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Abstract

The feedback between climate and the terrestrial carbon cycle will be a key determi-
nant of the dynamics of the Earth System over the coming decades and centuries.
However Earth System Model projections of the terrestrial carbon-balance vary widely
over these timescales. This is largely due to differences in their carbon cycle mod-5

els. A major goal in biogeosciences is therefore to improve understanding of the ter-
restrial carbon cycle to enable better constrained projections. Essential to achieving
this goal will be assessing the empirical support for alternative models of component
processes, identifying key uncertainties and inconsistencies, and ultimately identifying
the models that are most consistent with empirical evidence. To begin meeting these10

requirements we data-constrained all parameters of all component processes within
a global terrestrial carbon model. Our goals were to assess the climate dependencies
obtained for different component processes when all parameters have been inferred
from empirical data, assess whether these were consistent with current knowledge
and understanding, assess the importance of different data sets and the model struc-15

ture for inferring those dependencies, assess the predictive accuracy of the model, and
to identify a methodology by which alternative component models could be compared
within the same framework in future. Although formulated as differential equations de-
scribing carbon fluxes through plant and soil pools, the model was fitted assuming the
carbon pools were in states of dynamic equilibrium (input rates equal output rates).20

Thus, the parameterised model is of the equilibrium terrestrial carbon cycle. All but 2 of
the 12 component processes to the model were inferred to have strong climate depen-
dencies although it was not possible to data-constrain all parameters indicating some
potentially redundant details. Similar climate dependencies were obtained for most pro-
cesses whether inferred individually from their corresponding data sets or using the full25

terrestrial carbon model and all available data sets, indicating a strong overall consis-
tency in the information provided by different data sets under the assumed model for-
mulation. A notable exception was plant mortality, in which qualitatively different climate
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dependencies were inferred depending on the model formulation and data sets used,
highlighting this component as the major structural uncertainty in the model. All but two
component processes predicted empirical data better than a null model in which no
climate dependency was assumed. Equilibrium plant carbon was predicted especially
well (explaining around 70 % of the variation in the withheld evaluation data). We dis-5

cuss the advantages of our approach in relation to advancing our understanding of the
carbon cycle and enabling Earth System Models make better constrained projections.

1 Introduction

Models of the Earth System (the thin layer that contains and supports life) have evolved
as understanding of the roles of different processes in Earth System dynamics has10

improved (Randall et al., 2007). However this evolution has not led to Earth System
Models making sufficiently well constrained projections to be useful under most practi-
cal circumstances (Cox and Stephenson, 2007; Kerr, 2011; Maslin and Austin, 2012).
What has been lacking to date is a sufficiently precise understanding of what compo-
nent processes to include, how best to include them, how uncertainty is distributed,15

and the resulting predictive skill of models over different spatial and temporal scales.
Although achieving these insights does not guarantee the delivery of sufficiently well
constrained projections, they will nonetheless lead to improved clarity about our con-
fidence in their projections and where uncertainty originates from. A major research
goal is therefore to improve Earth System Models to enable better constrained and20

more useful projections.
The terrestrial carbon cycle is one of the most important components influencing the

dynamics of the Earth System over decadal or longer timescales. This is evidenced
by its strong coupling with global climate over recent decades (Denham et al., 2007)
and the major influences of the carbon-climate feedback on climate change in model25

projections (Cramer et al., 2001; Friedlingstein et al., 2006; Denham et al., 2007; Sitch
et al., 2008). Terrestrial vegetation, for example, is responsible for approximately 60 %
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of the total annual flux in atmospheric carbon dioxide, and currently absorbs around
a quarter of anthropogenic carbon dioxide emissions (Denham et al., 2007). It is there-
fore understandable that differences in how the terrestrial carbon cycle is simulated
in different Earth System Models, which leads to different projections about different
carbon sources and sinks, can lead to diverging and inconsistent projections in model5

intercomparisons (Friedlingstein et al., 2006). An important research goal in biogeo-
sciences is therefore to improve understanding of the processes underpinning terres-
trial carbon cycling sufficiently to enable better constrained projections of its dynamics,
thus reducing a key source of uncertainty in Earth System Model projections (Scholze
et al., 2007; Hoffman et al., 2008; Randerson et al., 2009).10

Studies of terrestrial carbon dynamics continue to refine understanding of the likely
importance of different component processes, and continue to reveal new processes.
For example it seems likely that carbon dioxide fertilisation effects could stimulate the
terrestrial carbon sink and other vegetation processes in future (Friedlingstein et al.,
2003) although the changing availability of nitrogen and other growth-limiting resources15

are likely to have a strong regulating influences on this (Goll et al., 2012), as well as
other influences on the terrestrial carbon cycle in general (Bonan, 2008; Zaehle et al.,
2011). Decomposition priming effects could dramatically influence the future rate of
change of soil carbon (Kuzyakov et al., 2000), as well as permafrost thawing (Schae-
fer et al., 2011) and climate change induced changes in vegetation structure through20

succession and altered disturbance regimes (Scholze et al., 2008). However progress
is still needed to transform this improved understanding into confident quantitative pre-
dictions of the actual importance of the different component processes.

The need to quantify the relative importance of incorporating different processes,
alongside the related need to better quantify uncertainty, has recently led to more25

rigorous comparisons of models with empirical data. Uncertainty arises from multiple
sources, not just from uncertainty in the best ways to model relevant model component
processes but also from uncertainty in model parameters, from stochasticity in com-
ponent processes, from uncertainty in empirical evidence and from initial conditions.
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Constraining the parameters of terrestrial carbon models with empirical evidence by
inferring their most likely values has led to better understanding about the importance
of parameter uncertainty and the consistency of parameterisations with empirical data
(Knorr and Heimann, 2001; Scholze et al., 2007; Zhou and Luo, 2008; Rayner et al.,
2011; Ricciuto et al., 2011). Systematic comparisons of alternative carbon models or5

their components have led to the more precise identification of differences and incon-
sistencies between different models (Keenan et al., 2012; van Oijen et al., 2011; Ran-
derson et al., 2009; Kloster et al., 2010). The propagation of parameter uncertainties
through to model projections has enabled clearer estimates of confidence to be as-
signed to projections and the relative importance of different sources of uncertainty to10

be assessed (Scholze et al., 2007). These studies offer the clear promise of enabling
the identification of how best to model the terrestrial carbon cycle to provide the most
informative quantitative projections.

Delivering better constrained projections of terrestrial carbon cycle dynamics could
soon be achieved in light of the advances described above. Realising this is going to re-15

quire systematic assessments of alternative formulations for terrestrial carbon models
and their components to enable rational decisions about which are more consistent with
empirical evidence. In our study we aim to begin the process of the systematic assess-
ment of alternative terrestrial carbon cycle models by inferring all of the parameters to
a relatively simple process-based model of the contemporary global terrestrial carbon20

cycle. Our goals are to (i) assess the degree of empirical support for simple functional
representations of component processes of the carbon cycle when assessed within
a model of how the overall system is connected, (ii) to assess whether the inferred re-
lationships are consistent with current understanding, and (iii) to define a methodology
by which we can build from this model to identify the appropriate balance of details for25

making better constrained probabilistic projections of the carbon cycle into the future.
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2 Data sources

2.1 Carbon stocks and fluxes

Our empirical data primarily came from field-data collation initiatives that targeted an
individual terrestrial carbon stock or flow. These are summarised in Table 1. These
data sets were selected on the basis that they (i) were informative about the stocks5

and fluxes of carbon in natural terrestrial vegetation, (ii) contained at least some data
that was representative of vegetation in a state of dynamical equilibrium (selected via
a filtering process, see Appendix A) (iii) could be used as information to constrain
parameters in our model, (iv) had approximately global coverage, (v) could have sin-
gle latitude and longitude coordinates assigned each site-based estimate to enable10

cross-referencing to spatial climate data, and (vi) could be easily accessed and shared
alongside our study to enable reproducibility, investigations of data processing steps,
investigations into the importance of the selected data, and controlled comparisons of
alternative models. Full details of how all of the empirical data sets were processed are
given in Appendix A.15

2.2 Environmental data

All model components incorporated information from site-specific environmental vari-
ables to make predictions, either directly or indirectly by requiring input from another
component model that itself required environmental data. All environmental variables
were calculated using data contained in either or both of the New et al. (2002) gridded20

monthly climate data set and the Batjes (2000) “Global Data Set of Derived Soil Prop-
erties” data set. These have spatial resolutions of 10 arcmin and 0.5 decimal degrees,
respectively. Full details of how the different environmental variables were calculated
are given in Appendix B.
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3 Model

3.1 Full structure

We developed a terrestrial carbon model as a connected series of six ordinary differ-
ential equations, each with 3 general components: an input rate (e.g. carbon fixation
rate); an output rate (e.g. leaf mortality) and a state variable (e.g. leaf carbon). The5

chosen level of complexity was biased by our ability to identify global data on at least
two out of these three, so that it would be possible to infer properties of the unknown.
Despite this bias, the resulting structure (Fig. 1) is similar to early published dynamic
or equilibrium global vegetation models (Mellilo et al., 1993; Craig and Holmen, 1995;
Foley, 1995; Friend et al., 1997). The full terrestrial carbon model is then expressed as10

dCl

dt
= G

(
1− fmax fs

) µl

µl + µr
−
(
µl + µf + µs

)
Cl, (1a)

dCr

dt
= G

(
1− fmax fs

) µr

µl + µr
−
(
µr + µf + µs

)
Cr, (1b)

dCs

dt
= G fmax fs −

(
µs +Sf µf

)
Cs, (1c)

dCm

dt
= fm

((
µl + µs

)
Cl +

(
µr + µf + µs

)
Cr

)
−km A Cm, (1d)15

dCa

dt
=
(

1− fm
)((

µl + µs

)
Cl +

(
µr + µf + µs

)
Cr

)
+ µs Cs−ka A Ca, and (1e)

dCb

dt
= F1ka A Ca−kb A Cb, (1f)

where Cl, Cr, Cs, Cm, Ca, Cb is the amount of organic carbon stored (kgm−2) in leaves,
fine roots, structural plant parts, metabolic fraction of the soil, structural fraction of the20
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soil and recalcitrant fraction of the soil (these are defined below), and t is time in years
(yr).

All components in Eq. (1) marked with a box are functions that will be defined below.
fmax is the maximum fraction of net primary productivity allocated to structural plant
parts. Sf scales the fire-induced mortality rate of structural plant parts relative to that5

of leaves and fine roots (inferred in this study). km, ka and kb are the maximum loss
rates of the metabolic, structural and recalcitrant soil fractions (yr−1; all inferred). F1 is
the fraction of the structural carbon pool that does not decompose directly to carbon
dioxide but enters the recalcitrant pool (unitless; inferred). G is a function determining
plant carbon fixation rate (kgm−2 yr−1), fs is a function scaling the fraction of carbon10

allocated to structural plant parts over leaves and roots (unitless). µl , µr , and µs , are

the loss rates of leaves, fine roots and whole plants (yr−1). µf is the loss rate due to fire

(yr−1). fm is the fraction of organic carbon in dead leaves and fine roots that enters the
metabolic soil organic carbon pool (unitless), the rest enters the structural fraction of
the soil organic carbon pool). A scales the decomposition rate of organic soil carbon,15

where 0 < A < 1 (unitless).
We assume that allocation to leaf and fine root carbon is proportional to their rela-

tive mortality rates (in the absence of fire) and that mortality due to fire ( µf ) causes
fine root carbon to be added to the soil but releases all leaf and structural carbon as
carbon dioxide. However, we allow for only a fraction, Sf (unitless; inferred) of the struc-20

tural carbon to be killed by a fire event (Kloster et al., 2010). We further assume that
soil carbon includes all dead plant carbon that has not been instantly returned to the
atmosphere as carbon dioxide. This means that we do not explicitly separate litter or
coarse woody debris laying above the soil, from organic carbon held within the soil,
unlike most global vegetation models. Another assumption is that the soil carbon is25

divided into three pools, as is common (Schimel et al., 1996; Ise and Moorcroft, 2006;
Adair et al., 2008). One pool is termed “metabolic”, which contains rapidly decompos-
ing, relatively nitrogen rich, plant parts (e.g. nucleic acids and cytoplasmic constituents)
that are completely metabolised releasing carbon dioxide. A second, “structural” pool
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contains plant parts (cellulose and lignin) that decompose more slowly, and incom-
pletely (i.e. not all released as carbon dioxide). A third “slow” soil pool contains the
recalcitrant fraction of the decomposed “structural” soil pool that did not decompose to
carbon dioxide and that decomposes to carbon dioxide very slowly.

To infer the parameters to the model we further assume that all carbon pools have5

reached a state of dynamic equilibrium. Equations (1) then reduce to simple expres-
sions for the equilibrium carbon contents of plant and soil carbon pools (omitted for
brevity).

3.2 Component functions

As with data selection, we did not actively seek what might be thought of as the “best”10

functions but instead identified those that could simply be used to infer climate depen-
dent relationships; our rationale being to defer the objective assessment of the relative
performance of alternative functions to future work.

3.2.1 Net primary productivity

We used the so-called “MIAMI” model, developed by Leith (1975) to predict annual net15

primary productivity (NPP) as a function of two of the main environmental variables
known to limit plant productivity: temperature and available water. It has the form

G = min(GTGP)kgm−2 yr−1, (2a)

where G is NPP (kgcarbonm−2 yr−1). The functions GT, and GP are calculated accord-
ing to20

GT =
Gmax

1+exp(t1 − t2MAT)
, and (2b)

GT = Gmax(1−exp(−p1MAP)), where (2c)
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Gmax, t1, t2, p1 are unknown constants (inferred parameters), Gmax is the maximum
NPP, t1 and t2 scale the temperature dependency of NPP, p1 scales the precipitation
dependency of NPP, MAT is mean annual temperature and MAP is mean annual pre-
cipitation.

3.2.2 Leaf mortality rates and fraction vegetation that is evergreen5

We formulated a new leaf mortality model based on the recent analysis by van Ommen
Kloeke et al. (2011) of global patterns of leaf lifespan. van Ommen Kloeke et al. (2011)
revealed contrasting global patterns of leaf lifespans (the inverse of leaf mortality rates)
for evergreen and deciduous plants. The mean leaf mortality rate µl (yr−1) is calculated
as a weighted average according to10

µl = exp(fe ln(µe)+ (1− fe) ln(µd))yr−1, (3a)

where

fe = afeFYF2 +bfeFYF+cfe, (3b)

µe = exp(meMAT−ce), and (3c)

µd = exp(−(mdMAT+cd)). (3d)15

afe, bfe, cfe, ce, me, cd, and md are unknown constants (inferred parameters), 0 < fe < 1
is the fraction of the vegetation that has evergreen leaves and parameters afe, bfe and
cfe scale the quadratic function (Eq. 3b), µe is the mortality rate of evergreen leaves
and parameters, ce and me scale that exponential function, µd is the mortality rate20

of deciduous leaves and parameters cd, and md scale that function and FYF is the
fraction of the year that experiences frost (calculated using the method of van Ommen
Kloeke et al., 2011).
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3.2.3 Fine root mortality rate

Gill and Jackson (2000) analysed a database on root turnover rates from all major
terrestrial vegetation types and found clear log-linear positive relationships between
turnover rates and site mean annual temperatures for fine roots in forests, and for roots
in shrublands and grasslands. Reflecting their findings we predicted fine root turnover5

rates according to

µr = exp(mfrmMAT+cfrm)yr−1, (4)

where µr is root-trunover rate (yr−1), cfrm and mfrm are unknown (assumed constant)
parameters scaling the response of fine root mortality rate to MAT.

3.2.4 Plant mortality rate10

Stephenson and van Mantgem (2005) analysed patterns of tree mortality rates across
temperate and tropical forests worldwide and revealed a tendency for mortality rates to
be higher in higher productivity areas. We therefore modelled plant mortality rates as

µs = exp(p2AET+p1)yr−1, (5)

where µs is plant mortality rate (yr−1), p1 and p2 are unknown constants (inferred15

parameters) that scale the plant mortality rate as a function of annual actual evapo-
transpiration, AET.

3.2.5 Mortality rate due to fire

We developed a fire model based on the models of Thonicke et al. (2001), Kloster
et al. (2010) and Arora and Boer (2005). We predicted the per capita vegetation20
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mortality rate due to fire as

µf = cff1(LFS)f2
(
G
)

yr−1, where (6a)

f1(LFS) =
1

1+exp(−lfsscalar(LFS− lfshalfsat))
and (6b)

f2
(
G
)
=

1

1+exp
(
−NPPscalar

(
G −NPPhalfsat

)) (6c)
5

Here µf , is the mortality rate due to fire (yr−1) and, cf , lfsscalar, lfshalfsat, NPPscalar,
NPPhalfsat are unknown constants (inferred parameters). The constant cf scales the
overall mortality rate due to fire, lfsscalar and lfshalfsat scale the logistic response of this
mortality rate to the length of the fire season LFS, and NPPscalar and NPPhalfsat scale
the logistic response of fire return interval to G . To infer the parameters to this model10

we assume that the mortality rate due to fire is equivalent to the fractional area burned
per year (Table 1).

3.2.6 Metabolic fraction

The fraction of leaf and fine root carbon allocated to components that decompose
relatively rapidly (nucleic acids and cytoplasmic constituents) notably varies between15

different plant functional types, with gymnosperms, for example, tending to have a rela-
tively low “metabolic fraction”. Metabolic fraction also tends to be positively associated
with environmental variables such as actual evapotranspiration rate, even when con-
trolling for changes in plant functional types (Aerts, 1997). Rather than introduce plant
functional types, we chose to model metabolic fraction as the simple linear function20

fm = cfm +mfmAET (7)

where fm is metabolic fraction and cfm and mfm are unknown constants (inferred pa-
rameters) that scale the response of metabolic fraction to AET.
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3.2.7 Fraction of carbon allocated to structural components

We developed a simple model that predicts the fractional of carbon to woody plant
parts as a logistic function of the net primary productivity of the vegetation. This model
has the form

fs = min

(
0.01exp

(
fscalar G

)
1+0.01

(
exp
(
fscalar G

)
−1
) ,0.99

)
(8)5

where fs scales the fractional carbon allocation to woody plant parts and fscalar is an

unknown constant (inferred parameter), scaling the response of fs to G . In this form,

0.01 < fs < 0.99, with the maxima and minim set to allow maximum likelihood estima-

tion of the parameters to the continuous function fs given the binary data (Table 1).
However this gets rescaled by the maximum fractional carbon allocation parameter,10

fmax in the full vegetation model (Eq. 1).

3.2.8 Relative soil decomposition rate

A commonly used approach to modelling the decomposition of carbon in different soil
carbon pools is to assume that they decompose with different maximum rates, but with
the same dependence on environmental conditions (Ise and Moorcroft, 2008; Schimel15

et al., 1996; Bolker et al., 1998; Adair et al., 2008). This is normally implemented
by scaling the maximum decomposition rates for each pool with a common environ-
mentally dependent decomposition index. We developed a decomposition index that is
highly analogous to those that has been adopted in other studies, and takes the form

A = AMATAP, where20

AMAT =


(

0.99
(

1
1+tda exp(tdbMAT)

)
+0.01

)
/AMAT,max,MAT < tthresh

exp(tsc (MAT− tthresh)) ,MAT ≥ tthresh

, where (9a)

13451

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/13439/2012/bgd-9-13439-2012-print.pdf
http://www.biogeosciences-discuss.net/9/13439/2012/bgd-9-13439-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 13439–13496, 2012

The climate
dependence of the
terrestrial carbon

cycle

M. J. Smith et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

AMAT,max = 0.99
(

1
1+ tda exp(tdbtthresh)

)
+0.01, and (9b)

AP =


(

0.99

(
1

1+mda exp
(
mdbMAP

PET

)
)

+0.01

)
/AP,max, MAP

PET <mthresh

exp
(
msc

(MAP
PET −mthresh

))
, MAP

PET ≥mthresh

, where (9c)

AP,max = 0.99
(

1
1+mda exp(mdbmthresh)

)
+0.01. (9d)

Here A is the relative soil decomposition rate, tda, tdb, tsc, tthresh, mda, mdb, msc,5

mthresh are unknown constants (inferred parameters) and PET is mean annual potential
evapotranspiration. We assume a minimum relative decomposition rate returned by
either “wetness” or temperature functions of 0.01.

4 Parameter estimation and model assessment

4.1 Computational framework10

We built a computational framework to enable the assembly, parameterisation
and assessment of multi-component models of arbitrary complexity to enable
our study to be conducted (illustrated in Fig. 2). The framework, model, and
derivative data necessary to reproduce the results of this paper, as well as
a user’s guide is available from http://research.microsoft.com/en-us/downloads/15

8c51f0b5-17a1-413e-90c4-43c61c7e4843/default.aspx. The data resulting from con-
ducting the analyses described in this study is available from http://research.microsoft.
com/en-us/downloads/a1281531-df37-4489-a556-56799fd252b4/default.aspx
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4.2 Data partitioning into training, evaluation and final test sets

The data sets were partitioned into training, evaluation and final test sets to avoid in-
cluding parameters only because they help explain fluctuations specific to a particular
data set, instead of the general phenomenon being inferred from the data set (over-
fitting). Over-fitting can still occur when adopting this approach if model refinement5

goes through many iterations and the same training and evaluation sets are used. We
therefore first removed a fraction of each data set to be used as a final step to assess
the performance of our models (the “final test data”). This allows us to test our models
against data that played absolutely no role in the model refinement process. We con-
structed a land surface mask by randomly positioning 0.5◦ squares over the terrestrial10

land surface until approximately 25 % of the terrestrial land surface had been covered.
Any data that fell under this mask was removed permanently as final test data. We
performed 10-fold cross-validation within our model parameter inference experiments
on the data remaining after the removal of the final test data.

4.3 Parameter inference15

We used Bayes’ theorem to infer the probability distributions for the model parameters
given our empirical data sets. For every model we used flat (or “uninformative”) prior
probability distributions for the parameter values. We also assume that the probability of
observing the data under all possible hypotheses is 1 (the marginal probability). Under
these assumptions, our problem of finding the most probable parameters for a given20

model reduces to maximum likelihood estimation of the model parameters, given the
observed carbon data and environmental conditions. Formally, we assume that

L(Pred(Model(Pars,Env))|Obs) ∝ P (Obs|Pred(Model(Pars,Env)))

where bold text denotes a vector. In words, the likelihood L of the predictions Pred of
the parameterised model given the observations, Obs, is proportional to the probability25

13453

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/13439/2012/bgd-9-13439-2012-print.pdf
http://www.biogeosciences-discuss.net/9/13439/2012/bgd-9-13439-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 13439–13496, 2012

The climate
dependence of the
terrestrial carbon

cycle

M. J. Smith et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

P, of the observations given the particular model predictions. The predictions arise from
a particular model with parameters Pars, and set of environmental conditions Env.

We used the Filzbach set of code libraries to find the most likely parame-
ters for a model, given the observed carbon data (Obs) and environmental con-
ditions (Env; http://research.microsoft.com/en-us/um/cambridge/groups/science/tools/5

filzbach/filzbach.htm). Filzbach implements Markov-Chain Monte-Carlo sampling of
parameter space given a set of parameters to be varied (Pars) and likelihood func-
tion (L; Gilks et al., 1996). It uses the Metropolis-Hastings algorithm to accept or reject
sets of parameter values when compared to the likelihood associated with the parame-
ter values of the previous iteration of the Markov-Chain (Gilks et al., 1996). In our study,10

the likelihood function used by Filzbach may depend on the likelihoods associated with
several sub-component models, depending on the model parameter inference exper-
iment being run (outlined below, and see Fig. 3 for details). The specific likelihood
function chosen to assess each model component against its corresponding empirical
data set is detailed in Table 1. A “process error” parameter was also inferred alongside15

each component process, representing the most likely variation in the observations
about the data under the most likely model parameterisation.

The data sets used contain different relative frequencies of data for different climate
regions of the world. We down-weighted the log-likelihoods assigned to data points
in direct proportion to the relative frequency of data in their respective Holdridge life20

zones (Holdridge, 1967). This avoids biasing the model parameter inference proce-
dures towards parameter values that predict well those regions of the world that are
most frequently represented in the data.

4.4 Parameter inference experiments

We investigated the sensitivity of the inferred model functional forms and model perfor-25

mance metrics to using different combinations of model components and data sets by
conducting three different parameter inference experimental protocols described be-
low.
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4.4.1 Build-up experiments

We inferred parameters to each of the component models indicated in Fig. 3 alongside
those of the models on which they depend to make predictions. We refer to these
experiments as “build-up” because we started by inferring the parameters to the Group
1 models individually and then inferred those to the Group 2 models (alongside those of5

the NPP model), before inferring parameters to each of the Group 3 models (and those
of the sub-components on which they depend), incrementally working towards inferring
all the parameters in all components of the terrestrial carbon model simultaneously (the
12th experiment).

4.4.2 Omit-data experiments10

We sequentially omitted an entire data set associated with each model component in
Fig. 3 prior to inferring the parameters of the full model. This enables investigation of
how important the information contained in a given data set is for the inferred parameter
probability distributions. Each evaluation step also included a fold of the omitted data
sets. However, this approach does not allow us to estimate process error associated15

with a given model in the absence of its associated empirical data. We therefore used
the posterior parameter estimates of process error obtained from inferring the para-
meters of the full model with all empirical data sets when performing model evaluation.

4.4.3 Replace-null experiments

We sequentially replaced a model component in Fig. 3 with an inferred constant and20

associated process error. This allows us to investigate how important the climate de-
pendency of a particular model is for the predictive performance of other components
and their inferred parameter values.
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4.5 Assessing predictive performance

In general, we calculated performance metrics for each sample of parameter values
from the Markov Chain after the burn-in procedure. The burn-in period was always
20 000 iterations and the Markov Chain length used for parameter sampling was always
120 000 iterations and was subsampled every 100 iterations. This enabled us to also5

take mean, median and 95th percentiles of various performance metrics over the set
of sampled parameter values.

5 Results

5.1 Full model

In general we infer climatically varying functions for all component processes to our10

terrestrial carbon cycle model when fitted using all available data sets (red functional
relationships in Fig. 1). The inferred climate dependencies of net primary productivity
(NPP), increasing but saturating functions of temperature and precipitation (Fig. 1a, b),
are consistent with what was established for the classic MIAMI model (Leith, 1975).
The proportion of fixed carbon allocated to wood (versus and leaves and fine roots)15

varies continuously as a sigmoid function of NPP and increases to around 0.35 for
the most productive locations (Fig. 1c). The four processes then determining carbon
loss rates have contrasting climate dependencies (Fig. 1d–h). Fire increases with dry
season length (combustibility) and NPP (fuel), as expected (Fig. 1i, j; Kloster et al.,
2010). Contrasting dependencies of evergreen and deciduous leaf mortality (Fig. 1e, f)20

are inferred; with the relative frequency of evergreen versus deciduous leaves being
u-shaped against annual frost frequency (Fig. 1d). This highlights the relatively com-
plex climate dependence of leaf lifespan globally (van Ommen Kloeke et al., 2011).
Fine root mortality rate is inferred to increase with mean annual temperature as ex-
pected (Fig. 1g; Gill and Jackson, 2000). A relatively flat relationship for the climate25
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dependency of plant mortality is inferred (Fig. 1h), however this actually results from
contradictory information from different datasets under our assumed model formulation
(details below). We infer no strong climate dependency in the fraction of dead leaves
and roots initially allocated between the different pools (Fig. 1k). For the soil compo-
nent, we infer temperature and moisture dependencies of the classical three-pool soil5

model that are consistent with previous findings (Fig. 1l, m) Ise and Moorcroft, 2008).
The lack of a relationship for plant mortality was unexpected because a previous

study, using the same empirical data on plant mortality rates, identified a positive re-
lationship between mortality rates and productivity; a close correlate of evapotranspi-
ration rates (Leith, 1975). Further analysis reveals this inconsistency to be due to dif-10

ferences in the information implied by different empirical data sets under our assumed
model formulation. We infer qualitatively different climate dependence from the plant
mortality data alone (a positive relationship, Fig. 1h-grey, as found by Stephenson and
van Mantgem, 2005), from all model components and empirical data sets together
(a flat relationship, Fig. 1h-red), or using all model components but omitting individ-15

ual data sets (omitting plant mortality data gives a negative relationship, Fig. 1h-blue,
omitting the plant carbon data gives a positive relationship, similar to Fig. 1h-grey).
These results indicate a clear discrepancy between the information on the climate de-
pendency of plant mortality implied by the mortality data and that implied by the plant
carbon data set under the assumed model formulation. On this basis we identify global20

plant mortality rates as a major structural uncertainty in our terrestrial carbon model.
Other than the non-climatically dependent functions, the climate dependencies in-

ferred for the full terrestrial carbon model tend to make predictions that are both signif-
icantly positively correlated with the evaluation data sets (Fig. 4a), and tend to explain
a positive fraction of the variation within each data set (Fig. 4b). The plant carbon25

data set is predicted particularly well (final test data median Pearson’s r = 0.84 (5 %
and 95 % confidence intervals=0.81, 0.86), coefficient of determination=0.70 (0.63,
0.77)), as are data on litter production rate, plant carbon fixation rate and the fraction
of carbon allocated to structural plant parts: for all of which the model always explains
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a positive fraction of the variation in the data at a 95 % confidence level (Fig. 4b). Com-
paring the performance of the full model to one in which the relevant model component
is replaced with a null model supports choosing the climate dependent model for all
processes (Fig. 4c) except for the two component processes for which we inferred no
climate dependencies.5

When applied at global scales the terrestrial carbon model predicts global patterns
of equilibrium plant and soil carbon that match the known patterns well (Fig. 5a, b; cal-
culated using the New et al., 2002 and Bates, 2000 gridded datasets for environmental
variables). Absolute uncertainty is positively related to the median (Fig. 5c, d) for both
carbon pools. For plant carbon, relative uncertainty (absolute uncertainty/median pre-10

diction) tends to be higher in areas in which the model predicts vegetation that is inter-
mediate between being maximally woody and completely non-woody (Fig. 5e), owing
to the contrasting mortality rates of these different carbon pools (Fig. 1e–h). Relative
uncertainty is also higher over Greenland, and we expect this is because of the infla-
tion of uncertainty under extrapolation: the extreme environments in that region are out15

with the ranges represented in our data (Fig. 5e). We believe a similar phenomenon
explains the relatively higher uncertainty in predictions of soil carbon in extremely dry
or cold environments (Fig. 5f).

The inferred climate dependencies in the terrestrial carbon model, other than the
plant mortality function, generally support those that have been found in previous stud-20

ies, indicating their consistency when considered as part of the overall system. How-
ever our analysis highlighted a number of new insights into the performance of these
climate dependent functions as detailed below.

Although the inferred climate dependencies of NPP (Fig. 1a, b) are consistent with
the MIAMI model (Leith, 1975), one parameter is not-well constrained by the data: the25

parameter controlling NPP at zero degrees Celcius (t1 in Eq. 2b) does not converge.
Instead the sigmoid response of NPP to temperature is constrained by the parameter
controlling the gradient of the temperature dependency, t2. This implies that the tem-
perature dependent function may actually be over-complex for our purposes. Further
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investigations (omitted for brevity) involving removing this parameter and refitting the
model reveal that this and other under-constrained parameters discussed below have
little effect on model predictive accuracy. Plots of predictions versus observations also
reveal a noisy positive relationship, with the model underestimating NPP for sites with
NPP greater than around 1.0 kgm−2 y−1; a property that has been noted previously for5

the MIAMI model (Fig. 6a; Friedlingstein et al., 1992; Dai and Fung, 1993).
The shape of the function controlling the proportion of fixed carbon allocated to struc-

tural components implies that structural tissue only makes up around 10 % of vegeta-
tion carbon at NPP values of around 0.5 kgm−2 y−1 (Fig. 1c). We expect this proba-
bly underestimates structural carbon in vegetation types dominated by low productive10

woody vegetation such as some boreal forests (Kicklighter et al., 1999), although we
have not verified this.

The wide confidence intervals in the function predicting the fraction of vegetation
leaves that are evergreen imply relatively high uncertainty and inspection of the rela-
tionship between predictions and observations make clear why this is the case, with15

several observations lying far from the 1 : 1 line (Fig. 6b). Despite this the correlation
between observations and predictions is relatively high (Fig. 4a), probably due to the
dominance of sites in the dataset that are either entirely evergreen (44 %) or entirely
deciduous (14 %). We anticipate that the low quantity of data in the data sets on leaf
characteristics (the most sparse data in our collection; Table 1) strongly influences the20

variation in model predictive performance for those climate dependencies.
Our inference of the climate dependencies of fire frequency globally again highlight

some redundant model parameters: the scaling constant cf and the two half saturation
constants lfshalfsat and NPPhalfsat are poorly constrained. This implies that the model
could be reformulated with fewer parameters and still predict the data with the same25

accuracy. Although the correlation between predictions and observations is relatively
strong for this dataset (Fig. 4a, b), visual inspection of observational data versus predic-
tions implies a lower predictive performance at low fire return intervals (fraction burned
per year) and a tendency to underestimate the fire return interval overall (Fig. 6g).
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Although plant carbon is predicted well, the plots of predictions versus observations
indicate some notable outliers at low carbon contents, where carbon is predicted to be
much higher for some sites (Fig. 6h). These sites appear to be associated with tropical
vegetation that has been classified as grasslands and shrublands in the Global Land
Cover map and have been assigned low carbon content (data omitted for brevity), in5

contrast to the predictions of the model.
For soil model we could again not constrain all model parameters. The parameter

downscaling soil decomposition rates as a function of extremely high temperatures (tsc
in Eq. 9a) and the parameters controlling the optimum moisture content for decompo-
sition and downscaling parameter of decomposition rates in extremely wet conditions10

(msc and mthresh, in Eq. 9c) are probably all poorly constrained result of lacking suffi-
cient data representing such extreme environments.

5.2 Build-up experiments

The build-up experiments show that the performance of some model components
changes as they become part of larger model structures (Fig. 7). The major result15

from these experiments is the qualitative change in the inferred climate dependency of
plant mortality upon being connected to the full model, as mentioned above (Fig. 1k).
The consequent change in model predictions is clearly seen in the plots of predictions
versus observed data in which a noisy positive relationship between predictions and
observations is apparent when the plant mortality model is fitted to the plant mortality20

data alone but a relatively flat relationship is observed for the model fitted as part of the
full model structure (Fig. 6k, l).

The net primary productivity model (NPP) improves in predictive performance when it
is connected to the full model, showing higher correlation coefficients and an improved
fit to the training data (lower Deviance Information Criterion values; Fig. 7). Lower un-25

certainty in NPP functional forms are also visible for the full model compared to when
the model is fitted to the NPP data alone (grey versus red in Fig. 1a, b). This implies
that information from other model components helps to further constrain the climate
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dependencies of the NPP model. The component predicting the fraction of plant ma-
terial that is allocated to structural plant parts exhibits a poorer fit to the training data
as it is connected to other model components (Deviance Information Criterion) but
still slightly increases in predictive performance (Fig. 7). Connecting this component
to plant carbon also enables the parameter controlling the maximum carbon allocation5

fractions to wood to be inferred (grey versus red in Fig. 1c). Connecting the model pre-
dicting litter production to the full model structure improves its fit to the training data,
whereas the opposite is the case for the model predicting fraction of land area burned
(Fig. 7). However none of these effects significantly alter the correlation between pre-
dictions and observations in the evaluation data, and only cause minor reductions in10

the confidence intervals about the functional forms of the fire model (grey versus red in
Fig. 1i, j).

5.3 Omit-data experiments

The most notable effects of omitting datasets when inferring parameters to the full
models were on the parameters of the plant mortality climate dependency, as reported15

above. Otherwise, omitting data sets when fitting the full model does not dramatically
influence the predictive performance of the model at predicting the data sets that had
not been removed (we omit details for brevity). Constraining the parameters of some
components is entirely dependent on the presence of their corresponding data set.
This is the case for the fraction of leaves that are evergreen, the mortality rates of ev-20

ergreen and deciduous leaves, fine root mortality rates and soil decomposition rates
and indicates that the predictions of other connected components, such as plant car-
bon for example, is not dependent on the predictive accuracy of those components.
In contrast, omitting the data for the NPP model still results in the inference of very
similar parameter values, indicating a strong dependency on those parameter values25

for predicting other empirical data sets.
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5.4 Replace-null experiments

In general, and as expected, replacing a component with a model predicting no cli-
mate dependency strongly influences the predictive performance of that component
in the cases where evidence exists for a climate dependency. For some components
this results in negligible effects on the predictive performance of the rest of the model5

(Fig. 8). However, for the NPP model, replacement strongly influences the predictive
performance of other components. This is not surprising, given that it is the initial car-
bon input term for the plant carbon pools.

6 Discussion

The climate dependencies inferred here mostly confirm those that have been identified10

previously. However, the identification of qualitatively different climate dependencies for
plant mortality depending on the model formulation and empirical data used, as well
as some other more subtle adjustments to other climate dependencies, highlights the
value of the systemic approach: enabling us to assess how consistent our model of how
the overall system functions is with empirical evidence and identify where discrepancies15

lie.
At present, we do not understand the reason for the structural uncertainty in the cli-

mate dependency of plant mortality rates. The plant carbon data implies that mortality
rates decrease with actual evapotranspiration, under our assumed model formulation,
whereas the plant mortality data imply the opposite. This could indicate that the high20

plant mortality rates observed in highly productive sites are inconsistent with the high
carbon values recorded for those sites under inferred climate dependencies. This could
be caused the systematic underestimation of net primary productivity in highly produc-
tive sites (Fig. 6a), leading to lower than expected predictions for plant carbon, causing
the inferred plant mortality rates for those sites to be higher than observed. There are25

however other possibilities such as issues to do with the quality of the plant mortality
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data or the plant carbon data, the possibility of plant mortality patterns obeying more
complex relationships, or missing processes in the model (such as the separation of
structural carbon losses between whole plant mortality and the loss of other structural
pars such as branches). These possibilities add to recent calls to increase understand-
ing of the role of plant mortality in the global carbon cycle (Stephenson and van Mat-5

gem, 2005; van Mantgem et al., 2009; Allen et al., 2010).
One of our key aims was to establish a well characterised baseline model that was

demonstrably skilful at predicting the equilibrium terrestrial carbon cycle whilst clearly
reporting uncertainties, to function as a baseline model for objective refinement in fu-
ture. Our terrestrial carbon model clearly achieves that. However, we hypothesise that10

it is probably too simple and uncertain to provide informative projections of future ter-
restrial carbon dynamics. Certainly, skill at predicting the data on the terrestrial carbon
cycle at equilibrium is no guarantee that the model can accurately capture the tempo-
ral dynamics of the carbon cycle that other data assimilation studies have focussed on
(Scholze et al., 2007; Ricciuto et al., 2011). For example, our model does not account15

for carbon dioxide fertilisation effects that is likely to have had, and could continue to
have, a major influence on vegetation carbon fixation potential into the future (Friedling-
stein et al., 2003). We therefore see an urgent next pressing need to be to build on
our rigorous approach and begin the process of comparing alternative formulations
of component models, model structures, and different data sets. Such studies would20

obviously consider alternative representations of canopy photosynthesis (Purves and
Pacala, 2008), including carbon dioxide fertilisation effects (Friedlingstein et al., 2003),
but also the dynamics of other resources such as water and nitrogen (Goll et al., 2012),
the importance of different plant functional types, vegetation traits, successional pro-
cesses and permafrost carbon thawing, to name a few (see Arneth et al., 2012 for25

a detailed discussion). Although we developed our model within a generalized frame-
work so that it can become a foundation upon which future intercomparisons can be
conducted (see Sect. 4.1), it will require further improvements to truly enable detailed
intercomparisons of state of the art terrestrial carbon models. Enabling the inference
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of the parameters of dynamical models using time-varying data, and the quantification,
assessment and propagation of errors in the observational data are two key necessary
refinements to enable such studies.

Future studies should also investigate the effects of incorporating more and improved
data sets for data-assimilation and model testing than we did here. We deliberately se-5

lected data sets that were relatively easy to obtain, process and share. It is reassuring
that these were sufficient to infer most of the known climate dependencies. However,
further constraining and testing terrestrial carbon models will benefit from extracting
the maximum value out of the existing data sets; to minimise uncertainty as much
as possible and to target key sources of remaining uncertainty for reduction through10

further data collection or model refinements. There have already been developments
in this direction, especially in constraining terrestrial carbon models with carbon flux
data (Knorr and Heimann, 2001; Kaminski et al., 2002; Scholze et al., 2007; Ricciuto
et al., 2011). Our systemic approach implies a promising method to further facilitate
this process by enabling the different contributions of uncertainty to predictions to be15

diagnosed in detail.
Although we do not know how accurate predictions of temporal dynamics of the car-

bon cycle from our terrestrial carbon model might be, the model can still be used to in-
spect the relative importance of parameter and structural uncertainty in projections. For
example, it could be that despite the uncertainties we identified, the model makes rel-20

atively well constrained projections meaning that the uncertainties are relatively unim-
portant, or the opposite could be true. We therefore set the plant and soil carbon pools
across the terrestrial land surface to equilibrium in the year 2000 (as in Fig. 5 but at
0.5 decimal degree global resolution), and simulated climate change under pessimistic
(A1F1) and optimistic (B1) anthropogenic emissions scenarios using our model to ex-25

plore the plausible importance of these uncertainties (The IPCC Data Distribution Cen-
tre. AR4 GCM Data. http://www.mad.zmaw.de/IPCC DDC/html/SRES AR4/index.html
(2010); see Appendix C for details). We decided to set the land surface to equilib-
rium carbon levels to ensure that any changes in the carbon balance were solely due
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to climate changes. The resulting projected changes in the total terrestrial carbon bal-
ance are similar under both climate forcing scenarios, both predicting a net carbon sink
up to about 2150 before becoming carbon source (Fig. 9). However the time courses
of uncertainty in the projections are quite different, with uncertainty higher under the
A1F1 scenario and implying that the terrestrial carbon cycle could be either a carbon5

source or a sink over the simulated time period. Substituting the alternative models of
plant mortality inferred under the different model fitting experiments indicates that this
structural uncertainty has only minor quantitative effects on the projected change in
the terrestrial carbon balance. Remarkably however, this structural uncertainty leads
to qualitatively different predictions for the projected changes in vegetation carbon up10

to 2050 (Fig. 9), with positive, relatively flat, or negative changes in global vegeta-
tion carbon, depending on the mortality model parameterization chosen. Despite these
differences, all simulations predict that vegetation becomes a net source by 2200. Al-
though these are exploratory simulations they do emphasise the potential importance
and value of considering parameter and structural uncertainties in terrestrial carbon15

models when attributing confidence to projections of the terrestrial carbon cycle in earth
system models. Such uncertainty could be decomposed further into the contributions
from different component processes and even individual parameters and data. Such di-
agnoses are likely to help identifying the different sources of uncertainty to predictions
and projections, enabling the most important sources of uncertainty to be targeted for20

reduction.

7 Conclusions

Overall, our results complement the progress that has been made in data-constraining
terrestrial carbon models (Rayner et al., 2011; Knorr and Heimann, 2001; Scholze
et al., 2007; Ricciuto et al., 2011; Zahele et al., 2007) and the development of frame-25

works to enable such studies to be performed in a repeatable fashion (Scholze
et al., 2007; http://pecanproject.org/). We hope that combining these insights the
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biogeosciences community can rapidly move towards identifying the best models for
specific purposes, which are most consistent with empirical evidence for a suitable
level of complexity.

Appendix A

Processing of empirical data on carbon stocks and fluxes5

We did not actively seek the “best data” pertaining to individual stocks and fluxes be-
cause we prioritised enabling reproducibility and transparency over obtaining the most
accurate results. A number of the data sets were only available as gridded land sur-
face data, constructed through analyses of site-based data but for which the original
site data was not available (Table 1). For these we generated pseudo-site based data10

by stratified random sampling. We anticipate that some of our data sets only coarsely
represent true carbon stocks or flows at global scales. Moreover, although not all of
the data in all data sets represents vegetation in a state of dynamical equilibrium, we
screened the data sets that incorporate disturbance and anthropogenic effects using
the Global Land Cover 2000 vegetation classification map (Bartholome and Belward,15

2005) to only select data representative of vegetation at equilibrium.
We made no attempt in this study to infer observational error associated with these

data owing to the added computational overhead this would have incurred (further de-
tails below). As a result we anticipate future improvements in the precision of our find-
ings through accounting for the sources of data error and uncertainty that we ignored.20

A1 Vegetation carbon

Global site-based data sets of carbon held in natural terrestrial vegetation have been
compiled previously and used to produce global gridded maps. Unfortunately, the orig-
inal source data have not been made generally available. Recently Ruesch and Gibbs
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(2008) produced a global biomass carbon map for the year 2000 for the entire global
land surface at a 1km resolution (approximately). This was derived from unique esti-
mates of vegetation carbon values for 124 different carbon zones that were defined
by considering the continent, ecoregion, vegetation type and degree of human distur-
bance. We used this map to generate pseudo-site based data. We performed strat-5

ified random sampling of the Global Land Cover 2000 vegetation classification map
(Bartholome and Belward, 2005; which has the same 1km resolution as the vegetation
carbon map) and then for each randomly selected point sampled the corresponding
vegetation carbon value, conditional on whether the vegetation classification indicated
specific vegetation types. Specifically this included classification types 1–9 (generally10

“Tree cover”), excluded type 10 (“Tree Cover, burnt”), included types 11–15 (generally
shrub or herbaceous cover), and excluded the remaining types 16–22 (not natural or
not vegetation).

A2 Litter carbon production

Different studies use terms like “litter production” to mean different aspects of vegeta-15

tion biomass loss (Matthews, 2003). Here, we define “litter carbon production” as the
net mass of carbon lost through natural leaf and fine root mortality (not including fire
induced mortality) per unit area of land surface (m2) per year (yr). This does not include
woody litter production through the loss of branches, stems or coarse roots.

Leaf litter production is commonly estimated in the field using litter traps (Matthews,20

2003). Studies employing this method rarely estimate root litter production. This led us
to consider modelling leaf and fine root litter production separately. However, studies
estimating leaf litter production sometimes use it to approximate net primary produc-
tivity: by assuming that the gains and losses of carbon in the vegetation are balanced
(Matthews, 2003). This implies that source data on leaf litter production might not be25

independent from some of our net primary production data (although we did not check
to confirm this). These challenges led us to consider alternative methods for estimating
litter carbon production.
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Matthews (2003) used multiple methods to estimate litter production. One of these
infers litter production from data on soil respiration rates and root respiration rates, by
assuming that carbon stocks and flows are at equilibrium. Neither of these data sets
was used in our model so we used data generated from this method. A further com-
plication however was that Matthews (2003) never made the source data available.5

Instead the author presented averages for 30 different vegetation types according to
the UNESCO vegetation-classification system (Matthews, 1999). We therefore gener-
ated pseudo-site based data. To do this we performed stratified random sampling of
the UNESCO vegetation classification map (which comes in 1 degree resolution) and
for each randomly selected point we associated the vegetation type with the litter pro-10

duction value given in column 3-D of Table 5 in Matthews (2003). This gives litter dry
matter production figures so we multiplied by 0.5 to approximately convert from dry
matter to carbon.

A3 Soil carbon

Global site-based estimates of carbon held in soils under natural terrestrial vegetation15

have been compiled for decades. We initially considered using the NDP018 data set
analysed by Post et al. (1982, 1985) in their studies of global patterns of plant car-
bon and nitrogen. However, preliminary investigations revealed significant differences
in the Holdridge climate classifications (Holdridge, 1967) associated to the sites in the
NDP018 data and the classifications we obtained by using georeferenced climate data20

from the New et al. (2002) data set. This led us to suspect that the GPS coordinates
associated with the NDP018 are not sufficiently accurate to enable a sufficiently ac-
curate estimate of the climatic conditions associated with the site. Instead we chose
the “Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS)” data set
produced through the “Global Soil Data Task” project which was designed specifically25

to assemble a “reliable and accessible data set on pedosphere properties on a global
scale” (Global Soil Data Task Group, 2000). We generated pseudo-site based data
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by performing stratified random sampling of the map of soil-carbon density at depth
interval of 0–100 cm (which comes in 5 arcmin resolution).

A4 Net primary productivity

Net primary productivity is estimated as the net mass (kg) of carbon fixed by living
vegetation per unit area of land surface (m2) per year (yr). We selected NPP data5

compiled for the Ecosystem Model Data Intercomparison project (EMDI, Olson et al.,
2001). We selected the Class B “intermediate quality” data set because it provided
a relatively high quantity of data (933 unique sites) and represented all of the major
vegetation zones of the world.

A5 Mortality rates of deciduous and evergreen leaves, and the fraction of10

vegetation that is evergreen

We know of no global data sets containing site-based estimates of leaf turnover rate at
the whole vegetation stand level. Data from satellite observations are likely to fill this
gap in future. The lead authors of Wright et al. (2004) provided the GLOPNET database
which, according to Wright et al. (2004), “spans 2,548 species from 219 families at 17515

sites (approximately 1 % of the extant vascular plant species).” This database contains
georeferenced data for a variety of species-specific leaf traits, for multiple species at
a given site, including an estimate of leaf lifespan and whether the leaf is classified as
deciduous or evergreen. In a recent analysis of global patterns of leaf mortality, using
the GLOPNET database (Wright et al., 2004) supplemented with additional data, van20

Ommen Kloeke et al. (2011) found clear trends with environmental variables when the
deciduous and evergreen leaves were treated separately. As a result we calculated the
geometric average mortality rate at each site, separately for deciduous and evergreen
leaves. We also calculated the fraction of the records at each site that were of ever-
green plants and used this as a coarse approximation of the faction of vegetation at25

each site that is evergreen.
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A6 Fine root mortality rate

Data on root turnover rates are available for most vegetation types, even though esti-
mating root mortality rates is notoriously difficult and prone to error. As is conventional,
we distinguished between “coarse roots” and “fine roots”, but only explicitly modelled
the mortality rate of fine roots (structural roots are implicitly represented in plant struc-5

tural carbon). We define “fine roots” as those roots whose primary function is to acquire
water and nutrients, with little role in structural support or resource storage (Eissenstat
and Yanai, 1997). We obtained data from the Appendix of Gill and Jackson (2000)
who studied global patterns in root turnover. We included all data from their table with
the exception of any entries that had “Root type” classified as “Coarse”. We also cor-10

rected three obvious errors in their data set: “Adiopodoum, Ivory Coast” should have
the longitude 4◦ 30′ W, “Portugal” should have longitude 9◦ 24′ W and the two entries
for “Macquarie Island, Subantarctic” were corrected to have longitude 158◦ 57′ E.

A7 Plant mortality rate

Any plant matter that is not “leaves” or “fine roots” in our model is classified as “struc-15

tural”. We equated the turnover rate of structural plant parts in the absence of fire to the
rate of plant mortality. We could find no data on plant mortality rates at global scales.
Instead we used the data compiled by Stephenson and van Mantgem (2005) on forest
turnover rates at global scales. This omits data on non-forested vegetation.

A8 Fractional area burned20

A number of projects have sought to obtain accurate estimates of patterns of fire fre-
quency at global scales. Mouillot and Field (2005) generated a global fire map of “frac-
tional area burned per year” at 1◦ resolution for the terrestrial land surface by synthe-
sizing available data and extrapolation when data was absent. We used this data set to
generate pseudo-site based data on the fractional area burned per year by performing25
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stratified random sampling of their map. We then took averages over the same time
period as in the New et al. (2002) data set (1961–1990), including only samples from
sites that were classified as natural vegetation (Codes<16) in the Global Land Cover
2000 map (Bartholome and Belward, 2005). In our predictive model we equate the
fraction of land area burned per year with the rate of plant carbon losses due to fire5

although we allow for this to be downscaled for structural plant parts.

A9 Fraction of carbon in leaves and fine roots in “metabolic” carbon pool

It is common in dynamic soil modelling to distinguish between the pool of dead plant
carbon that decomposes relatively slowly (cellulose and lignin) and that which decom-
poses relatively rapidly (nucleic acids and cytoplasmic constituents; Ise and Moorcroft,10

2006; Schimel et al., 1996; Bolker et al., 1998). However we have not found any actual
compilations of site-based estimates of the “metabolic fraction” to use to infer global
patterns, nor of the two metrics typically used to calculate it: the ratio of carbon to
nitrogen in plant tissues or the lignin fraction of plant tissue mass. What does exist
are “representative” figures for different vegetation types: for example, the litter fall of15

boreal evergreen forest trees can be calculated to have a metabolic fraction of 0.49
whereas grassland litterfall has a metabolic fraction of 0.76, a typically high value. We
therefore generated pseudo-site based data. To do this we performed stratified ran-
dom sampling of the IBIS vegetation classification map (Ramankutty and Foley, 1999;
http://www.sage.wisc.edu/atlas/data.php?incdataset=Potential%20Vegetation, which20

comes in 0.1 degree resolution) and for each randomly selected point we associated
the vegetation type with the metabolic fraction value given in Table 1 of Ise and Moor-
croft (2006).

A10 Fraction of plants that is “structural”: everything but leaves and fine roots

The dominant vegetation types across the globe exhibit highly contrasting patterns in25

their ratios of leaves and fine roots to woody plant parts such as stems and woody
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roots. In this study we treated all of the biomass that is not leaves and fine roots as
“structural”. Previous global vegetation modelling assumed different allocation patterns
between leaves, roots and structural components for different plant functional types,
such as boreal forests (high fraction “structural”) versus grasses (low fraction “struc-
tural”). In our study we inferred the most likely allocation patterns from data. However,5

we know of no global data explicitly documenting leaf : fine root : structural alloca-
tion ratios at the vegetation stand scale (although such data does exist for individual
species). Instead, we assumed that the fraction of net primary productivity allocated to
structural plant parts was zero in grasslands and some maximum in evergreen tropical
rainforests. To acquire the data we performed stratified random sampling of the Global10

Land Cover 2000 map Bartholome and Belward, 2005) and only recorded samples if
they happened to be classified as these vegetation types. We recorded an integer “1”
alongside the sample GPS coordinates if the vegetation as recorded as evergreen trop-
ical rain forest (codes 1) or a “0” if the vegetation was recorded as grassland (codes 13
and 14).15

Appendix B

Calculation of environmental variables

B1 Mean annual temperature

Mean annual temperature, used in several of the model components, was calculated as
the arithmetic mean of monthly temperatures in the New et al. (2002) gridded climate20

data set. If elevation figures were present in georeferenced data then the difference
between this and the associated elevation figure in the New et al. (2002) data set
was used to calculate a corrected temperature, assuming a lapse rate of 6.49 ◦Ckm−1

elevation.
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B2 Mean annual precipitation

Mean annual precipitation, used in several of the model components, was calculated
as the sum of the mean monthly precipitation values in the New et al. (2002) gridded
climate data set.

B3 Mean annual biotemperature5

Mean annual biotemperature, used to calculate Holdridge life zones (Holdridge, 1967),
was calculated as the arithmetic mean of monthly temperatures in the New et al. (2002)
gridded climate data set after setting monthly temperatures less than 0 ◦C or greater
than 30 ◦C equal to zero.

B4 Fraction of the year experiencing frost10

The fraction of the year experiencing frost (FYF), used to calculate the fraction of leaves
that are deciduous or evergreen, was calculated using the method employed by van
Ommen Kloeke et al. (2011) (and Peter van Bodegom, personal communication, 2011).
The algorithm uses the number of frost days per month from the New et al. (2002)
gridded climate data set. If the number of frost days was greater than 15 then the15

whole month was classified as being a “frost month”. If the number was less than
15 then it was classified as being a “non-frost month”. However if a non-frost month
followed a frost month, or if a non-frost month was to be followed by a frost month, then
the fraction of the month in the non-frost month was calculated as 1/15th the number of
frost days. The fraction of the year experiencing frost was then the sum of the number20

of frost months divided by 12.

B5 Mean annual potential evapotranspiration

Mean annual potential evapotranspiration rate was calculated using the Penman-
Monteith algorithm as specified in Allen et al. (1998) for calculating monthly
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evapotranspiration rates. The algorithm is rather lengthy and we omit details here for
brevity although all details of the algorithm were checked using the test data provided
in Allen et al. (1998). All environmental variables for the algorithm were available in the
New et al. (2002) gridded climate data set. The sum of the monthly evapotranspira-
tion rates gave PET. This calculation requires making an assumption about the vapour5

pressure deficit and stomatal resistance, both of which can be influenced by vegetation
type. We simplified the calculation by calculating the PET according to grassland (the
“reference evapotranspiration”; Allen et al., 1998). A natural area for future work will be
to explore the importance of alternative formulations for calculating PET.

B6 Mean annual actual evapotranspiration10

Soil moisture content was simulated on a daily time step to obtain estimates of the
actual evapotranspiration rate and the length of the “fire season”. It was calculated
using a modified version of the algorithm reported by Prentice et al. (1993). Climate
variables for the algorithm came from the New et al. (2002) gridded climate data set
and soil maximum water capacity (field capacity) came from the Batjes (2000) “Global15

Data Set of Derived Soil Properties” data set. Daily changes in soil water content were
calculated using the balance equation specified in Prentice et al. (1993)

ωi = min([ωi−1 + Pi −Ei ]ωmax) (B1)

where ωi is soil water content (mm), ωmax is soil field capacity, i is time in days, Pi is
daily precipitation and Ei is actual daily evapotranspiration. Actual daily losses due to20

evaporation are calculated as

Ei = ETi

(ωi−1

ωmax

)
(B2)

Where ETi is daily potential evapotranspiration. Our method is a modification of the
algorithm used by Prentice et al. (1993). Here the supply of water is taken to be pro-
portional to maximum evaporative demand (potential evapotranspiration) scaled by the25
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relative soil wetness. Prentice et al. (1993) calculated Ei as the minimum of daily supply
and demand, where supply was calculated according to Eq. (B1) but using a maximum
evapotranspiration rate constant instead of ETi , and using a separate algorithm to cal-
culate potential evapotranspiration rate. We adopted our alternative approach because
it allowed us to simply connect the prediction of the PET model to the AET model,5

allowing us to substitute in a different PET model for the global simulations.
For each site we initialised the soil water content at field capacity and simulated

Eqs. (B1) and (B2) for 10 yr, which was long enough for the annual dynamics to con-
verge to an equilibrium annual cycle. Like Prentice et al. (1993) we used a daily time
step because we found that adopting a coarser time step led to extreme numerical10

artefacts in the time series of soil water balance. Values for Pi and ETi were obtained
by linear interpolation of the monthly precipitation and potential evapotranspiration val-
ues, respectively. Monthly and annual actual evapotranspiration was then calculated by
summation of the Ei values.

We checked that our actual evapotranspiration rate calculation yielded sensible pre-15

dictions by comparing our estimates with model derived estimates of global actual
evapotranspiration rates (Willmott and Matsuura, 2001) averaged between 1961 and
1990; the same period as our New et al. (2002) climate data. We obtained a good
agreement with their calculations (Fig. A1; r2 = 0.88, N = 44225). However, a natural
area for future work will be to explore the importance of alternative methods for calcu-20

lating AET and soil water balance.

B7 Length of the fire season

Daily soil water content predictions (detailed above) were used to estimate the length
of the fire season; the fraction of days of the year over which fire is likely to occur.
We based our algorithm on that specified in Thonicke et al. (2001) which calculates25

the length of the fire season as a function of the daily soil moisture status throughout
the year. However, unlike Thonicke et al. (2001) we did not impose any constraints
on the amount of biomass present for the daily probability of fire to be greater than
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zero (instead, this is part of the fire model) and we added the constraint that daily
temperature (interpolated from monthly temperature) had to be greater than zero for
the daily probability of fire to be non-zero (as in Kloster et al., 2010). The algorithm was
therefore

LFS =
360∑
i=1

fp(ωi ,Ti ), where (B3a)5

fp =

{
exp
(
−π
(

ωi
ωe

))
, T > 0,ωi < ωe

0, T ≤ 0,ωi ≥ωe

, (B3b)

where ωi , is the daily soil water content on day i , ωe = 0.3 is the soil moisture content at
which fires become impossible (moisture of fire extinction; Thonicke et al., 2001) and Ti
is the daily temperature which was linearly interpolated from monthly values. Note that10

we assume a 360 day year. The parameter ωe = 0.3, used by Thonicke et al. (2001), is
clearly one that could be inferred from data in future studies.

Appendix C

Methodology for projections under climate change

The full terrestrial carbon model simulated by solving Eq. (1) using a standard forward15

Euler method with time step ∆t = 1/12 yr. Preliminary investigations were made to en-
sure that this time step was sufficiently small to avoid extreme numerical artefacts in the
simulated time series. Changes in soil water content were solved at a higher temporal
resolution (∆t = 1/360, or 30 times per update in Eq. 1) in between updates of the car-
bon stocks to maintain consistency with the method used in model parameter inference20

and to avoid extreme numerical artefacts in the dynamics of soil water balance.
The model (Eq. 1) was simulated across the terrestrial land surface at 0.5◦ reso-

lution. Initial values were calculated by solving Eq. (2) to obtain equilibrium carbon
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stocks. Environmental variables were obtained using the same method as for model
parameter inference; using the New et al. (2002) gridded climate data and the Batjes
(2000) “Global Data Set of Derived Soil Properties” dataset for soil field capacity.

We obtained two datasets arising from simulations of the HadCM3 model run
under different anthropogenic emissions scenarios from the IPCC Data Distribu-5

tion Centre (http://www.mad.zmaw.de/IPCC DDC/html/SRES AR4/index.html; Lowe,
2005). These detail predicted monthly values of environmental variables for the sur-
face of the earth gridded at a 2.5×3.75◦ resolution from the year 2000 through to
2199. We did not use this environmental data directly to drive the model but instead
applied the difference between a given year and that at 2000 to the values in the New10

et al. (2002) dataset.
The future climate datasets did not contain all of the environmental variables we had

used for model parameter inference. In particular, they did not include several of the
variables needed for calculating potential evapotranspiration (PET) using the Penman-
Monteith algorithm. We therefore resorted to using the simpler Malstrom algorithm for15

calculating changes in PET for the global simulations, which only uses data on monthly
temperatures. We also used a different algorithm for calculating the number of days
of the year in which frost is present prior to calculating yearly changes in the fraction
of the year that is frost (FYF). This was calculated by associating predicted monthly
temperatures with the middle day of each month, then linearly interpolating between20

these to calculate the fraction of the year over which temperatures are less than zero.
Climate change simulations were run for all 1200 sampled joint posterior parameter

estimates resulting from parameter inference of the full DGVM, for the parameter sets
returned from each of the 10 different subsets of training data (thus, 12 000 simula-
tions). To run simulations with different plant mortality models we simply replaced the25

list of sampled mortality model parameter values with those obtained from either infer-
ring the parameters for the mortality model alone to the data on plant mortality rates,
or from inferring the parameters for the full DGVM in the absence of the data on plant
mortality rates.
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To obtain estimates of changes in the stocks of terrestrial plant and soil carbon we
multiplied the estimated values for each grid point (in units of kgCm−2) by the area of
the grid cell.
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Table 1. Source data on carbon stocks and flows used in our study for model training and
evaluation.

Data set name Data description and
typical units

Data provider N. data Likelihood
function

Plant carbon: global
biomass carbon
map in the year 2000

The amount of carbon
held in terrestrial
vegetation, tCha−1

Carbon Dioxide Information and Analysis
Centre cdiac.ornl.gov/epubs/ndp/global carbon/
carbon documentation.html, Ruesch and
Gibbs (2008)

1000b Normal

Litter carbon production
rate

Litter production rates,
gdry matterm−2 yr−1

Matthews (1997) 1000b Normal

Soil carbon: global gridded
surfaces of selected soil
characteristics (IGBP-DIS)

Soil carbon density
(kgm−2) at a depth
interval of 0–100 cm.

Oak Ridge Nat. Lab. Distrib. Active Archive
Center (ORNL DAAC)
daac.ornl.gov/SOILS/guides/igbp-surfaces.html,
(Global Soil Data Task Group, 2000).

1000b Lognormal

Plant carbon fixation rate:
“Class B site” net primary
productivity (NPP)

Net primary productivity
(kgcarbonm−2 yr−1)

Oak Ridge Nat. Lab. Distrib. Active Archive
Center (ORNL DAAC)
daac.ornl.gov/NPP/html docs/EMDI des.html,
Olson et al., 2001

933 Normal

Deciduous leaf mortality rate Estimated lifespan (in
months) of deciduous
leaves

GLOPNET authors, Wright et al. (2004) 30 Lognormal

Evergreen leaf mortality rate Estimated lifespan (in
months) of evergreen
leaves

GLOPNET authors, Wright et al. (2004) 46 Lognormal

Fraction leaves that are
evergreen

Categorical classification
of leaves as “Evergreen”
or “Deciduous”

GLOPNET authors, Wright et al. (2004) 155 Normal

Fine root mortality rate
(lifespan)

Mean root turnover (yr−1) Gill and Jackson (2000) 162 Lognormal

Plant mortality rate Forest turnover rates
(yr−1) from different sites
worldwide.

Stephenson and van Mantgem (2005) 191 Lognormal

Global map of fraction area
burned per year, 1900–2000

Percentage of a grid cell
burned per year for 100 yr
(1900–2000)

Florent Mouillot, Mouillot and Field (2005),
Mouillot and Field (2005)

1000b Lognormal

Fraction leaf and fine root
carbon entering fast soil pool
(that is “metabolic”)

Fraction of leaf and fine
root carbon that is
decomposed quickly by
soil organisms (fraction)

Ise and Moorcroft (2006) 1000b Normal

Global land cover in the year
2000. Used to infer fraction
plant carbon allocated to
structural parts

Discrete classifications of
land cover types
represented as integer
codes.

European Commission bioval.jrc.ec.europa.eu/
products/glc2000/data access.php, Bartholome
and Belward, (2005).

1000b Logistic

a Numbers represent those model parameters specifically needed to predict
a particular data set. Some models may have taken the outputs of other models as
their inputs, and therefore may implicitly include more model parameters.
b Approximate numbers of data points obtained through random stratified sampling of
gridded global data.
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Fig. 1. Summary of the inferred climate dependence of the terrestrial carbon cycle within our
terrestrial carbon model. The inferred climate dependence of each component is shown in red
(inferred using the full model and all data sets), grey (inferred using minimal subsets of the
model) and, to illustrate the major structural uncertainty in plant mortality (h), in blue (inferred
using the full model but omitting the plant mortality data). Lines and shading are average me-
dian, 5th and 95th percentiles from 10 training data subsets.
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Fig. 2. Our prototype automated system used for the construction, parameter estimation and
assessment of multi-component models of arbitrary complexity. This automated system was
used to develop and analyze our model. Inputs are multi-component models and empirical
data. Data are partitioned into training, evaluation and final test sets. Input libraries provide
a common interface to connect code with data. Inference routines use inference libraries to
infer parameter probability distributions. Inference libraries implement approximate Bayesian
inference using Markov Chain Monte Carlo methods with the Metropolis–Hastings algorithm.
A data viewer provides a standard interface for inspecting inputs and results. See Sect. 4.1 for
details on how to download the framework.

13488

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/13439/2012/bgd-9-13439-2012-print.pdf
http://www.biogeosciences-discuss.net/9/13439/2012/bgd-9-13439-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 13439–13496, 2012

The climate
dependence of the
terrestrial carbon

cycle

M. J. Smith et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 3. The full terrestrial carbon model can be represented as a factor graph. All boxes repre-
sent model components with accompanying data. Arrows connect a model that acts as a sub-
component (tail of arrow) to another model (head of arrow). Models within Group 1 do not
require predictions from other models to predict their accompanying data sets. Group 2 models
require predictions from the net primary productivity model. Group 3 models require input from
several model components.
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Fig. 4. Performance assessments of the terrestrial carbon model. (a) Pearson’s correlation,
(b) the coefficient of determination or (c) the probability of the model relative to a null model
(Gelfand and Day, 1994). Separate data subsets were used for parameter inference and model
evaluation to avoid over-fitting. A final test data subset was reserved (never used during model
development) to provide an independent estimate of the likely predictive ability when the model
is applied to locations that have not been observed. Assessments against evaluation and fi-
nal test data are in grey and red, respectively, with n being the respective mean or absolute
number of data points per assessment. Dots and error bars are average medians, 5th and 95th
percentiles in (a) and (b) and medians, maxima and minima in (c) using parameter distributions
inferred from 10 training data subsets. Insufficient evaluation data existed to calculate (a) and
(b) for the deciduous leaf mortality model.
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Fig. 5. Predicted global distributions of equilibrium plant and soil carbon. These match the
known patterns well based on visual inspection. (a, b) Mean median prediction of plant and soil
carbon from parameter distributions inferred from 10 training data subsets. (c, d) Uncertainty
range spanned by the 5th and 95th% confidence intervals. (e, f) Uncertainty relative to the
median. Spatial resolution is 10 arcmin (18.5 km at the Equator).
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Fig. 6. Model predictions versus observed empirical data (omitting the 25 % final test data).
Predictions were made using all 10 posterior parameter probability distributions from 10-fold
model fitting. Points show the average median prediction and error bars show the average
upper and lower 95 % confidence intervals. (a–k) are predictions from the full model trained to
all empirical data sets and (l) are predictions from the plant mortality model trained to the plant
mortality data alone.
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Fig. 7. Correlations between model predictions and hold-out evaluation data (left) and Deviance
Information Criterion (DIC) values (right) obtained from different model fitting experiments (Gel-
man et al., 2004). DIC values have been normalised relative to the lowest-build up experiment
number predicting the data set indicated. The presence of confidence intervals for a given ex-
periment number indicates whether a model component was used in a model fitting experiment.
Points represent the average median estimate using the parameter probability distributions ob-
tained from 10-fold model fitting and the whiskers are average 95 % confidence intervals.
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Fig. 8. Correlations between model predictions and hold-out evaluation data (left) and DIC val-
ues (right) obtained from different replace-null model fitting experiments. Predictions have been
omitted where the model replaced corresponds to the empirical data it was intended to predict
because its omission typically resulted in very poor or no predictive performance, making it
difficult to see variation in predictive performance for the other data sets. Points represent the
average median estimate using the parameter probability distributions obtained from 10-fold
model fitting and the whiskers are average 95 % confidence intervals. “Control” indicates the
results obtained for the full model fitted to all data sets.
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Fig. 9. Projected changes in terrestrial carbon under two climate change scenarios. These
highlight the potential importance of parameter and structural uncertainty. Lines and shad-
ing represent the average median, 5th and 95th percentile projected changes (repre-
senting parameter uncertainty) from the terrestrial carbon model using parameter prob-
ability distributions inferred from 10 training data subsets. Red, grey and blue corre-
spond to different climate dependences for plant mortality, representing the major struc-
tural uncertainty in the model (see Fig. 1). Details of how we simulated the model is
given in Appendix C. The additional code necessary to run these simulations is available
at http://research.microsoft.com/en-us/downloads/49ad471e-7411-4f65-910a-2a541f946575/
default.aspx and the resulting simulation data is available from http://download.microsoft.com/
download/1/F/D/1FD1F550-69C4-4503-B2FE-B47F94607A7F/MSRTCMSIMData.zip.
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Fig. A1. Comparison between our model derived estimates of annual actual evapotranspira-
tion (AET) and those predicted by the model of Willmott and Matsuura (2001). Predicted AET
(mm) was calculated using the methodology described in Sect. B6 for land grid squares at 0.5◦

resolution. Points are partially transparent to help emphasise differences in data density.
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