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Abstract

The vertical distribution of soil organic matter (SOM) in the profile may constitute a sig-
nificant factor for soil carbon cycling. However, the formation of the SOM profile is
currently poorly understood due to equifinality, caused by the entanglement of several
processes: input from roots, mixing due to bioturbation, and organic matter leaching.5

In this study we quantified the contribution of these three processes using Bayesian
parameter estimation for the mechanistic SOM profile model SOMPROF. Based on or-
ganic carbon measurements, 13 parameters related to decomposition and transport
of organic matter were estimated for two temperature forest soils: an Arenosol with
a mor humus form (Loobos, The Netherlands), and a Cambisol with mull type humus10

(Hainich, Germany). Furthermore, the use of the radioisotope 210Pbex as tracer for
vertical SOM transport was studied.

For Loobos the calibration results demonstrate the importance of liquid phase trans-
port for shaping the vertical SOM profile, while the effects of bioturbation are generally
negligible. These results are in good agreement with expectations given in situ condi-15

tions. For Hainich the calibration offered three distinct explanations for the observations
(three modes in the posterior distribution). With the addition of 210Pbex data and prior
knowledge, as well as additional information about in situ conditions, we were able
to identify the most likely explanation, which identified root litter input as the domi-
nant process for the SOM profile. For both sites the organic matter appears to com-20

prise mainly adsorbed but potentially leachable material, pointing to the importance of
organo-mineral interactions. Furthermore, organic matter in the mineral soil appears to
be mainly derived from root litter, supporting previous studies that highlighted the im-
portance of root input for soil carbon sequestration. The 210Pbex measurements added
only slight additional constraint on the estimated parameters. However, with sufficient25

replicate measurements and possibly in combination with other tracers, this isotope
may still hold value as tracer for a SOM transport.
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1 Introduction

The current lack of understanding of the soil system forms an important contribution to
the uncertainty of terrestrial carbon cycle predictions (Heimann and Reichstein, 2008;
Trumbore, 2009). To improve simulation of soil carbon cycling, it is necessary to move
beyond the simple description of organic matter decomposition that is currently being5

applied in most large scale models (Reichstein and Beer, 2008). Increasing evidence
indicates that decomposition and stabilization are controlled by a range of mechanisms
that depend on physical, chemical, and biological factors (von Lützow et al., 2006).
These factors vary laterally at landscape scale in relation to climate, vegetation and soil
type. In the vertical dimension, however, they change on a scale of centimeters to me-10

ters, since most drivers (e.g. wetting, heating, organic matter input) are exerted on the
soil at or near the surface, propagating downwards. Consequently, the conditions that
determine soil carbon cycling are highly depth-dependent and different mechanisms
may be operating in different layers within one profile (Rumpel et al., 2002; Salomé
et al., 2010; Rumpel and Kögel-Knabner, 2011). Therefore, aggregation of processes15

and soil properties over the profile, or downward extrapolation of topsoil organic car-
bon, as is done in many SOM models (e.g. Parton et al., 1987; Tuomi et al., 2009),
is likely an oversimplification, inadequate to support new parameterizations of relevant
processes.

Awareness of this problem has spurred recent efforts to develop models that predict20

the vertical distribution of SOM, based on explicit descriptions of carbon deposition pro-
cesses in the profile (Jenkinson and Coleman, 2008; Koven et al., 2009; Braakhekke
et al., 2011). In most soils there are three mechanisms by which organic carbon can be
input at any given depth: (i) Organic matter may be deposited in situ by root exudation,
sloughing off of root tissue and root turnover. (ii) Organic matter is transferred within25

the profile due to movement with the liquid phase. This type of transport is of advec-
tive nature, and affects only fractions that are potentially mobile: mainly dissolved, and
to a lesser degree colloidal organic matter. (iii) Downward dispersal of organic matter
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occurs due to mixing of the soil matrix. Soil mixing is mostly caused by bioturbation –
the reworking activity of soil animals and plant roots – and its effects on organic matter
may be simulated mathematically as diffusion, provided the time and space scale of
the model are sufficiently large (Boudreau, 1986; Braakhekke et al., 2011).

The processes involved in SOM deposition in the profile – root input, liquid phase5

transport, and bioturbation – are fundamentally different, not only in a physical and
mathematical sense, but also in terms of their relationship with environmental factors.
Therefore, in order for a SOM profile model to be robust over different ecosystems
and soil types, and over changing environmental conditions, the relevant processes
should be explicitly represented. Furthermore, the distribution of organic matter over10

particulate and potentially mobile fractions needs to be accounted for.
Unfortunately, the different processes have been poorly quantified to this date. Pub-

lished results are inconsistent and past studies have generally focused on a single
mechanism, rather than comparing all three (Rasse et al., 2005; Kaiser and Guggen-
berger, 2000; Tonneijck and Jongmans, 2008). Their extremely low rates, as well as15

practical problems impede direct measurements of these processes in the field. Fur-
thermore, the fact that the mechanisms are acting simultaneously complicates infer-
ence from SOM profile measurements. Diffusion and advection of decaying compounds
such as organic matter, can produce very similar concentration profiles, despite the dif-
ferent natures of these processes. Moreover, root input closely follows the root biomass20

distribution, which often strongly resembles the SOM profile. Hence, it is generally not
possible to derive the rate of each process from the organic carbon profile alone, un-
less strong assumptions are made. A model that includes all relevant processes may
be able to explain an observed soil carbon profile by several different mechanisms –
a problem referred to as equifinality (Beven and Freer, 2001).25

Thus, additional information is required in order to parameterize dynamic SOM profile
models. In past studies, 13C and 14C have been used as tracers to this purpose (Elzein
and Balesdent, 1995; Freier et al., 2010; Baisden et al., 2002). Although these iso-
topes are particularly useful for constraining organic matter turnover times and carbon
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pathways, their precise information content with respect to the processes involved in
SOM profile formation is less clear, since root input leads to direct input of 13C and 14C
at depth.

In this context, fallout radio-isotopes (e.g. 137Cs, 134Cs, 210Pbex, 7Be) may be more
effective. Such tracers have two major advantages over carbon isotopes: (i) loss occurs5

only due to radioactive decay, which is constant and exactly known; and (ii) input oc-
curs only at the soil surface – direct input at depth is negligible. These points imply that
the vertical transport rate of such isotopes can be directly inferred from their concen-
tration profiles (Kaste et al., 2007; He and Walling, 1997). Since many radio-isotopes
sorb strongly to organic matter molecules, they offer an effective alternative or comple-10

ment to carbon isotopes for inferring transport processes in soils (Dörr and Münnich,
1989, 1991). Particularly 210Pbex (210Pb in excess of the in situ produced fraction) is
a valuable tracer due to its strong adsorption to soil particles, and relatively constant
fallout rate (Walling and He, 1999). Past studies have mostly used radio-isotopes for
determining erosion and deposition rates (Mabit et al., 2009; Wakiyama et al., 2010),15

while their use for inferring vertical transport at stable sites has received little attention
(Dörr and Münnich, 1989; Kaste et al., 2007; Arai and Tokuchi, 2010; Yoo et al., 2011).

The aim of this study is to examine SOM profile formation with model inversion. We
used 210Pbex concentration profiles, in addition to soil carbon measurements, to cali-
brate the model SOMPROF for two forest sites with contrasting SOM profiles. SOM-20

PROF (Braakhekke et al., 2011) is a vertically explicit SOM model that simulates the
distribution of organic matter over the mineral soil profile and surface organic lay-
ers. The aim of the model is to represent SOM profile formation over time scales of
years to centuries, and includes simple but explicit representations of the relevant pro-
cesses: bioturbation, liquid phase transport, root litter input, and decomposition. SOM-25

PROF was developed with large scale application in an earth system model in mind.
It was shown to be able to produce SOM profiles that compare well to observations
(Braakhekke et al., 2011), but parameter sets for different soils and ecosystems have
hitherto not been derived.
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We aim to answer the following questions: (i) What is the relative importance of the
different processes involved in SOM profile formation? (ii) How much organic matter
is present as material potentially transportable with the liquid phase, as compared to
immobile particulate material? And, (iii) Are 210Pbex profile measurements useful for
constraining the model parameters?5

For both sites, 13 parameters were estimated. We focussed on unmeasurable pa-
rameters such as decomposition rate coefficients and organic matter transport rates.
The model inversion was performed in a Bayesian framework, allowing prior knowledge
of the model parameters to be included and to estimate their posterior uncertainty. In
view of the limited understanding of the SOM profile, the aim of this study went beyond10

simply reducing the uncertainty ranges of the parameters. We also sought to gain qual-
itative understanding of the model’s behavior, specifically its potential ability to explain
observations by different mechanisms, and the value of 210Pbex data and prior knowl-
edge in this context. This work also represents a first step towards testing the validity
of SOMPROF for different soils and ecosystems.15

2 Methods

2.1 The SOMPROF model

Here a brief overview of the SOMPROF model is presented. We focus specifically on
the model equations in which the estimated parameters are applied, and the 210Pbex
module. A more exhaustive description and the rationale behind the model structure is20

presented in Braakhekke et al. (2011).
In SOMPROF the soil profile is explicitly divided into the mineral soil and the surface

organic layer, which is assumed to contain no mineral material and is further subdi-
vided into three horizons: L, F and H (Fig. 1). These organic horizons are simulated as
homogeneous connected reservoirs of organic matter (OM).25
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Decomposition products of litter generally flow from the L to the F horizon and from
the F to the H horizon. Additionally, material may be transported downward between
the organic horizons and into the mineral soil by bioturbation. For the mineral soil, which
comprises both organic matter and mineral material, the model simulates the vertical
distribution of each organic matter pool, using a diffusion-advection model.5

In view of the low rates of the relevant processes, and lack of knowledge of initial
conditions at the sites, the SOMPROF simulations in this study covered the complete
period of SOM profile formation, starting without any organic carbon in the profile. The
model was run with a time step length of one month (1/12 yr), for a specified maximum
number of years, depending on the site, and was driven by repeated annual cycles of10

soil temperature, moisture and (root) litter production.

2.1.1 Organic matter pools and decomposition

The organic matter in the model comprises five organic matter pools (Fig. 1), represent-
ing fractions that differ with respect to decomposability, transport behavior and mech-
anism of input: above ground litter (AGL), fragmented litter (FL), root litter (RL), non-15

leachable slow organic matter (NLS), and leachable slow organic matter (LS). Above
ground and root litter receive input from external sources; fragmented litter and leach-
able and non-leachable slow OM are formed by decomposition. LS is absent in the
organic horizons since the adsorptive capacity there is assumed to be negligible com-
pared to that of the mineral soil.20

Organic matter decomposition is simulated as a first-order decay flux, corrected for
soil temperature and moisture. For any organic matter pool i decomposition is defined
as:

Li = f (T ) g (W ) ki Ci , (1)

where Ci is the concentration (kgm−3, for the mineral soil) or the stock (kgm−2, for the25

organic horizons), ki is the decomposition rate coefficient (yr−1) at 10 ◦C and optimal
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soil moisture, and f (T ) and g(W ) are response functions for soil temperature and mois-
ture (see Braakhekke et al., 2011). To avoid errors due to smoothing of the temperature
and moisture data to monthly values, the response factors were calculated for the un-
smoothed, daily measurements. These response factors were subsequently averaged
to monthly values and several years of data were averaged to an average annual cycle,5

which was used to calculate the decomposition fluxes.
The formation of fragmented litter, non-leachable and leachable slow OM is defined

according to a transformation fraction (αi→j ) which specifies how much of the decom-
position flux of the donor pool i flows into the receiving pool j :

Fi→j = αi→jLi . (2)10

The organic matter that does not flow to other pools is assumed to be lost as CO2.
For the calibration measured organic carbon amounts were always compared to total

simulated organic carbon, summed over all pools. Mass fraction in the mineral soil
layers was calculated as the organic carbon mass divided by the total mass (mineral
plus organic) in each layer. Effective decomposition rate coefficients were determined15

by dividing the total simulated heterotrophic respiration by the total organic matter stock
the respective layers.

2.1.2 Organic matter transport

All organic matter pools except above ground litter are transported by bioturbation at
equal rate. Conversely, only the leachable slow organic matter pool is transported by20

advection. All transport parameters are assumed constant and independent of depth,
although the diffusivity of organic matter may vary with depth due to bulk density vari-
ations (see Eq. 4).

For the organic layer, organic matter transport due to bioturbation is determined by
the bioturbation rate B (kgm−2 yr−1), which represents the mixing activity of the soil25

fauna, i.e. the amount of material being displaced per unit area and unit time. B is
the maximum flux of organic matter that can be moved to the next horizon. In case
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the potential bioturbation flux exceeds the amount of organic matter in a horizon, it is
adjusted downward.

For the mineral soil, a diffusion model is applied to simulate transport due to biotur-
bation:

∂Ci

∂t

∣∣∣∣
BT

= DBT
∂2Ci

∂z2
, (3)5

where Ci is the local concentration of organic matter pool i (kgm−3), z is depth in the
mineral soil (m, positive downward; z = 0 at the top of the mineral soil), and t is time
(yr). DBT is the diffusivity (m2 yr−1) which is derived from the bioturbation rate according
to mixing length theory, as follows:

DBT =
1
2

B

ρMS
lm, (4)10

where is ρMS is the local bulk density (kgm−3), is depth dependent and can either
be set to measured values or calculated by the model (see Braakhekke et al., 2011).
lm is the mixing length (m), a tuning parameter that links the bioturbation rate to the
diffusivity. The upper boundary condition, at the top of the mineral soil, is determined
by flux of material coming from the H horizon, as determined by B.15

Dissolved organic matter is not explicitly represented in SOMPROF. Instead, the
combined effects of ad- and desorption and water flow on the concentration profile of
the leachable slow organic matter pool are simulated as an effective advection process:

∂CLS

∂t

∣∣∣∣
LPT

= −v
∂CLS

∂z
, (5)20

where v is the effective organic matter advection rate (m yr−1). Note that the LS pool
represents potentially leachable material; the bulk of this organic matter is in fact immo-
bile due to adsorption to the mineral phase. Hence, the LS pool is also transportable
by bioturbation.
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The upper boundary condition for LS is determined by the total production in the
organic layer. For the lower boundary, a zero-gradient boundary condition is used for
all pools, hence only advection can lead to a loss of organic matter by transport.

2.1.3 210Pbex simulation

210Pb is a radiogenic isotope that is input into the soil both due to atmospheric depo-5

sition and in situ formation within the profile. The fallout fraction (210Pbex) is typically
estimated as the difference between the total 210Pb activity and the activity of one of
its precursors 226Ra (Appleby and Oldfield, 1978).

A module has been added to SOMPROF in order to use measurements of 210Pbex

as a tracer for SOM transport (Fig. 1). The modeled 210Pbex concentration profile is10

controlled by atmospheric input, radioactive decay, and organic matter input, decom-
position and transport. The 210Pbex module is based on the following assumptions:
(i) variations in time of the atmospheric 210Pbex input are negligible; (ii) 210Pbex is in-
put only into the L horizon; (iii) once in the soil, 210Pbex binds immediately and irre-
versibly to any organic matter pool; (iv) 210Pbex “follows” the organic matter to which15

it is bound through the decomposition and transport processes; and (v) aside from
transport, 210Pbex is lost only due to radioactive decay, at a fixed rate of 0.0311 yr−1.

Since 210Pbex is only input into the L horizon, which contains no root litter, no 210Pbex
is associated with this pool. Furthermore, external input of organic matter as litter has
a diluting effect on 210Pbex, while loss of organic matter as CO2 leads to an increase of20

mass fraction. For the organic horizons, the 210Pbex fluxes due to organic matter flow
(either by transport or transformation to another pool) are calculated by multiplying
the flux from a pool with its 210Pbex mass fraction. For the mineral soil the transport
equations are solved separately for 210Pbex associated with the FL, NLS and LS pools.

Since the atmospheric deposition rate of 210Pbex is not generally known, the 210Pbex25

fractions were normalized relative to the fractions at the mineral soil surface for
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comparison with observations (see Sect. 2.3.2). Thus, the exact input rate, and its
units, are trivial, and were set to 1.

Mineral soil 210Pbex mass fractions, used for comparing with measurements, were
calculated as the total 210Pbex amount, summed over all organic matter pools, divided
by the total mass (mineral plus organic).5

2.2 Site description

2.2.1 Loobos

Loobos is a Scots pine (Pinus sylvestris) forest on a well drained, sandy soil in the
Netherlands (52◦10′0′′ N; 5◦44′38′′ E). The climate is temperate/oceanic with an av-
erage annual precipitation of 966 mm and an average temperature of 10 ◦C (WUR,10

Alterra, 2011). The area, which was originally covered by shifting sands, was planted
with pine trees in the early twentieth century. Currently, the forest floor is covered with
a dense understorey of wavy hair grass (Deschampsia flexuosa) that roots primarily
in the organic layer. Due to its young age, the soil is classified as Cambic or Haplic
Arenosol (IUSS Working Group WRB, 2007; Smit, 1999), but shows clear signs of the15

onset of podzolization. Because of the high content of quartzitic sand (> 94 %) the soil
is pedologically very poor. This is reflected by a low pH (3–4) and nutrient concentra-
tions, and a virtual absence of soil fauna (Emmer, 1995; Smit, 1999). Organic matter
is comprised mostly of mor humus in a thick organic layer of circa 11 cm, and organic
carbon fractions in the mineral soil are very low.20

Half-hourly measurements of soil moisture and temperature are performed contin-
uously at five depths (5, 13, 30, 60, 110 cm). Data for the period 1 May 2005 to 31
December 2008 was used to derive an average annual cycle of soil temperature and
moisture which was used for the simulations. Additionally, above ground litter fall mea-
surements on a two to four weeks basis for the period 2000 to 2008 were used to derive25

an average annual cycle for above ground litter input. Since the carbon content of the
litter was not determined, we used a fixed C fraction of 50 %.

11249

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 11239–11292, 2012

Modeling the SOM
profile using

Bayesian inversion

M. C. Braakhekke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Annual root litter input for the understorey was taken from Smit and Kooijman (2001),
who estimated root turnover in the same forest using root ingrowth cores. To account
for seasonal fluctuations of the grass layer, the annual input of both above and below
ground grass litter was distributed over the year using a function based on data taken
from Veresoglou and Fitter (1984), which peaks around early June. The vertical dis-5

tribution of understorey root litter input was set such that approximately 95 % occurs
in the organic layer (Supplement Fig. 1), which corresponds to in situ observations of
root biomass (A. Smit, personal communication, 2009). For the root litter input from the
pine trees (Table 1) we used data from a forest in Belgium with a similar vegetation
composition, soil type, and age (Janssens et al., 2002). The root litter input for Loobos10

was derived by scaling the estimate from the Janssens et al. (2002) study according
to the net primary productivity of both sites, which were taken from Luyssaert et al.
(2007). The root litter input from the canopy vegetation was held constant throughout
the simulation. Its vertical distribution was modeled as follows. We assumed that the
root biomass (and thus root input) starts at the top of the H horizon and peaks at the15

mineral soil surface (J. Elbers, I. Janssens personal communication, 2009). Therefore,
we chose a distribution function that increases linearly with depth from the top to the
bottom of the H horizon. From there it decreases with depth according to a two-term
exponential function: f (z) = exp(−20.00z)+0.0384exp(−0.886z). Since the thickness
of the H horizon is variable, the total distribution function was normalized at every time20

step (Supplement Fig. 1).
The simulation length was set to 95 yr, which is approximately the time between the

forest plantation and the sampling date. To account for the time needed for vegetation
to develop, litter input was reduced in the initial stage, by multiplying with a function
linearly increasing from 0, at the start of the simulation, to 1, after 60 yr (Emmer, 1995).25

2.2.2 Hainich

This site is located in the Hainich national park in Central Germany, (51◦4′45.36′′ N;
10◦27′7.20′′ E). The forest, which has been unmanaged for the last 60–70 yr, is
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dominated by beech (Fagus Sylvatica, 65 %) and ash (Fraxinus excelsior, 25 %)
(Kutsch et al., 2010). The forest floor is covered by herbaceous vegetation (Allium
ursinum, Mercurialis perennis, Anemone nemorosa) which peaks before canopy bud-
break. The climate is temperate suboceanic/subcontinental with an average annual
precipitation of 800 mm and an average temperature of 7 to 8 ◦C.5

The soil is classified as Luvisol or Cambisol (IUSS Working Group WRB, 2007;
Kutsch et al., 2010). It has formed in limestone overlain by a layer of loess, and is
characterized by a high clay content (60 %) and a pH-H2O of 5.9 to 7.8 (T. Persson,
personal communication, 2011). The favorable soil properties support a high biological
activity (Cesarz et al., 2007), corroborated by a thin organic layer and a well developed10

A horizon. About 90 % of the root biomass occurs above 40 cm depth (Supplement
Fig. 1).

The oldest trees at Hainich are approximately 250 years old, but presumably the
site has been covered by similar vegetation for much longer. The forest has been
unmanaged for approximately 60–70 yr. We assumed that the soil is close to steady15

state, hence a 1000 yr simulation was used. For further information on the setup of the
Hainich simulation we refer to the description of the reference simulation in Braakhekke
et al. (2011). The model inputs that were not included in the calibration are listed in Ta-
ble 1.

2.3 Observations used for the calibration20

2.3.1 Organic carbon measurements

For Loobos, measured carbon stocks in the L, F and H horizons and the mineral soil,
and carbon mass fractions at 3 depths in the mineral profile were used in the calibration.
Several profiles were affected by wind erosion. When this was the case, the affected
measurements were omitted. In 2005 the soil was sampled in a regular quadratic grid25

at 25 points spaced 40 m apart. Organic layers were removed with a square metal
frame with a side length of 25 cm. The mineral soil was sampled horizon-wise with
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a Pürckhauer auger, 2–3 cm wide and 1 m long. Bulk density of the upper 5 cm of
the mineral soil was determined with three 100 cm3 cylinders at each of the 25 grid
points. In view of low spatial variability, the bulk densities of the subsoil horizons were
derived from a representative soil pit in the center of the study area. Soil samples
were sieved to < 2 mm and ground. Carbon stocks in the organic layers were analyzed5

with a CN analyser Vario EL (Elementar Analysensysteme GmbH, Hanau, Germany);
carbon fractions in the mineral soil were measured with a CN Analyser VarioMax (Ele-
mentar Analysensysteme GmbH, Hanau, Germany).

For Hainich, measured stocks in the L and F/H horizon (the individual F and H hori-
zons could not be identified), and in the mineral soil were used, as well as mass fraction10

measurements at 8 depths in the mineral profile. In addition, we used measured effec-
tive decomposition rate coefficients at 15 ◦C and soil moisture at 60 % of water holding
capacity in the L and F/H horizon, and at 7 depths in the mineral profile. The sampling
procedure and organic carbon measurements are described in Schrumpf et al. (2011).
The decomposition rate coefficients were calculated from measurements of respiration15

rates measured during lab incubation of soil samples which are described in Kutsch
et al. (2010). By dividing the average respiration rate of each sample by its organic
carbon content, we obtained effective decomposition rate coefficients.

2.3.2 210Pbex measurements

Since local 210Pbex measurements were not available for Loobos, we used two activity20

profiles from Kaste et al. (2007), for a site in the Hubbard Brook Experimental Forest,
New Hampshire, USA. This site has conditions similar to those at Loobos in terms of
vegetation, soil texture, soil pH, and soil biological activity (Bormann and Likens, 1994).
Furthermore, pedological processes related to podzol formation are occurring at both
sites. The two sites differ with respect to age, since the Loobos soil is very young.25

However, in view of the relatively fast decay rate of 210Pb, and the shallow distribution
of the 210Pbex profile (Fig. 2), we assume that it is close to steady state at both sites.
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Local 210Pbex measurements at Hainich were performed for a study by Fujiyoshi and
Sawamura (2004, R. Fujiyoshi, personal communication, 2008). Although these mea-
surements were corrected for in situ formed 210Pb by subtracting the 226Ra activity
(R. Fujiyoshi, personal communication, 2008), the activity profile did not approach zero
with depth, hence this method did presumably not account for all supported 210Pb.5

Therefore, we assumed that the 210Pbex concentration is zero from approximately
12.5 cm downwards. The supported 210Pb activity was estimated as the average below
this depth, and all data was corrected by subtracting this average. (Note that in several
cases this produced negative concentrations.)

Only mineral soil 210Pbex measurements were used in the calibration (Fig. 2). The10

profiles of both sites, as well as those predicted by the model, were normalized by
dividing them by the 210Pbex activity at the surface of the mineral soil, which was esti-
mated using piecewise Hermitian extrapolation (Burden, 2004). Since neither data set
had sufficient replicate measurements to estimate spatial variability, a one-term expo-
nential model was fitted to the normalized depth distribution, and the uncertainty used15

for the calibration was estimated as the standard error of the prediction.

2.4 Bayesian calibration

We performed Bayesian estimation of 13 model parameters: five decomposition rate
coefficients, five transformation fractions, and three transport parameters (Table 2).
Bayesian calibration is aimed at deriving the posterior probability distribution P (θ |O) of20

the model parameters θ based on the misfit between the model results and the obser-
vations O, and the a priori probability distribution of the parameters P (θ ) (Mosegaard
and Sambridge, 2002). Here, θ is a vector containing all model parameters that are
estimated. According to Bayes’ theorem, the posterior distribution is defined as:

P = c P (θ ) L(θ |O), (6)25

where P (θ ) is the prior probability distribution, expressing our knowledge of the pa-
rameters prior to the calibration, and c is a normalization constant, ensuring that the
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integral over the distribution equals 1. L(θ |O) is a likelihood function that expresses the
probability of the model results obtained with parameters θ , given the observations O
(Gelman et al., 1995, Chap. 1). L(θ |O) essentially maps the probability distribution of
the measurements to the parameter space θ , based on the inverted model structure.

Since no analytical expression of the posterior distribution exists here, we used5

a Metropolis algorithm. Such algorithms obtain a sample of the posterior distribution by
performing a random guided walk through parameter space and are increasingly used
for calibrating ecosystem models against eddy-covariance measurements and satellite
data (Knorr and Kattge, 2005; Fox et al., 2009) and have been applied to calibrate soil
carbon models as well (Yeluripati et al., 2009; Scharnagl et al., 2010; de Bruijn and10

Butterbach-Bahl, 2010). We used the DREAM(ZS) algorithm (Laloy and Vrugt, 2012),
a successor to the DREAM algorithm, which has been shown to perform well for com-
plex, multi-modal distributions (Vrugt et al., 2009). Further information concerning the
calibration setup can be found in Appendix A1.

Three series of MCMC runs (referred to as calibration setups from hereon) were15

performed in which 210Pbex data and prior knowledge were stepwise added, in order to
investigate the information content of each source of information. Thus, for both sites,
we ran calibrations in the following setups:

1. excluding 210Pbex data and with weak priors;

2. including 210Pbex data and with weak priors;20

3. including 210Pbex data and with strong priors.

Calibration setup 3 represents our best estimate of the model parameters.

2.4.1 Uncertainty of the observations

In order to obtain the likelihood function L(θ |O), an uncertainty model for the mea-
sured variables must be defined. Since all observed quantities are bounded at zero,25
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we assumed a log-normal distribution. The total likelihood of the model results was
determined by combining the misfit of all the different types of observed quantities (e.g.
the organic carbon fraction at a certain depth, the stock in the L horizon, etc.):

L(θ |O) = exp

(
−1

2

I∑
i=1

Ci (θ ,O)

)
, (7)

where I is the number of different types of observations and Ci (θ ,O) is the cost, which5

expresses the misfit of the model results to measurement type i . Note that we did not
consider correlations between the measurements. For any type of measurement i , the
cost was determined from the individual replicates of each type of observation:

Ci (θ ,O) =
Ji∑
j=1

(
ln(Mi (θ ))− ln(Oi ,j )

σln(Oj )

)2

, (8)

where Ji is the number of replicates, Mi (θ ) is the model prediction, Oi ,j is the value10

of replicate measurement j , and σln(Oi )
is the sample standard deviation over all log-

transformed replicates.

2.4.2 Prior parameter distributions

We performed MCMC runs with both strong and with weak prior distributions. For the
weak priors, the prior probability P (θ ) was simply omitted from the posterior proba-15

bility definition (Eq. 6), which resulted in a multivariate uniform distribution, within the
sampling region.

For the runs with strong priors, the distributions were based on knowledge from pre-
viously published studies (Braakhekke et al., 2011). The same distributions were used
for both sites. Since decomposition rate coefficients cannot be negative or zero, we20

chose a log-normal distribution. For the litter pools (kAGL, kRL and kFL) we used the
same distributions (mode at 0.46 yr−1; Fig. 3a). It is likely that the decomposition rate

11255

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 11239–11292, 2012

Modeling the SOM
profile using

Bayesian inversion

M. C. Braakhekke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

coefficient of leachable slow organic matter (kLS) is lower than that of non-leachable
slow organic matter (kNLS), since the former is comprised mostly of material adsorbed
to the mineral phase. Nevertheless, since we aimed to test this hypothesis with the
measurements, we used the same prior distributions for the decomposition rate coeffi-
cient of both pools (mode at 0.04 yr−1; Fig. 3b).5

We used logit-normal prior distributions for the transformation fractions. This distri-
bution is similar to the beta distribution and is bounded between 0 and 1 (Mead, 1965).
For αAGL→FL a distribution with the mode at 0.68 was used (Fig. 3c), while for the other
conversion fractions (αRL→NLS, αRL→LS, αFL→NLS, and αFL→LS) the same prior was used
with the mode at 0.18 (Fig. 3d). Since relatively little a priori information about the SOM10

transport parameters (B, lm, and v) is available, we used uniform priors within the sam-
pling region for all calibrations (Fig. 3e).

For all calibration setups, the sampling was constrained to a bounded region in pa-
rameter space (Table 2). This constraint was included since preliminary runs showed
that some parameters may be unconstrained at the upper bound by the data, due to15

over-parameterization. Furthermore, since decomposition cannot lead to a net forma-
tion of material, the sum of transformation fraction for root litter (αRL→NLS+αRL→LS) and
fragmented litter (αFL→NLS +αFL→LS) pools was bounded to 1.

2.4.3 Forward Monte Carlo simulations

We performed forward Monte Carlo simulations based on the posterior distributions.20

5000 simulations were made with parameter sets selected at regular intervals from the
posterior sample. For these simulations the non-leachable slow (NLS) and leachable
slow (LS) organic matter pools were split into fractions originating from fragmented litter
(FL) and root litter (RL), in order to trace the source of organic matter. Otherwise the
setup of the simulations was the same as those made for the MCMC runs.25

Additionally, the contribution of root litter input, bioturbation and liquid phase trans-
port to the formation of the SOM profile was quantified. We estimated the amount of
organic carbon that would be derived from these three processes for the steady state,
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giving an indication of the importance of the three processes for long time scales. Note
that the organic carbon derived from root litter input also includes material that is trans-
formed from root litter to the slow pools, NLS and LS. Furthermore, bioturbation and
liquid phase transport can lead to a net loss of organic matter at a given depth, as op-
posed to root litter input which only leads to gain. Thus, the amount of organic carbon5

derived from the transport processes may be negative for certain depths. However, the
sum of three organic carbon fractions must be positive. Further description of these
calculations is given in appendix B.

3 Results

3.1 Loobos10

Figure 4 depicts the marginal posterior distributions for the three calibrations for Loo-
bos (see also Supplement Table 1). In general, the parameters are constrained by the
observations, with the exception of the root litter decomposition rate coefficient kRL and
the mixing length lm. Adding 210Pbex improved the constraint of the bioturbation related
parameters (B and lm) but had otherwise no major effect on the marginal distributions.15

The results of the forward simulations (Fig. 5-1, additional results shown in supple-
ment Fig. 3) indicate that leachable slow organic matter (LS) is the most abundant
pool, followed by non-leachable slow organic matter (NLS). LS particularly dominates
the mineral soil, being virtually the only pool below 20 cm. Figure 5-2 shows that most
organic matter in the mineral soil is derived from root litter, but above ground derived20

SOM is present up to great depths, due to fast downward migration due to liquid phase
transport.

Figure 6-1 shows the organic matter transport fluxes in the mineral soil. Clearly,
transport due to bioturbation plays almost no role; virtually all transport occurs by move-
ment with the liquid phase. Figure 6-2, which depicts the amount of organic carbon in25

the steady state derived from the three processes, corroborates the importance of
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liquid phase transport. The negative concentrations for this process indicate it causes
organic matter from near the surface – mainly root litter derived – to be moved down-
ward to greater depths, where it is the dominant mechanism of input.

3.2 Hainich

For Hainich the posterior distribution is multi-modal for all calibration setups, compris-5

ing three distinct optima. For analysis the modes were sampled individually in separate
MCMC runs. An additional MCMC run was performed in which all modes were sampled
simultaneously to demonstrate that the multi-modality is not an artifact of the sampling
(see Supplement Fig. 2). The marginal distributions for all calibration setups and all
modes are depicted in Fig. 7 (see also Supplement Table 1). Note that the comparative10

probability of each of the modes cannot be inferred from this figure, since the distribu-
tions are scaled to the same height. In order to compare the modes, we define their
“performance” as the minimum misfit in the MCMC sample (log(P (θ ) L(θ |O)); Table 3).
This quantity is an indication of the maximum posterior probability of the modes and
thus includes the prior distribution.15

The three calibration setups do not differ significantly in terms of the marginal distri-
butions, as well as the forward model results. However, there is a significant shift in the
comparative probability of the modes, indicated by their misfit. In calibration 1 the three
modes have similar misfit, with a slight favor for mode B. Introduction of 210Pbex and
prior information to the calibration caused the misfit of mode C to increase compared20

to A and B, which is explained by a somewhat poorer fit to the 210Pbex measurements
(results not shown), as well as the very low root litter decomposition rate coefficient,
which conflicts with prior knowledge.

While the marginal distributions of most parameters differ between the modes, the
most prominent differences can be seen for the decomposition rate coefficients of root25

litter (RL), non-leachable slow (NLS), and leachable slow (LS) organic matter. For each
of the modes, one of these three parameters is tightly constrained at the low end of the
range, while the other two have wide distributions at higher values.
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Figure 8-1 depicts the simulated organic matter stocks and fractions of the three
modes for calibration setup 3 (additional results are shown in Supplement Figs. 3 and
4). The different parameter values for the three modes give rise to quite different model
results, despite the fact that the quantities of total organic matter are very similar. In
each of the three modes, a different pool dominates the total stocks: non-leachable5

slow OM for mode A; leachable slow OM for mode B, and root litter for mode C. These
contrasts are mainly explained by the differing decomposition rate coefficients of these
three pools. Figure 8-2 shows that modes A and B have very similar contributions of
above and below ground litter, whereas for mode C the root litter derived organic carbon
is significantly larger.10

The strong differences between the modes are further demonstrated by the different
organic matter transport fluxes (Fig. 9-1). Interestingly, modes A and C, which have
the lowest amounts of the leachable slow organic matter pool, show the highest liquid
phase transport fluxes, which is explained by the high liquid phase transport rates.

Figure 9-2 shows that for all modes root litter input is an important process for long15

term organic matter storage. For modes A and B most organic carbon is present as the
slow pools NLS and LS which was derived from root litter, while for mode C RL itself
is stable. The effects of the transport processes are generally smaller than those of
root litter input. However, they represent an important mechanism for moving organic
matter from shallow levels to deeper layers, as indicated by the negative values near20

the surface.

4 Discussion

4.1 Loobos

The calibration results for Loobos suggest that leachable slow organic matter (LS)
is the most abundant fraction. Its transport with the liquid phase, representing dis-25

solved organic matter leaching, is largely responsible for downward SOM movement
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and formation of the vertical SOM profile in general. Although this pool has the lowest
decomposition rate coefficient (kLS), its distribution tends to quite high values (mean
approximately 0.16 yr−1 in calibration setup 3; Fig. 4-3). Particularly considering that LS
is the only pool in the deep soil, where decomposition is slow, we would expect a lower
value for kLS. The prior distribution of this parameter used in calibration setup 3, which5

tends to lower values, caused only a slight downward shift in the posterior. Due to its
high variance, the posterior distribution of kLS does allow for somewhat lower, more
realistic values. Furthermore, there are quite strong correlations between parameters
related to the LS pool (Supplement Fig. 5), which indicate that a decrease formation
of LS (determined by αFL→LS and αRL→LS) can be compensated by a decrease of the10

liquid phase transport rate v or the decomposition rate coefficient of LS kLS, both con-
trolling the loss of this pool.

Although SOMPROF was not developed to simulate DOM transport, the modeled
liquid phase transport fluxes should represent the average movement of dissolved
organic carbon (DOC) over long timescales1. Figure 6-1 shows that simulated liquid15

phase transport fluxes are an order of magnitude higher than DOC fluxes measured by
Kindler et al. (2011), which points to a too high value of the advection rate v . However,
the high uncertainty of both the rate and fluxes of liquid phase transport shows that the
observations used in the calibration can also be explained with somewhat lower values.
A lower value for v would be accompanied by a lower decomposition rate coefficient20

of LS, since the two parameters are strongly correlated (Supplement Fig. 5). Thus, it
is likely that additional observations constraining the deep soil decomposition rate co-
efficient, such as radiocarbon measurements, would lead to more realistic estimate of
liquid phase transport rate.

Notwithstanding the over-estimated liquid phase transport fluxes, the relative impor-25

tance of organic matter leaching over bioturbation is in good agreement with the soil
conditions and humus form at Loobos. Soil fauna is virtually absent, and the high con-

1While the LS pool represents mostly material adsorbed to the mineral phase, the transport
of this pool occurs only by the small fraction that is mobile and thus corresponds to DOC fluxes.
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centration of sand supports fast water infiltration and has a low adsorptive capacity,
thus allowing high dissolved organic matter (DOM) fluxes.

4.2 Hainich

The presence of multiple modes in the posterior distributions for Hainich is illustrative of
the equifinality problem discussed in the introduction. Since the modes represent sep-5

arate isolated regions in parameter space, they may be seen as distinct explanations
for the observations, in terms of the processes represented in the model. In calibra-
tion setup 1 the three modes have remarkably similar misfit (Table 3). The addition of
210Pbex and prior knowledge to the calibration lead to a significant increase of the misfit
for mode C compared to A and B, hence we can discard this mode with some certainty.10

Modes A and B, however, have virtually the same misfit, hence from these results alone
we cannot infer which of the two is closest to the truth.

Figure 9-1 shows that the modeled liquid phase transport fluxes for mode B compare
well to the measured DOC fluxes (not used in the calibration), whereas the other two
modes strongly overestimate the advective flux (although the uncertainty is very high).15

The abundance of LS and the low rate of liquid phase transport for mode B also agrees
well with expectations based on the soil texture at Hainich. The high clay content im-
pedes water infiltration, while favoring adsorption of organic matter, slowing down both
DOM leaching and decomposition of organic matter. This is corroborated by organic
matter density fractionation measurements at the site (M. Schrumpf, unpublished data,20

2011). These indicate that 81–93 % of the organic matter is present in the heavy frac-
tion, which is known to comprise mostly material in organo-mineral complexes (Golchin
et al., 1994). Although the model pools can presumably not be compared directly to the
measured density fractions, this is clearly in support of mode B, since leachable slow
OM represents mostly material adsorbed to the mineral phase (Sect. 2.1.2; Braakhekke25

et al., 2011). Based on these arguments we conclude that mode B represents the most
likely explanation for the observations at Hainich.

11261

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 11239–11292, 2012

Modeling the SOM
profile using

Bayesian inversion

M. C. Braakhekke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The results of the forward simulations for mode B (Figs. 8 and 9) suggest that root
input dominates the mineral soil as a mechanism for organic matter input at Hainich.
Although root litter itself represents only a small fraction, its decomposition products
(mainly LS) constitute the bulk of the total SOM. The effects of the transport processes
are generally small compared material derived from root litter input. However, they5

cause notable loss of material near the surface, and input into deeper layers. The rel-
ative importance of root derived SOM agrees well with recent findings by Tefs and
Gleixner (2012), who found, based on 14C profile measurements, that soil organic car-
bon dynamics at Hainich are mainly determined by root input.

4.3 Comparison between sites10

It is difficult to explain why the posterior distributions for Loobos do not display multi-
modality, like the distributions for Hainich. One possible explanation is that the observed
mineral soil C profile for Loobos clearly consists of two zones: one with a fast decrease
with depth between 0 and 10 cm, and one below this, with a much slower decrease. It
is conceivable that such a profile can only be explained by a situation where diffusion15

(bioturbation) operates only near the surface, while advection (liquid phase transport)
acts in the complete profile. For Hainich, on the other hand, the C profile is smoother,
thus allowing it to be explained by different mechanisms.

In the following discussion we will only consider mode B for Hainich. When com-
paring the marginal parameter distributions for both sites (see Supplement Fig. 6) it is20

apparent that all decomposition rate coefficients tend to higher values for Loobos than
for Hainich. To some extent this agrees with expectations since the high clay content at
Hainich may stabilize organic matter. However, the distributions for Loobos are gener-
ally wider, and allow also for lower values. For Hainich the decomposition parameters
are more constrained due to measurements of effective decomposition rate coefficients25

included in the observations. Comparison further shows that for Loobos generally more
of the fast pools FL and RL flows to the slow pools, NLS and LS, than for Hainich, as
determined by the transformation fractions (αi→j ).
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The fact that the above ground litter decomposition rate coefficient for Hainich is
remarkably lower is somewhat surprising since both sites have similar above ground
litter input (Table 1), but Loobos has a significantly higher L horizon C stock (1038±
129gCm−2 for Loobos vs. 758±133gCm−2 for Hainich). The discrepancy is caused
by the fact that the measured moisture content in the L horizon for Loobos is quite5

low during summer, reducing decomposition. Hence, the model requires a high base
decomposition rate coefficient to reproduce the observed stock. This suggests that the
moisture sensitivity of decomposition is overestimated for Loobos.

The two sites differ strongly with respect to the organic matter transport parameters,
with Hainich having higher values for the two parameters related to bioturbation, and10

Loobos having a much higher liquid phase transport rate. This in good agreement with
the differences between the two sites in terms of biological activity and soil texture.

4.4 Implications for soil organic matter cycling

The fact that leachable slow organic matter pool constitutes the bulk of SOM for both
sites (assuming mode B for Hainich is correct) emphasizes the importance of organo-15

mineral interactions for soil carbon cycling. However, this interpretation relies on the
assumption that mineral-associated organic matter is correctly represented by the LS
pool. Mathematically, the only difference between the NLS and LS pools lies in the
transport behavior. The question is whether this distinction correctly represents the dif-
ferences between stable particulate and adsorbed organic matter in reality. The good20

agreement of our results with density fractionation and DOC transport measurements
at Hainich, as well as the environmental conditions at both sites suggests that a sit-
uation where LS dominates might indeed be close to the truth. Furthermore, many
studies have demonstrated the importance of mineral associations for long-term car-
bon preservation (Eusterhues et al., 2003; Mikutta et al., 2006; Kögel-Knabner et al.,25

2008; Kalbitz and Kaiser, 2008). In contrast, others have indicated the presence of
root-derived particulate material in podzol B horizons, and questioned the relevance
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of mineral associated material for mineral soil organic matter fractions (Nierop, 1998;
Nierop and Buurman, 1999; Buurman and Jongmans, 2005).

The predominance of root derived material predicted for both sites (Figs. 5 and 8,
mode B) underlines the importance of roots for organic matter input in the mineral soil,
which is in agreement with previous studies (Kong and Six, 2010; Rasse et al., 2005).5

For Hainich the root input also strongly determines the vertical distribution of SOM
(Fig. 9), whereas for Loobos also redistribution of organic material by liquid phase
transport is a major factor (Fig. 6). Based on analysis of a large database of SOM
profiles Jobbagy and Jackson (2000) found that root/shoot allocation, together with
the root biomass distribution, explains the vertical SOM profile in the upper part of10

the soil while clay content was found to be more important at greater depths. The
effects of texture are not considered in this study, but Figs. 6-2 and 9-2 show that
the relative importance of liquid phase transport becomes greater with depth. This
supports the findings of Jobbagy and Jackson (2000) since this mechanism is likely
strongly controlled by soil texture.15

4.5 The use of 210Pbex measurements

The addition of 210Pbex to the calibration had small effects on the posterior distributions.
For Loobos, the 210Pbex measurements improved the constraint of the parameters re-
lated to bioturbation, while for Hainich they improved constraint of the mixing length for
mode B, and caused a slight increase of the misfit of mode C relative to the other two20

modes. The fact that the 210Pbex data influenced only the parameters related to biotur-
bation may be explained by fact that the profiles used here are quite shallow, due to the
relatively fast decay rate of the isotope (cf Fig. 2). These measurements are therefore
presumably most informative for the topsoil, where bioturbation is more important.

For both sites, the measured 210Pbex profile was already well matched by the model25

in calibration setup 1, in which these measurements were not included. This indicates
that these observations can be explained well in conjunction with the organic carbon
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measurements, which supports the model structure. It also suggests that the 210Pbex
data from Kaste et al. (2007) is consistent with the conditions at Loobos.

The use of 210Pbex as a tracer for SOM transport relies on the assumption that Pb ad-
sorbs strongly to organic matter, both particulate and in solution. Based on 210Pbex and
14C profiles, Dörr and Münnich (1989) found that transport rates of 210Pbex were very5

close to those of organic matter, suggesting that the two are indeed strongly linked. Al-
though Pb is known to occur also in association with the mineral phase and inorganic
complexes (Schroth et al., 2008), the affinity of Pb to particulate organic matter is well
established, in view of its strong retention in organic layers and topsoils over short
timescales (Kaste et al., 2003; Kylander et al., 2008; Schroth et al., 2008), as well10

as by adsorption studies (Logan et al., 1997; Sauve et al., 2000). The effect of DOM
movement on Pb migration is less clear, because it is difficult to predict the behavior of
Pb adsorbed to the organic matter that is transformed to the dissolved fraction. Several
researchers have indicated the importance of DOM and colloidal organic matter for Pb
movement in soil (Miller and Friedland, 1994; Wang and Benoit, 1997; Urban et al.,15

1990; Friedland et al., 1992). Furthermore, adsorption studies have found that Pb ad-
sorbs readily to humic and fulvic acids (Logan et al., 1997; Turner et al., 1986), while
movement of dissolved Pb2+ was found to be insignificant (Wang and Benoit, 1997).

In summary, further study on this topic is needed, but we believe that our use of
210Pbex as a tracer for SOM transport is well defendable. Despite the limited constraint20

gained in this study, this isotope can be useful as a tracer for SOM transport, provided
that more replicate measurements are available to reduce uncertainty. Particularly in
combination with other tracers, such as 14C or 137Cs, 210Pbex may be quite informative.

4.6 Methodological constraints and model validity

For both sites, many strong correlations exist between different combinations of model25

parameters (Supplement Fig. 5) which indicates that the model is over-parameterized
with respect to the available data. Furthermore, for all calibration setups there is at least
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one decomposition rate coefficient for which high values are not constrained by the ob-
servations (Figs. 4 and 7). Since the predicted stock of a pool is inversely proportional
to its decomposition rate coefficient, these pools are present in very small amounts,
which shows that SOMPROF has at least one redundant organic matter pool, given
the available data. This is corroborated by the existence of several strong negative cor-5

relations between decomposition rate coefficients, indicating that organic matter pools
are essentially “competing” as explanation for the observed carbon stocks and frac-
tions. In order to obtain better constraint, additional observations are needed. Obvious
candidates for such data are carbon isotopes (13C or 14C) measurements, of both or-
ganic matter and heterotrophic respiration.10

There are numerous uncertainties that were not considered in the calibration. In
view of practical limitations on the number of parameters that can be estimated si-
multaneously, we focused on the inherently unmeasurable parameters, on which little
prior information was available. Many other model inputs, with varying degrees of un-
certainty, were held fixed, including the temperature and moisture data, the litter input15

rates, and the temperature and moisture response parameters. Another source of un-
certainty is associated with site history. The sites included in this study were selected
for having a relatively well-known and constant history, but particularly for Hainich there
have undoubtedly been past fluctuations in the forcing that were not considered. Finally,
significant uncertainty is related to the model structure, specifically to the simple repre-20

sentations of organic matter decomposition and transport in SOMPROF as well as the
behavior of 210Pbex. These unconsidered variabilities call for care when interpreting the
results. Further, it may be advisable to inflate the variance of the posterior distributions
when using them as priors for a follow-up study, or for predictive simulations. Neverthe-
less, we believe that the parameters that were estimated constitute the most important25

uncertainties.
The good fit to the observations indicates that SOMPROF is able to reproduce widely

different SOM profiles, based on realistic parameter values. Furthermore, the consis-
tency of the results with site conditions and the good fit to the 210Pbex measurements
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(even when they are not included in the calibration) are encouraging and support the
validity of SOMPROF for temperate forests. The validity for other ecosystems such as
grasslands and tropical and boreal forests is yet to be established. Also, comparison to
other types of measurements is needed, both to improve constraint of the processes,
and to further evaluate the model. Examples of such data include carbon isotopes, het-5

erotrophic respiration rates, and chronosequence measurements. Finally, further study
should explore whether simplification of the model by removal of organic matter pools
is warranted. If so, a possible modification would involve merging the root litter and
fragmented litter pools, which are functionally very similar.

5 Concluding remarks10

In order to study the processes involved in SOM profile formation we performed
Bayesian estimation of SOMPROF model parameters for Loobos and Hainich, based
on organic carbon and 210Pbex measurements as well as prior knowledge. The final
calibration yielded a multi-modal posterior distribution for Hainich, with two dominant
modes corresponding to two distinct explanations for the observations. One mode was15

found to be most realistic in the light of ancillary measurements, and in situ soil condi-
tions. For Loobos the posterior distribution is unimodal.

For both Loobos and the most likely mode for Hainich, most of the organic matter
is comprised of the leachable slow organic matter pool, which represents material that
is mostly adsorbed, but potentially leachable. The results further indicate that for both20

sites most organic matter in the mineral soil is derived from root inputs. For Hainich root
input also determines the vertical distribution of SOM, whereas for Loobos downward
advective movement of SOM, representing liquid phase transport, represents a major
control. These results agree well with other measurements and in situ conditions.

The 210Pbex measurements improved constraint of the parameters related to bio-25

turbation and reduced the probability of one of the modes for Hainich, but had other-
wise no major influence on the posterior distributions. Nevertheless, since the 210Pbex
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observations could be reproduced well together with the organic carbon measure-
ments, we believe this isotope holds value as a SOM tracer.

Our study illustrates the difficulties with explaining the vertical SOM profile caused by
the convolution of several mechanisms. Soil carbon profile measurements are neces-
sary but in general not sufficient for resolving the processes. Ancillary measurements5

such as respiration rates or tracers are needed and even then the model may remain
over-parameterized. Bayesian calibration using Markov Chain Monte Carlo, is an in-
valuable tool for such problems since it helps to identify parameter correlations and
the existence of multiple modes, which with traditional calibration tools could easily
have gone unnoticed. Furthermore, inclusion of prior knowledge mitigates the adverse10

effects of over-parameterization.
For future large scale application of SOMPROF sets of characteristic parameter val-

ues for different soils and ecosystems are required. With results of the current study
and future calibrations progressively stronger prior distributions can be derived, which
can be used for sites where fewer observations are available.15

Appendix A

Markov chain Monte Carlo scheme

A1 The Metropolis algorithm

The Metropolis algorithm (Metropolis et al., 1953) samples the posterior distribution
by means of a Markov chain which performs a random guided walk in parameter20

space. At each iteration i proposals of the parameters θ
∗ are generated by taking

a (semi-)random step from the current position θ
i . The model is run with the pro-

posed parameter set and the unnormalized posterior probability (P (θ )L(θ |O)) of the
proposal is evaluated. The proposal is subsequently accepted or rejected according to
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the Metropolis rule, which defines the chance for acceptance as:

s = min
{
L(θ ∗|O)P (θ ∗)J(θ ∗)

L(θ i |O)P (θ i )J(θ i )
,1
}

, (A1)

where J(θ ) is a factor which may be included to remove the effects of sampling in
transformed parameter space (see Sect. A2). The decision for acceptance or rejection
is made using a random number from a uniform distribution on the unit interval. In case5

of acceptance, the chain moves to the position of the proposal; in case of rejection the
chain stays at the current position, which is thus sampled again.

We used the DREAM(ZS) algorithm (Laloy and Vrugt, 2012), an adaptation of the
DREAM (DiffeRential Evolution Adaptive Metropolis) algorithm which uses multiple
chains in parallel and automatically adapts the scale and orientation of the proposal10

distribution.

A2 Parameter transformations

Since MCMC algorithms generally perform better for distributions that are close to
Gaussian, the random walk performed was in transformed parameter space. For the
decomposition rate coefficients (ki ) and transport rates (B, lm, v) a log transformation15

was applied:

θ′ = ln(θ), (A2)

and for the transformation fractions a logit transformation was used:

θ′ = ln
(

θ
1−θ

)
, (A3)

where θ′ is the transformed parameter value and θ is the untransformed parameter20

value used as input for SOMPROF.
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The transformations affect the distribution sampled with random walk. This effect
may be removed by applying a correction factor to the acceptance chance (Eq. A1),
which is the Jacobian of the transformation. For a log transformation:

J(θ) =
1
θ

, (A4)

and for a logit transformation:5

J(θ) =
1

θ−θ2
. (A5)

The correction factor was applied for the calibrations with weak priors (setups 1 and 2).
Omitting the correction factor for a log transformation effectively transforms a normal
prior in transformed space into a log-normal prior in untransformed space, and anal-
ogously for a logit transformation. The prior distributions for calibration setup 3 were10

constructed in this way.

A3 Calibration setup

For each calibration first a exploratory run was performed, intended to search for differ-
ent posterior modes. For this run, at least 20 chains were run in parallel, with starting
points widely dispersed in the sampling region using Latin hypercube sampling. Fur-15

thermore, the posterior cost was reduced using a cost-reduction factor of 0.1, multiplied
with the cost in Eq. (7). This effectively “flattens” the posterior, allowing the chains to
escape from local modes and to take bigger steps, thus covering more area. After all
modes of interest were identified in the exploratory run, secondary runs without cost
reduction were performed, where at least eight chains were started near each mode.20

The convergence of the chains was evaluated using the Gelman-Rubin index (Gel-
man et al., 1995, Chap. 11), which is proportional to the ratio of the between-chain
variance and the within-chain variance, and declines to 1 different chains converge on
the same distribution. All chains were run until the convergence index was ≤ 1.01 for

11270

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 11239–11292, 2012

Modeling the SOM
profile using

Bayesian inversion

M. C. Braakhekke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

all parameters, with at least 500 000 iterations per chain for calibration setups 1 and 2,
and 200 000 iterations per chain for calibration setup 3.

After the secondary runs, a variable (but at least 50 000), number of iterations was
removed from the start of each chain (the burn-in). Next, the remaining chains for each
mode were merged and thinned to 10 000 iterations for analysis by selecting iterations5

in regular intervals. The continuous posterior distributions depicted in the Figs. 4 and 7
were derived using kernel density estimation.

Appendix B

Calculation of process contributions to the SOM profile

In SOMPROF there are five processes that cause input or redistribution of the organic10

matter pools in the mineral soil: root litter input (RLI), formation due to fragmented litter
decomposition (FLdec), formation due to root litter decomposition (RLdec), bioturba-
tion (BT), and liquid phase transport (LPT). Obviously, not every organic matter pool is
influenced by each process. The average fluxes (in kgCm−3 yr−1) over the last simula-
tion year of these processes are calculated by SOMPROF in the forward Monte Carlo15

runs, yielding the following flux rates: F BT
FL , F RLI

RL , F BT
RL , F FLdec

NLS , F RLdec
NLS , F BT

NLS, F FLdec
LS ,

F RLdec
LS , F BT

LS , and F LPT
LS . Note that the net input/output of organic matter due to biotur-

bation/diffusion and liquid phase transport/advection are not equal to the flux rates of
these processes (as depicted in Fig. 6-1 and 9-1), but are defined as the vertical deriva-
tive of the transport fluxes. For a system with discrete layers, this means the difference20

between the flux at the top and at the bottom of a layer.
The relative importance of each of these fluxes for long term SOM storage, may

be estimated by dividing them by the decomposition rate coefficient of the respective
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pools, yielding an organic carbon concentration for the steady state (kgCm−3):

Cj
i =

F j
i

ki
, (B1)

for any pool i and process j . Since root litter at any depth may come from either root
litter input or bioturbation, also the decomposition products of root litter (NLS and LS)
may be split into fractions that come from these two sources:5

CRLdec,RLI
NLS

=
CRLI

RL

CRLI
RL +CBT

RL

CRLdec
NLS

, (B2a)

CRLdec,BT
NLS

=
CBT

RL

CRLI
RL +CBT

RL

CRLdec
NLS

, (B2b)

CRLdec,RLI
LS

=
CRLI

RL

CRLI
RL +CBT

RL

CRLdec
LS

, (B2c)

CRLdec,BT
LS

=
CBT

RL

CRLI
RL +CBT

RL

CRLdec
LS

. (B2d)
10

The calculations above yields 12 carbon concentrations: CBT
FL , CRLI

RL , CBT
RL, CFLdec

NLS ,

CRLdec,RLI
NLS

, CRLdec,BT
NLS

, CBT
NLS, CFLdec

LS , CRLdec,RLI
LS

, CRLdec,BT
LS

, CBT
LS , and CLPT

LS . Note that the
sum of these concentrations is not necessarily equal to the simulated total concen-
tration because (i) the simulated SOM profile may not be in steady state, and (ii) the
effects of soil temperature and moisture are not accounted for when estimating the15

steady state concentration. However, since all the pools respond equally to soil tem-
perature and moisture, the relative distribution of the organic matter over the pools is
correct for the steady state.
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To quantify the importance of the three processes root litter input, bioturbation and
liquid phase transport, the organic carbon concentrations are summed as follows:

CRLI = CRLI
RL +CRLdec,RLI

NLS
+CRLdec,RLI

LS
, (B3a)

CBT = CBT
FL +CBT

RL +CBT
NLS

+CFLdec
NLS

+CRLdec,BT
NLS

+CRLdec,BT
LS

+CFLdec
LS

+CBT
LS

, (B3b)

CLPT = CLPT
LS

. (B3c)5

Since the transport processes may also cause loss of organic matter at a given
depth, their contributions to the total organic carbon may also be negative. However,
the sum over all contributions must be positive, and equal to the total steady state
organic carbon concentration for a simulation with temperature and moisture constant10

at 15 ◦C and optimal soil moisture.

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/9/11239/2012/
bgd-9-11239-2012-supplement.pdf.
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Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., and Chenu, C.: Carbon dynamics in topsoil30

and in subsoil may be controlled by different regulatory mechanisms, Glob. Change Biol., 16,
416–426, 2010. 11241

11278

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 11239–11292, 2012

Modeling the SOM
profile using

Bayesian inversion

M. C. Braakhekke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Sauve, S., Martinez, C. E., McBride, M., and Hendershot, W.: Adsorption of free lead (Pb2+) by
pedogenic oxides, ferrihydrite, and leaf compost, Soil Sci. Soc. Am. J., 64, 595–599, 2000.
11265

Scharnagl, B., Vrugt, J. A., Vereecken, H., and Herbst, M.: Information content of incubation
experiments for inverse estimation of pools in the Rothamsted carbon model: a Bayesian5

perspective, Biogeosciences, 7, 763–776, doi:10.5194/bg-7-763-2010, 2010. 11254
Schroth, A. W., Bostick, B. C., Kaste, J. M., and Friedland, A. J.: Lead sequestration and species

redistribution during soil organic matter decomposition, Environ. Sci. Technol., 42, 3627–
3633, 2008. 11265

Schrumpf, M., Schulze, E. D., Kaiser, K., and Schumacher, J.: How accurately can soil or-10

ganic carbon stocks and stock changes be quantified by soil inventories?, Biogeosciences,
8, 1193–1212, doi:10.5194/bg-8-1193-2011, 2011. 11252

Smit, A.: The impact of grazing on spatial variability of humus profile properties in a grass-
encroached Scots pine ecosystem, Cate, 36, 85–98, 1999. 11249

Smit, A. and Kooijman, A. M.: Impact of grazing on the input of organic matter and nutrients to15

the soil in a grass-encroached Scots pine forest, Forest Ecol. Manag., 142, 99–107, 2001.
11250, 11281

Tefs, C. and Gleixner, G.: Importance of root derived carbon for soil organic matter storage in
a temperate old-growth beech forest – Evidence from C, N and 14C content, Forest Ecol.
Manag., 263, 131–137, 2012. 1126220

Tonneijck, F. H. and Jongmans, A. G.: The influence of bioturbation on the vertical distribution
of soil organic matter in volcanic ash soils: a case study in Northern Ecuador, Eur. J. Soil
Sci., 59, 1063–1075, 2008. 11242

Trumbore, S.: Radiocarbon and Soil Carbon Dynamics, Ann. Rev. Earth Planet. Sci., 37, 47–66,
2009. 1124125

Tuomi, M., Thum, T., Järvinen, H., Fronzek, S., Berg, B., Harmon, M., Trofymow, J. A., Se-
vanto, S., and Liski, J.: Leaf litter decomposition – estimates of global variability based on
Yasso07 model, Ecol. Model., 220, 3362–3371, 2009. 11241

Turner, D. R., Varney, M. S., Whitfield, M., Mantoura, R. F. C., and Riley, J. P.: Electrochemical
studies of copper and lead complexation by fulvic-acid. 1. potentiometric measurements and30

a critical comparison of metal-binding models, Geochim. Cosmochim. Ac., 50, 289–297,
1986. 11265

11279

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/bg-7-763-2010
http://dx.doi.org/10.5194/bg-8-1193-2011


BGD
9, 11239–11292, 2012

Modeling the SOM
profile using

Bayesian inversion

M. C. Braakhekke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Urban, N. R., Eisenreich, S. J., Grigal, D. F., and Schurr, K. T.: Mobility and diagenesis of Pb
and Pb-210 in peat, Geochim. Cosmochim. Ac., 54, 3329–3346, 1990. 11265

Veresoglou, D. S. and Fitter, A. H.: Spatial and temporal patterns of growth and nutrient-uptake
of 5 co-existing grasses, J. Ecol., 72, 259–272, 1984. 11250
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Table 1. Model driving data and not-estimated parameters.

Variable/Parameter Loobos Hainich Units

Annual above ground litter input 0.310 0.314b kgCm−2 yr−1

Canopy 0.255 0.277b

Understory 0.055c 0.037b

Total annual root litter input 0.543 0.178b kgCm−2 yr−1

Canopy 0.118 0.148b

Understory 0.425c 0.03
Root litter distribution parameter see text 7 m−1

Soil temperature response parameter 308.56d 308.56d K
Soil moisture response parameter ae 1 1 –
Soil moisture response parameter be 20 20 –
Soil temperature a a K
Relative soil moisture content a a –
Bulk density L layer 50 50 kgm−3

Bulk density F layer 100 100 kgm−3

Bulk density H layer 150 150 kgm−3

Bulk density mineral soil 1400 a kgm−3

Simulation period 95 1000 yr
Depth of bottom boundary 2 0.7 m

a Variable in depth and/or time.
b Kutsch et al. (2010); W. Kutsch (personal communication, 2009).
c Smit and Kooijman (2001).
d Lloyd and Taylor (1994).
e Soil moisture response function: g (W ) = exp(−exp(a−bW )).
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Table 2. Estimated model parameters.

Parameter Symbol Units Prior distribution Upper bound

Decomposition rate coefficients at 10 ◦C and optimal soil moisture
Above ground litter kAGL yr−1 Log−N (−0.23,0.74) 3
Root litter kRL yr−1 Log−N (−0.23,0.74) 3
Fragmented litter kFL yr−1 Log−N (−0.23,0.74) 3
Non-leachable slow organic matter kNLS yr−1 Log−N (−2.23,1.00) 3
Leachable slow organic matter kLS yr−1 Log−N (−2.23,1.00) 3

Transformation fractions
Aboveground litter–fragmented litter αAGL→FL – Logit−N (0.43,0.95) 1
Fragmented litter–non-leachable slow αFL→NLS – Logit−N (−0.93,0.98) 1, (1−αFL→LS)
Fragmented litter–leachable slow αFL→LS – Logit−N (−0.93,0.98) 1, (1−αFL→NLS)
Root litter–non-leachable slow αRL→NLS – Logit−N (−0.93,0.98) 1, (1−αRL→LS)
Root litter–leachable slow αRL→LS – Logit−N (−0.93,0.98) 1, (1−αRL→NLS)

Transport parameters
Bioturbation rate B kgm−2 yr−1 uniform 3
Mixing length lm m uniform 3
Liquid phase transport (advection) rate v m yr−1 uniform 0.1
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Table 3. Misfit (minimum value of log(P (θ ) L(θ |O)) in the MCMC sample) for each of the pos-
terior modes for Hainich for the three calibration setups.

Calibration setup Mode A Mode B Mode C

1: Excl. 210Pbex; weak priors 114.01 112.05 114.57
2: Incl. 210Pbex; weak priors 117.86 116.00 120.49
3: Incl. 210Pbex; strong priors 136.91 136.87 154.82
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Fig. 1. Overview of the SOMPROF model and the 210Pbex module. The dark gray rectangles
indicate 210Pbex associated with the organic matter pools.
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equivalent site (Kaste et al., 2007).
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Fig. 4. Posterior distributions for the three setups for Loobos. The “violins” depict the marginal
distribution for each parameter. The three vertical lines inside the violins indicate the median
and the 95 % confidence bounds. The parameters are normalized to the sampling ranges (see
Table 2).
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Fig. 5. Organic carbon measurements and corresponding model results of forward Monte Carlo
simulations for Loobos, based on posterior distribution of calibration setup 3. 1. quantities of
the model pools. 2. above vs below ground derived organic matter. Topsoil: 0–30 cm; subsoil:
> 30cm). All depicted quantities are averages over the Monte Carlo ensemble; errorbars denote
one standard error of the mean for the measurements and one standard deviation for the model
results.

11288

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 11239–11292, 2012

Modeling the SOM
profile using

Bayesian inversion

M. C. Braakhekke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Concentration (kgC m−3)

0

10

20

30

40

50

60

70
−5 0 5 10

Root itter input
Bioturbation
Liquid phase transp.
±1 SD

D
ep

th
 in

 m
in

er
al

 s
oi

l (
cm

)

Transport flux (kgC m−2 yr−1)

0

20

40

60

80

100

120

0 0.1 0.2 0.3

Bioturbation
Liquid phase transport
±1 SD
Measured DOC flux

2. Contribution of processes to SOC1. Organic carbon transport
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sured DOC fluxes Kindler et al., 2011; not used in the calibration). Note the indistinct bioturba-
tion flux in the upper left corner. 2. Contributions of the different processes to SOM profile in
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Fig. 7. Posterior distributions for the three calibration setups for Hainich. The “violins” depict
the marginal distribution for each parameter. The three posterior modes are plotted separately
in the same graph. The three vertical lines inside the violins indicate the median and the 95 %
confidence bounds. The parameters are normalized to the sampling ranges (see Table 2).
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Fig. 8. Organic carbon measurements and corresponding model results of forward Monte Carlo
simulations for Hainich, based on the three modes of the posterior distribution of calibration
setup 3. 1. quantities of the model pools. 2. above vs below ground derived organic matter.
Topsoil: 0–30 cm; subsoil: > 30cm). All depicted quantities are averages over the Monte Carlo
ensemble; errorbars denote one standard error of the mean for the measurements and one
standard deviation for the model results.

11291

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-print.pdf
http://www.biogeosciences-discuss.net/9/11239/2012/bgd-9-11239-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 11239–11292, 2012

Modeling the SOM
profile using

Bayesian inversion

M. C. Braakhekke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
ep

th
 in

 m
in

er
al

 s
oi

l (
cm

)

Mode A
0

10

20

30

40

50

60

70

80
0 0.02 0.04 0.06

Transport flux (kgC m−2 yr−1)

Mode B
0

10

20

30

40

50

60

70

80
0 0.01 0.02 0.03 0.04

Bioturbation
Liquid phase transport
±1 SD
Measured DOC flux

Mode C
0

10

20

30

40

50

60

70

80
0 0.05 0.1

1. Organic carbon transport

Litter input
Bioturbation
Liquid phase transp.
±1 SD

D
ep

th
 in

 m
in

er
al

 s
oi

l (
cm

)

Mode A

2. Contribution of processes to SOC

0

10

20

30

40

50

60

70
−20 0 20 40 60 80

30

40

50

60

70
0 5 10

Concentration (kgC m−3)

Mode B
0

10

20

30

40

50

60

70
−20 0 20 40 60 80

Litter input
Bioturbation
Liquid phase transp.
±1 SD

30

40

50

60

70
0 5 10

Mode C
0

10

20

30

40

50

60

70
−50 0 50 100 150 200

30

40

50

60

70
−10 0 10 20

Fig. 9. Simulated organic carbon fluxes from forward Monte Carlo simulations for Hainich,
based on the three modes of the posterior distribution of calibration setup 3. All quantities
are averages over the last simulation year and the Monte Carlo ensemble. 1. organic carbon
transport fluxes and measured DOC fluxes Kindler et al., 2011; not used in the calibration). 2.
Contributions of the different processes to SOM profile in mineral soil (see Sect. 2.4.3).
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