical marine ecosystem model, namely the NPZD
model introduced in Oschlies and Gargcon (1999). As was reported in several publica-
tions with different optimization algorithms, the quality of the model fit to observations
was not optimal, and in some cases it was difficult to identify the parameters uniquely,
see for example Ward (2009); Ward et al. (2010); Ruckelt et al. (2010). In most cases
(and in all these studies), the parameters of the marine ecosystem models are as-
sumed to be temporally constant. This reflects the aim to obtain a model that is appli-
cable for arbitrary time intervals. In contrast, in our work we allowed the parameters to
vary temporally over the year while remaining periodic over all years of the considered
time interval. Our main research question was if such kind of relaxation is able to sig-
nificantly improve the model-to-data fit. Eknes and Evensen (2002) and Schartau et al.
(2001) have examined the possibility of using a sequential data assimilation method
for state estimation in a biological model. On the other hand, there are several papers
on parameter estimation only, see Schartau et al. (2001); Fasham and Evans (1995);
Hurtt and Armstromg (1996); Fennel et al. (2001); Prunet et al. (1996); Matear (1995);
Spitz et al. (1998). Work by Losa et al. (2003) combined state and parameter estima-
tion using a sequential weak constraint parameter estimation in an ecosystem model.
A good example for time-dependent parameters is introduced in the work by Mattern
(2012), they used a statistical emulator technique to estimate time-dependent values
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for two parameters of a 3-dimensional biological ocean model. They demonstrated
that emulator techniques are valuable tools for data assimilation and for analyzing and
improving biological ocean models. They also allowed for temporally changing param-
eters in their optimization, but without imposing annual periodicity. We here use the
additional annual periodicity constraint on the parameters, which is motivated by the
goal to allow for some temporal flexibility of the parameters and at the same time to
retain the temporal universality of the optimized model, i.e. allowing for straightforward
application to time periods outside the range of observations. Seasonally varying pa-
rameters may be interpreted in terms of not properly accounted seasonal processes
and may, eventually, lead to improved model parameterizations that can model these
variations even with constant model parameters. To achieve these goals, we apply the
method of Linear Quadratic Optimal Control (LQOC) to the NPZD model. Therein, we
allow the parameters to be time-dependent, apply a well-established method for opti-
mal control, and additionally impose the constraint of annual periodicity. This avoids the
process of parametrization in the sense that we do not have to know or assume how
the above mentioned periodic functions look like. In contrast, the method itself will gen-
erate an optimal periodic function for each parameter. Moreover, it allows to balance
the two aims that we have: by introducing weight matrices we can choose if it is more
important to obtain a very good fit or nearly perfect periodicity. The method requires a
reference trajectory at the locations of the data and a reference control, i.e. a reference
vector of model parameters. The former can be taken from the measured data, and
for the latter we use an initial guess for the parameters which can be the output of an
optimization with constant parameters.

The structure of the paper is as follows: in the next section we briefly describe the
model, the data used and the cost function to be optimized. In Sect. 3, we present the
parameter optimization problem and describe the important parts of the used LQOC
method. The application of the LQOC method on the NPZD model is presented in
Sect. 3.1. Afterwards, we present our results with respect to the quality of the fit and
the periodicity of the parameters and end the paper with some conclusions.
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2 Model equation and optimization problem

Marine ecosystem models are coupled systems of partial differential equations (PDES)
consisting of time-dependent advection-diffusion-reaction equations with nonlinear
coupling terms. The turbulent diffusivity, temperature and salinity fields are either com-
puted simultaneously or in advance by a physical ocean model. Clearly, the second
variant (where the physical ocean model output is used as prescribed forcing for the
ecosystem model) that is used in this paper is computationally cheaper but neglects
the biology’s feedback effects via impacts on the absorption of solar radiation, gener-
ally assumed to be small relative to uncertainties in the boundary conditions such as
surface heat fluxes, see Oschlies (2004).

2.1 The NPZD model

The model that we use as an example to apply the LQOC method here simulates
the interaction of dissolved inorganic nitrogen N, phytoplankton P, zooplankton Z and
detritus D. It was developed with the aim of simulating the seasonal cycle of upper-
ocean biogeochemical processes in a basin-scale model of the North Atlantic, see
Oschlies and Gargon (1999). The dependencies between the four model variables are
schematically depicted in Fig. 1. The model uses the ocean circulation and temperature
field in an off-line modus, i.e. these are used only as forcing, but no feedback on them is
modeled. The model simulates one water column at a given horizontal position, which is
motivated by the fact that there have been special time series studies at fixed locations,
one of which was used here. In the model, the concentrations (in mmol N m‘3) of N, P,
Z, and D are denoted by x = (x’),=1,273,4 are described by the following PDE system:

ox' ox' o ( ox'

= K_
P oz

Il / - .
T w 62+62 >+q(x,u), /=1,2,3,4 (1)

x':[0,T]x[-H,0] = R.
Here z denotes the vertical spatial coordinate, H the depth in the water column, q/
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represents the biogeochemical coupling terms for the four species and u the model
parameter. We omitted any additional arguments of the q,, for simplicity. The output
taken from the physical ocean model are hourly profiles of the turbulent mixing coef-
ficients k, and temperature, the latter needed in the biological process parameteriza-
tions below. The vertical sinking velocity w'isa parameter of the biological model that
is nonzero only for D, i.e. w' =w?=wl=0w"= wg > 0. The biogeochemical coupling
(or source-minus-sink) terms q’,/ =1,2,8,4, are given by (see Oschlies and Garcon,
1999):

for N ; (x) -J(z,t,N)P +y,Z + upD,

for P : q ?(x) = J(z,t,N)P - u1,P - G(e, g)Z @)
forZ: (X) =y1G(€,9)Z-Vy,Z - ﬂzz

forD: ¢*(x)=(1-y4)G(e,9)Z + uzZ° + ppP — ppD - w32,

where J is the daily averaged phytoplankton growth rate as a function of depth z and
time t defined in Oschlies and Gargon (1999), and G is the grazing function:

geP2

J(z,t,N) = min (J(z,t),J

maxT’\iN> ) G(e,g) =

g+eP2’
Table 1 lists the model parameters with their original symbols as in Oschlies and
Garcon (1999) which are here summarized in the vector u. For more details see Os-
chlies and Gargon (1999); Schartau and Oschlies (2003a).

2.2 Measurement data and corresponding model output

The observational data used here, denoted by yObS, is taken from the Bermuda Atlantic
Time-series Study (called BATS; 31°N 64° W). There are five types of measurement
data y°° = (yor®) 1. s, Which correspond to aggregated values y™% := (y7°%),_; 4
of the model output. The used data and their corresponding model variables are:
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. Dissolved inorganic nitrogen (y;~ = DIN, in mmol m'3), corresponding to variable

¥ = x" in the model.

obs mod _

. Chlorophyll a (y, ~ = Chl a, in mg m‘3) that, with an additional scaling y, =

x2/1 .59 converts simulated phytoplankton biomass (in mmol N m‘3) to chlorophyll
(inmg m‘3).

. Vertically integrated mesozooplankton biomass (ygbs = Z0O0, in mmol m'2) that

with an additional assumption about the relation of mesozooplankton biomass to
total zooplankton biomass according to the formula

ZO0Oy1y — 1.2344 - Z00 s, + 0.096504
see also Ward (2009), yields

mod —

3

/x3 —0.096504
4z

1.2344

with units given in mmol N m=3.

. Particulate organic nitrogen (yffbs= PON, in mmolNm™), corresponding to

yr=P+z+D=37,x.

obs

. Carbon fixation or primary production as carbon uptake (y; , here abbreviated

as PP, in mmol C m™> d‘1). As modeled primary production, the temporal mean of
the model output P multiplied by the phytoplankton growth rate J(u, u)P (that itself
depends on nutrients and light), over 24 h is taken.

Except for zooplankton, only data in the euphoric zone, i.e. the upper model layers,
are considered. If data are not given exactly at the grid points, an additional interpola-
tion has to be performed. For simplicity of notation we will assume that this is already
incorporated in the aggregated variables y7°4 m=1,...,5.
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2.3 The optimization problem

The aim of the optimization is to fit the model output ymOd that was aggregated in

the above mentioned way to the given observational data yObs over a chosen time
interval of j,.« years. We denote by N,,; the number of measurements for y,?,bs in year
J€{1,...,jmax;- Note that these numbers may be quite different for the different years

j. The i-th measurement in year j of y,Obs is denoted by y,Oj?S, and the corresponding

aggregated model output value by y,’}‘f’d. We now firstly compute the annual misfit per

model output/ tracer, weighted using the vector

0 =(0,)mey 5= (0.1,0.01,0.01,0.0357,0.025) (3)

-----

of measurement uncertainties, and by the number N,,; of measurements per tracer
and year, i.e.

Npj ( mod obs)2

y L. —y st
Fji=  ———""— m=1,...,5j=1, .

s Jmax- (4)
O'ranm/ max

i=1

If there are no measurements for a state variable/tracer in a year (i.e. N,; = 0), the sum
is empty. The overall cost function is then calculated as

jmax 5
1
Feag—2 2 Fo ©)
totall 1 m=1

where Ny, is the total numbers of non-zero terms F,,; actually occurring in the sum.
In the usual case we have Ny = 5jax- If €ver N, = 0 and thus £, = 0 for a year and
tracer, Ny, i decreased accordingly.
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3 Finite-Dimensional Linear-Quadratic Optimal Control

Linear-Quadratic Optimal Control (LQOC) is a mathematical technique to compute op-
timal controls in linear dynamical systems. Usually also the control variables or pa-
rameters are time-dependent. The method is widely used in engineering applications
and well-studied from the mathematical side, see e.g. Anderson and Moore (1971);
Casti (1987); Lunze (1997); Sima (1996). Extensions to non-linear problems are pos-
sible, in the first place by linearizing the dynamical system of equations, see Clemens
(1993). The main idea of the work presented in this paper is to use this method to in-
troduce time-dependent parameters in marine ecosystem models. Our aim is to allow
only for annual periodicityof the model parameters that should be optimized to fit the
measurement data. We are notinterested in parameters that vary completely in time
over the whole time interval that is taken into account in the cost functional (usually
several years), since this would lead to parameters that are very specific for the used
time interval. They would lose their generality and their usability for other time periods.
Our aim by introducing periodic parameters is to get a rather general extension of the
model, such that it can be used for a wide range of scenarios. We moreover want to find
out what parameters are sensitive to a variability in time at all, i.e. for which this gives
a better fit and — on the other hand — which parameters can be set constant in time
without losing any model quality. To enforce periodicity of the model parameters (i.e.
the controls in the LQOC setting), we impose appropriate constraints on them. Weight-
ing matrices allow to steer the parameter optimization process such that a balance
between

— optimal data fit
— and exactness of periodicity of the parameters/controls

is possible.
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3.1 Application to the NPZD model

In this section we apply the LQOC method to the discretized version of the NPZD
model. We present the details of the linearization and enforcement of the periodicity of
the parameters/ controls. The NPZD model is forced by output from the OCCAM global
circulation model, namely the hourly vertical profiles of temperature 7 and vertical dif-
fusivity k,. The vertical grid consists of 66 layers with thickness increasing with depth.
The model described by PDE system (1) is solved using an operator splitting method:
Given a time-step T, the discretized scheme reads:

[/ - TL;’j“] X1 = [/ + TLﬁ”k] BB oB0B(x,,u,),
[ — [ ——

:=D,, =S,
n=1,.,M. (6)

Here D, and S, are the diffusion and sinking matrices, respectively. The time-step 7
used in the model is one hour. Note that as in Eq. (1) the state x, contains all four
tracers of the model, i.e. x, = (x;,xﬁ,xﬁ,xﬁ)T and u,, is the control (here the model
parameter) vector In the operator splitting sheme, at first, the nonlinear coupling oper-
ators g, = (q,,,q,,,q,,,q,,) are computed at every spatial grid point and integrated by

four explicit Euler steps with stepS|ze , each of which is described by the operator:

BZ(Xnvun) = [/ + EQn(Xmun)] : (7)

Then, an explicit Euler step with full step-size 7 is formed for the sinking term, which
is sEatiaIIy discretized by an upstream scheme. This step is summarized in the matrix
L>™. This matrix does only depend on the time step n if the sinking velocity wj is to be
ptlmlzed. Finally, an implicit Euler step is applied for the diffusion operator, discretized
with second order central differences. The resulting matrix D,, depends on time step
n. It is tridiagonal, and the system is solved directly. Note that Df’,iﬁ, Lf]i”k are 4x4
block-diagonal matrices.
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The discrete system can now be written as
Xps1 = Dr_71sn/3rc77 0/32 °/3/(7]°B/C77(Xn!un)’
=:f(x,u,), n=1,..M-1, (8)
where f is a nonlinear function.

3.2 Linearization

In order to apply the LQOC method to the nonlinear system (8), we can use the lin-
earization method to cope with this nonlinear problem. The linearization is performed
around reference trajectories of state x and control u. Before discussing a detailed lin-
earization, we will first explain how the approach will be utilized. The idea behind is to
apply the LQOC method on the time intervals (called horizon) between two successive
observational data separately. Here we only use time instances where observations
(y,?,bs),,,zhz’s’4 are available. From these, reference values for the tracers (x’),=1’2,3‘4
can be obtained. We use the notations:

- N/- is the number of observational data in year j € {1, ..., jhax} Obtained in this way,
— n; ; is the time step of the /-th observational data in year /,
= njo is the firstand NN, +1 the last time step in year j.

= lii=1ninjivalii =1, max/ =0,...,N; is the time horizon on which the
same observational data are used.
The linearization is performed around the observational data (xf,f),j =1,..., Jmax @and

erence parameter trajectory is described in the Sect. 3.3.

For the first interval /; 5, we linearize the model around the first observational data

(xﬁ) and the parameter (u;,ef),,e,w. The linearized state equation now reads

Zp1 =Rz, + By, + by, nelig (9)
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where

ref ref
1 1 U )

6f
B, - au(x:ez,u;ew

ref ref ref
b, =1f(x 1104 )_X1,1’
ref
1,1’

Z,=X,—X v, = u,-u, nel,.

Analogously, we obtain for the second time horizon /4 ; by linearization around (xref

ref

and (u, )"6/1,1:

z,,1=A,z,+B,v,+B,, nelq.

At the end we have with z = (z,)) ,_y ,, for all years:

Zp = Az, +Bv,+b,, n=1,....M (10)
)

z4 (the given initial value).
3.3 Choice of the reference parameter trajectory

A main objective of this work is to enforce periodicity of the parameters/controls. We
denote the length of a time period — which in our case is one year — measured in time
steps by 7. We now chose the reference trajectory for the control to be

ref._ UO, ifnST
Un '_{un_r, ifn>T. (11)

Here u, € R™ is an initial guess for the parameters. In our case we took the values from
Oschlies and Gargon (1999), compare Table 1. Note that we use these values during
the whole first year (n <T).

10218

Jadeq uoissnosiq | Jadeq uoissnosiq | J4edeq uoissnosiq | Jaded uoissnosi(

BGD
9, 10207-10239, 2012

Periodic parameters
and linear quadratic
optimal control

M. El Jarbi et al.

: “““ “““


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-print.pdf
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

As a result, choosing the R, € R°*” as positive definite matrices and minimizing the
quadratic term

.
v,R,v,

in Eq. (12) will enforce periodicity of u, for n >T. The matrices R,, can be adapted
to weaken or strengthen this enforcement, specifically they can be used to weaken it
in the first steps n < T where it is not intended to enforce periodicity to the constant
reference parameters uy.

3.4 Application of the LQOC theory

We use a discrete Linear-Quadratic Optimal Control, i.e. we assume that the dynamical
system is already discretized in time, namely at discrete times ¢,,n=1,...,M. In the
context of the LQOC for discrete linear systems one usually considers a discrete-time
system of the form (10), where in every time step n

-z,=2(t,) € R is the state vector (here the model output),

- v, =v(t,) € R” is the control (here the model parameter) vector, with the param-
eter vector from the model (2),

— the matrices A, € R and B, e R**” are the system matrix and the input matrix,
respectively.

We will use the notations

y € RM*K = RMK,
€ RWM-1)xp ~ RM-1)p

Z= (zn)n=1
v = (Vn)n=1

for the whole discrete trajectories of state and control vector, respectively. The theory
of linear quadratic optimal control gives a formula for the optimal parameter/control

-----

-----
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15

trajectory u that minimizes the cost function
1 1<
J(v) = EZ/T/,QMZM + > 21 z;Q,z,+v R, (12)
n=

under the constraint Eq. (10). Here for every n

-Q,€ R isa positive semi-definite diagonal weighting matrix for the state vector,

- R, € R”*" is a positive definite diagonal weighting matrix for the control vector.
This formula is given in the following theorem, see e.g. Anderson and Moore (1971);
Rugh (1996).
Theorem 1 IftheQ,,n=1,...,M, are positive semi-definite and theR,,n=1,...,M -
1, are positive definite, then there exists a unique solution of the linear quadratic optimal
control problem (10), (12). The optimal control is given by the feedback law,

uy+K,z,+S,, ifn<T,
Un = { u,_;+Kz, +S,, ifn>T,
where K,, and S, are given by
K,=-(R,+B/P,,,B,)" 'BIP,.4A,, n=1,...,M-1,
S,=~(R,+BJP,1B,) 'BI(P,,1b,+h,y), n=1,... . M-1,
and P, can be given by
Py =Qy,
P,=Q,+A’P,.,A,-ATP,..B,(R,+B'P,.,B,) 'A,BTA,, n=M-1, .1,
and an additional difference equation for the h,, namely
hy, =0,
hy = A;(Ppi1by+ hyyq)
- A;Pn+1 B,(R, + B;Pn+1 Bn)_1 B;(Pnﬂbn +hy4), n=M-1,...1.
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Remark:

During the first time period from 1 to T we have linearized the Eq. (8) around the
constant parameter uy. It follows that A, B,,, Bb, are constant over all horizon |, ;, for
/ = 0, e ,N1 .

3.5 Particular choice of Q,,,R,

The weighting matrices Q,, are taken as constant for all n, namely

, 1
Qn=Q=dIag(—2)/=1 """ 5 I7=1,,M—1
S
where o, are the variances that taken from the original cost function (5). The matrices
R, are taken as

R, = diag(r/");-4

They are chosen differently in the first year (on one hand) and in all subsequent years
(on the other hand). In all years except the first one (i.e. n>T), the R,, are used to
enforce periodicity of the parameters. The bigger the r,” for these years are, the more
perfect periodicity of the parameters is expected. Following this idea, the desired choice
for the R,, in the first year would be just the zero matrices. But by this choice the
assumptions of Theorem 1 are not satisfied and the feedback law is not valid. As a
consequence, it is desirable to chose the r,” for the first year as small as possible.
Moreover, the choice of the r,” in the first year can be used to keep the parameters in
the admissible bounds. For our computations, we thus chose

1
_— i=1,...,p,n=1,...,T
Un )2
,—in= |( 0,/1)| . (13)
— i=1,...,p,n=T+1,... .M,
|(un—T,/’)|

where u, are the values as listed in Table 1.
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4 Optimization results

In this section we present the results of the parameter optimization performed with the
LQOC method described in the last two sections. We show both the obtained fit of the
optimized model to the data and the annual periodicity of the parameters.

4.1 Fit of model output to observational data

This section shows a comparison between the optimized model output obtained by the
LQOC method with periodic parameters and the observational data. As a reference
we also compare the results to those obtained by a direct optimization of the nonlinear
model using constant parameters with a Sequential Quadratic Programming (SQP)
method that takes into account parameter bounds. This method was used in Ruckelt
et al. (2010).

In contrast to these results obtained for constant model parameters, the LQOC
method gives a nearly perfect fit of the data. Figure 2 shows the model results, ag-
gregated model output (see Sect. 2.2) y™ obtained with the LQOC method together
with the observational data yObS for the years 1994 to 1998 in the uppermost layer.
The model-data fit for chlorophyll a is nearly perfect. Even substantial concentration
changes that occur between some neighboring measurement points (e.g. for PON, in
1994, 1995 or 1997) can be captured by the optimized trajectory. There are only some
parts of the time interval where the trajectories are slightly farther away from the data,
for example in 1996 for zooplankton and in the last two years of the simulated time
interval for PON. Figure 4 shows the mismatch between model output and data for all
times and depths

We performed the optimization for the years 1994 to 1998, in contrast to the years
1991 to 1996 that were used in Ruckelt et al. (2010). The reason for this is that no
zooplankton data are available at BATS for the years 1991 to 1993, which would be
disadvantageous for the linearization procedure in the LQOC method. In Rickelt et al.
(2010) a minimum value of the cost function (5) of F ~ 70 was obtained for optimized

10222

BGD
9, 10207-10239, 2012

Periodic parameters
and linear quadratic
optimal control

M. El Jarbi et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-print.pdf
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

constant parameters for the five year time interval [1991,1996]. For the time interval
[1994,1998] the value obtained by the SQP method and constant parameters is very
similar to the one obtained in Rlckelt et al. (2010). Also the quality of the fit — depicted
in Fig. 3 — is comparable.

Clearly, the better fit also results in a significantly lower value of the cost function (5)
of about F = 1.35 compared to F ~ 70 obtained by constant parameters and the SQP
method, see Ruckelt et al. (2010). Results for The other layers are comparable.

4.2 Sensitivity with respect to the weighting matrices R,

To examine the effect of the weighting matrices R,, in the first year on the behavior
of the parameters and the cost function F, we have additionally performed sensitivity
experiments with different entries r,” of the weighting matrices R,, for n < T. We present
two additional experiments with:

1

—— i=1,...,m,n=1y--'vT
n_ |nﬂn$u/N2

_— Ji=1,....mn=1,...,T.

|max(u;)[?

The values of min(u) and max(u) are listed in Table 1. The corresponding values of
the rf for these two choices and the r,” from Eq. (13) (called reference simulation) are
shown in Table 2.

The trajectories of the tracers x, the parameters u, and the value of the cost func-
tion F depend heavily on the choice of the corresponding entries r;" in the matrix R,,.
Figure 5 shows the trajectories for three tracers and different r,.”. All experiment show
only minor differences from the reference simulation with the r,." from Eq. (13). The
results show that a decrease in the entry r’ can lead to a small decrease in the cost
function. The sensitivities of the parameters with respect to the choice of r{’ can be
seen in Figs. 6, 7, and 8. It is obvious that for smaller values of r,-” the variability of the
parameters is getting larger.
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4.3 Periodicity of the parameters

In this section we show that the above model-to-data fit can be achieved with parame-
ters that are almost periodic with an annual periodicity. Enforcement of periodicity was
possible due to an appropriate adjustment of the matrices R,,n=1,...,M -1, in the
cost function (12) used in the LQOC framework, see Sect. 3.1. It was also possible to
keep the parameters in their desired bounds (see Table 1), although the LQOC method
does not require to impose these bounds explicitly.

Figures 6, 7, and 8 illustrate the temporal behavior of the ten parameters that were
optimized with the LQOC method. These figures show different trajectories for each
parameter with the different choices of the r,-”, compare Table 2. As mentioned above, it
is obvious that for a smaller r,.", the amplitude of the parameters increases, but it always
remains almost periodic.

The parameters controlling growth of phytoplankton, namely the maximum growth
rate a and the initial slope of the P-I curve a show in Fig. 6 Both show maximum values
in early summer and in winter, with a clear minimum value in spring during the peak of
the annual chlorophyll signal (Fig. 7). This is consistent with earlier assimilation studies
that, for assumed constant parameters, tended to overestimate plankton production at
BATS during the bloom end of winter and, at the same time, tended to underestimate
production in oligotrophic summer conditions and in early winter, see Schartau et al.
(2001). Such a trend to relatively high values of a has also been found in earlier studies
that optimized parameter values by data assimilation, see Fasham and Evans (1995),
Schartau et al. (2001). Earlier studies assuming time-independent parameter values
have attributed relatively high values of a to the absence of a dial cycle in the turbulent
mixing, which might allow for substantial phytoplankton growth even in winter during
reduced daytime mixing see Schartau and Oschlies (2003a). This is consistent with
the findings of the current study, that also suggests high values of a during the period
of deep mixing in winter. In addition, our optimized model predicts even higher values
of the initial slope parameters a for late spring and early summer, where the mixed
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layer is usually shallow and growth is limited by nutrients rather than light in the surface
mixed layer. A large value of a can, however, help to establish a subsurface chlorophyll
maximum in better agreement with the observations. This was also noted by Schartau
and Oschlies (2003b). Our results reported here indicate that high values of a may, at
BATS, be more important for the establishment of the deep chlorophyll in late spring
than for the maintenance of phytoplankton production during periods of deep mixing
in winter. Maintenance of high primary production during summer has been difficult
to achieve by earlier models run at BATS (Schartau et al., 2001). As nutrient supply
to the surface waters is low during the stratified season, models with fixed carbon-to-
nutrient stoichiometry and constant model parameters do not seem to be able to reach
observed levels of primary production in the surface layer see Schartau and Oschlies
(2003b). In the current study, the carbon-to-nutrient factor used to convert simulated
(nitrogen-based) primary production to observed (carbon-based) primary production is
constant as well. However, the seasonally varying parameters can contribute to main-
tain high levels of primary production during summer in the absence of substantial
inputs of new nutrients. This is realized by enhanced recycling of biomass, evident by
high maximum grazing rates, high assimilation efficiencies, high prey capture efficien-
cies and high zooplankton excretion in late spring and early summer. Similarly, rem-
ineralization of detritus is highest in late spring as well. These high rates all contribute
to fast recycling of nutrients in the surface ocean, which helps to maintain observed
high rates of primary production and thereby reduces the model-data misfit function.

5 Conclusions

In this paper, we successfully applied the method linear quadratic optimal control to
the optimization of an one-dimensional marine ecosystem model. The model has to be
linearized to fit in the LQOC frame work. The method permits perfect periodic evolution
of model parameters and additionally notably improves the fit of the data in compar-
ison with the solution with fixed model parameters. We demonstrated that the LQOC

10225

BGD
9, 10207-10239, 2012

Periodic parameters
and linear quadratic
optimal control

M. El Jarbi et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-print.pdf
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

optimization is suitable for the considered problem and furthermore have shown that
this method provides a very reasonable solution. Even with the available small number
of observational data, which is typical to oceanographic time series sites, its quality is
very high. Temporal deviations of individual parameters about the annual mean can be
analyzed further to help making inferences about processes that the model cannot de-
scribe well when constant parameters are used. This latter analysis should contribute
to better understanding model deficiencies and, eventually, help to improve marine
ecosystem models.

Acknowledgements. The authors would like to thank Andreas Oschlies and Iris Kries, IfM Ge-
omar, Kiel, for their support with the NPZD model. This research was supported by the DFG
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References

Anderson, B. D. O. and Moore, J. B.: Linear Optimal Control, Prentice-Hall, Englewood Cliffs,
NJ, 1971. 10215, 10220

Casti, J. L.: Linear Dynamic Systems, Academic Press, 1987. 10215

Clemens, D.: optimal Nonlinear Control for Power Systems, IEEE Conference on Control Appli-
cation, 241-245, 1993. 10215

Eknes, M. and Evensen, G.: An ensemble Kalman filter with a 1-d marine ecosystem model.,
J. Mar. Syst. 36, 75—100, 2002. 10209

Fasham, M. and Evans, G.: The use of optimization techniques to model marine ecosystem
dynamics at the JGOFS station at 47°N 20°W. Philos. Trans. R. Soc. Lond., B 348, Philos.
Trans. R. Soc. Lond., B 348, 203—210, 1995. 10208, 10209, 10224

Fennel, K., Losch, M., Schréter, J., and Wenzel, M.: Testing a marine ecosystem model: sen-
sitivity analysis and parameter optimization, J. Mar. Syst., 28, 45-63, doi:10.1016/S0924-
7963(00)00083-X, 2001. 10208, 10209

Hurtt, G. and Armstromg, R.: A pelagic ecosystem model calibrated with BATS data., Deep-Sea
Res., 43, 653-683, 1996. 10208, 10209

Losa, S. N., Kivman, G. A., Schroeter, J., and Wenzel, M.: Sequential Weak constraint param-
eter estimation in an ecosystem model, J. Mar. Syst., 43, 31-49, 2003. 10209

10226

BGD
9, 10207-10239, 2012

Periodic parameters
and linear quadratic
optimal control

M. El Jarbi et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-print.pdf
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/S0924-7963(00)00083-X
http://dx.doi.org/10.1016/S0924-7963(00)00083-X
http://dx.doi.org/10.1016/S0924-7963(00)00083-X

10

15

20

25

30

Lunze, J.: Regelungstechnik 2, Springer-Verlag, Berlin Edn., 1997 (in German). 10215

Matear, R. J.: Parameter optimization and analysis of ecosystem models using simulated an-
nealing: a case study at Station P, J. Mar. Res., 53, 571-607, 1995. 10209

Mattern, J.: Estimating time-dependent parameters for a biological ocean model using an em-
ulator approach, J. Mar. Syst., 96-97, 32—47, 2012. 10209

Oschlies, A.: Feedbacks of biotically induced radiative heating on upper-ocean heat budget,
circulation, and biological production in a coupled ecosystem-circulation model, J. Geophys.
Res., 109, C12031, doi:10.1029/2004JC002430, 2004. 10211

Oschlies, A. and Gargon, V.: An eddy-permitting coupled physical-biological model of the North
Atlantic 1. Sensitivity to advection numerics and mixed layer physics, Global Biogeochem.
Cy., 13, 135—-160, 1999. 10209, 10211, 10212, 10218, 10229

Oschlies, A. and Schartau, M.: Basin-scale performance of a locally optimized marine ecosys-
tem model, J. Mar. Res. 63, 335-358, 2005. 10209

Prunet, P, Minster, J. F., and Ruiz-Pino, D.: Assimilation of surface data in a one-dimensional
physical-biogeochemical model of the surface ocean: 1. Method and preliminary results,
Global Biogeochem. Cy., 10, 111-138, 1996. 10208, 10209

Ruckelt, J., Sauerland, V., Slawig, T., Srivastav, A., Ward, B., and Patvardhan, C.: Parameter
Optimization and Uncertainty Analysis in a Model of Oceanic CO_2-Uptake using a Hybrid
Algorithm and Algorithmic Differentiation, Nonlinear Analysis, 10, 3993-4009, 2010. 10209,
10222, 10223

Rugh, W. J.: Linear System Theory, 2nd Edn., Prentice-Hall, Upper Saddle River, New Jersey
07458, 1996. 10220

Schartau, M. and Oschlies, A.: Simultaneous data-based optimization of a 1d-ecosystem model
at three locations in the north Atlantic: Part | — method and parameter estimates, J. Mar. Res.,
61, 765-793, 2003a. 10212, 10224, 10229

Schartau, M. and Oschlies, A.: Simultaneous data-based optimization of a 1D-ecosystem
model at three locations in the North Atlantic: Part Il — Standing stocks and nitrogen fluxes,
J. Mar. Res., 61, 795-821, 2003b. 10225

Schartau, M., Oschlies, A., and Willebrand, J.: Parameter estimates of a zero-dimensional
ecosystem model applying the adjoint method, Deep Sea Res. Pt. 1l, 48, 1769—1800, 2001.
10209, 10224

Sima, V.: Algorithms for Linear-Quadratic Optimization, Pure and Applied Mathematics, Marcel
Dekker, Inc., New York, NY, vol. 200, 1996. 10215

10227

BGD
9, 10207-10239, 2012

Periodic parameters
and linear quadratic
optimal control

M. El Jarbi et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-print.pdf
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2004JC002430

Spitz, Y., Moisan, J., Abbott, M., and Richman, J.: Data assimilation and a pelagic ecosys-
tem model: parameterization using time series observations, J. Mar. Syst., 16, 51-68, 1998.
10209

Ward, B.: Marine Ecosystem Model Analysis Using Data Assimilation, Ph.D. thesis, available at:
http://web.mit.edu/benw/www/Thesis.pdf (last access: 1 August 2012), 2009. 10209, 10213

BGD
9, 10207-10239, 2012

Jaded uoissnosiq

Ward, B., Anderson, M., Friedrichs, T., and Oschlies, A.: Parameter optimisation techniques
and the problem of underdetermination in marine biogeochemical models, J. Mar. Syst. Con.
Lett., 81, 34—43, 2010. 10209

Periodic parameters
and linear quadratic
optimal control

O

m .

= M. El Jarbi et al.

73

o

=}

S
Q

©

(0]

| Aestact  Inoducton
O !!
(72}

. Tabes  Figues
(=

(2}

@,

o

> 1
=

Q

©

: 1
@

(72}

(@]

C

()]

o

>

D
Q

e

(0}

=

(8)
@

o
2

10228


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-print.pdf
http://www.biogeosciences-discuss.net/9/10207/2012/bgd-9-10207-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://web.mit.edu/benw/www/Thesis.pdf

BGD
9, 10207-10239, 2012

Jaded uoissnasiqg

Periodic parameters
and linear quadratic
Table 1. Parameter of the ecosystem model to be optimized with the LQOC method. Here optimal control

Uo = (Ug)i=1.. 12 is the vector of parameters taken from Oschlies and Gargon (1999), min(u;) %
and max(u;) there respective upper and lower bounds used in Schartau and Oschlies (2003a). g M. El Jarbi et al.
(%2}
parameter u; Up; Units min(u;) max(u;) S
o
Assimilation efficiency of zooplankton V1 0.75 0.3 0.93 = g
Growth rate parameter a 0.6 day‘1 0.2 1.46 o
Initial slop of P-I Curve a 0025 m?w2d! 0.001  0.256 - ! !
Zooplankton excretion Vs 0.03 day"1 0.01 0.955
Light attenuation by phytoplankton k, 0.03 m '(mmolm=®)" 0.01  0.073 ) ! !
Pry capture efficiency € 1 (mmolm~)2d™"  0.025 1.6 § ! !
Maximum grazing rate g 2 d! 0.04 2.56 2
Specific mortality rate M,  0.03 day™’ 0.01 0.635 S
Zooplankton quadratic mortality U, 02 (mmolm=2)~'d™ 0.01 0.955 Y ! !
Remineralization rate parameter of detritus yp  0.05 day'1 0.02 0.146 ©
o
Sinking velocity of detritus We 5 mday™’ 1 128 - ! !
Half-saturation constant for N uptake rate Kn 0.5 mmolm™ 0.1 0.730 — ! !
(7]
Q
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Table 2. The different values of r,-” for the reference simulation (first row) and the two additional

sensitivity experiments.

. . 1 . 1 i 1
! i = 2 i =1— 2 T (1 2
(o)l [min(u;)| |max(u;)|
1 1.77 11 1.15
2 2.77 25 0.469
3 1600 10* 15.25
4 1111 10* 1.09
5 1111 10* 187
6 1 1600 0.39
7 0.25 625 0.152
8 1111 10* 42.48
9 25 10* 1.09
10 400 2500 46
11 0.04 1 6.1017°
12 4 100 1.876
cost F see Eq. (4) 1.35 1.9 0.95
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Fig. 1. Schematic description of the coupling between the variables in the NPZD model.
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Fig. 3. Observational data y°°>, m = 1,..,4 and aggregated model trajectories y™°°, m = 1,..,4,
optimized with a Sequential Quadratic Programming (SQP) method. Values are shown for the

upper layer (depth less than 5m) and years 1994—1998.
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Fig. 5. Model output trajectories with different ", the reference simulation (dashed), with larger
r,-” (solid) and with smaller r,” (dotted) for the upper layer (depth less than 5m) and years 1994—

1998.
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Fig. 9. Relative temporal variations of some of the model parameters in a typical year. Since the
periodicity of the parameters is nearly perfect, no difference between the five years is visible.
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