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Abstract

Global climate change is expected to affect the ocean’s biological productivity. The
most comprehensive information available about the global distribution of contempo-
rary ocean primary productivity is derived from satellite data. Large spatial patchiness
and interannual to multidecadal variability in chlorophyll a concentration challenges5

efforts to distinguish a global, secular trend given satellite records which are limited
in duration and continuity. The longest ocean color satellite record comes from the
Sea-viewing Wide Field-of-view Sensor (SeaWiFS), which failed in December 2010.
The Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensors
are beyond their originally planned operational lifetime. Successful retrieval of a quality10

signal from the current Visible Infrared Imager Radiometer Suite (VIIRS) instrument, or
successful launch of the Ocean Land Colour Instrument (OLCI) in 2013 will hopefully
extend the ocean color time series and increase the potential for detecting trends in
ocean productivity in the future. Alternatively, a potential discontinuity in the time se-
ries of ocean chlorophyll a, introduced by a change of instrument without overlap and15

opportunity for cross-calibration, would make trend detection even more challenging.
In this paper, we demonstrate that there are a few regions with statistically significant
trends over the ten years of SeaWiFS data, but at a global scale the trend is not large
enough to be distinguished from noise. We quantify the degree to which red noise (au-
tocorrelation) especially challenges trend detection in these observational time series.20

We further demonstrate how discontinuities in the time series at various points would
affect our ability to detect trends in ocean chlorophyll a. We highlight the importance
of maintaining continuous, climate-quality satellite data records for climate-change de-
tection and attribution studies.
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1 Introduction

Global climate change is predicted to alter the ocean’s biological productivity with impli-
cations for fisheries and climate. Results of coupled physical-biogeochemical models
are sometimes inconsistent in their estimate of the magnitude and location of changes
in marine primary production, depending on the region (e.g. Steinacher et al., 2010).5

Long-term (100-yr), rapidly declining trends in phytoplankton have been suggested
through examination of shipboard measurements (Boyce et al., 2010). However, sev-
eral authors have contested the methodology and implications of this study, some ar-
guing that the long-term trend detected is an artifact of changes in the measurement
techniques (Rykaczewski and Dunne, 2011; Mackas, 2011), and others reporting in-10

creases in chlorophyll a (hereafter chlorophyll) concentrations for regions that have
been studied with consistent sampling methods over multi-decadal scales (Aksnes and
Ohman, 2009; Saba et al., 2010; McQuatters-Gollop et al., 2011).

Satellite-derived ocean color and temperature data allow comprehensive estimates
of the global distribution of ocean primary productivity, estimated from data provided15

by the Coastal Zone Color Scanner (CZCS), Ocean Color and Temperature Sen-
sor (OCTS), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) and Medium Resolution Imaging Spectrom-
eter (MERIS) ocean color instruments. These data sets have allowed many scientific
advances over the past decades as illustrated, for example, in McClain (2009). The20

CZCS sensor generated the first satellite ocean color data from November 1978 to
June 1986; although focused primarily on coastal regions, CZCS also provided a pic-
ture of global patterns. However, it is not possible to determine trends from the CZCS
record; the mission was a proof-of-concept, and thus the sensor was not continuously
validated and suspected to drift after the first year of operation (Hooker and McClain,25

2000; NRC, 2004). Ten years later the OCTS was launched and operated from July
1996 to June 1997. SeaWiFS became operational in September 1997 and remained
remarkably stable for a decade, offering new opportunities for ocean biogeochemistry
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and climate research. Nevertheless, SeaWiFS began having telemetry problems in
January 2008 and failed completely in December 2010. Three other ocean color sen-
sors, MODIS-Terra, MERIS and MODIS-Aqua have been operating since December
1999, March and July 2002, respectively, but MERIS failed in May 2012. Several years
of overlap between SeaWIFS and MODIS-Aqua allowed successful cross-calibrations5

to merge data from the two sensors (e.g. Fargion and McClain, 2003; Maritorena and
Siegel, 2005; Pottier et al., 2006; Meister et al., 2012), increasing our potential for the
detection of secular trends in ocean chlorophyll However, MODIS Aqua and Terra are
now beyond their operational lifetimes. Another ocean color instrument, the Visible In-
frared Imager Radiometer Suite (VIIRS), is currently operational, but the data quality10

is, as of yet, undetermined.
Several authors have studied these satellite records in order to investigate trends

in global ocean chlorophyll concentration and primary productivity (Gregg et al., 2005;
Antoine et al., 2005; Behrenfeld et al., 2006; Vantrepotte and Mélin, 2009; Siegel et al.,
2012) and to examine natural variability at the interannual and decadal time scales (Yo-15

der and Kennelly, 2003; Martinez et al., 2009). However, none of these studies explicitly
considers how the presence of autocorrelation may bias the ability to detect significant
trends in the data. In climate time series, autocorrelation is often represented by a first-
order autoregressive process (red noise). A red noise process roughly approximates
internal variability in the climate system in which slower response components such20

as the ocean and large ice sheets respond slowly to a white noise forcing provided by
weather systems (Hasselmann, 1976). Internal variability is also produced by coupled
interactions between components of the climate system, such as climate oscillations
(Hegerl et al., 2007). There is a great risk of misinterpreting changes in relatively short
time series when red noise is present, as it creates patterns that may be interpreted25

as trends or shifts with underlying mechanistic causality, but that are generated from
a random process (e.g. Wunsch, 1999; Rudnick and Davis, 2003).

Long-term trends are detectable if the signal-to-noise ratio is large enough and
a sufficient number of observations are available. Recent studies suggest that
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climate-change driven trends in satellite ocean color and inferred productivity are not
yet distinguishable from red noise (Henson et al., 2010; Yoder et al., 2010). Due to the
degree of internal variability in ocean productivity time series, approximately 39 yr of
continuous data could be necessary to detect global climate-change-driven trends in
ocean chlorophyll concentration and primary production (with a probability of detection5

of 0.9 and a significance level of 5 %) (Henson et al., 2010). This time frame assumes
no interruption in satellite data – an unlikely scenario given the age of the current ocean
color satellites (MODIS) and the unproven potential for VIIRS to provide the necessary
data quality. The European Space Agency and the European Organisation for the Ex-
ploitation of Meteorological Satellites are planning the launch of the Ocean Land Colour10

Instrument (OLCI) in 2013. If this is unsuccessful or MODIS fails before OLCI is opera-
tional, a discontinuity due to the change of instrument in the time series could seriously
inhibit our ability to detect trends in ocean chlorophyll and productivity. Similarly, when
OLCI exceeds its lifetime, a gap before launching a future satellite would again affect
our ability to detect trends. Additional satellites have been launched or planned, but15

if the measurements are not made available for cross-calibration, the issue of poten-
tial discontinuity remains. Discontinuity can be introduced in the satellite records when
a change of instrument occurs without an overlapping period during which the sen-
sors in orbit may be cross-calibrated. While not ideal, the bias might be reduced even
without a period of overlap through careful calibration in orbit. However, with a period20

of overlap in orbit, bias between instruments could be eliminated by cross-calibrating
sensors.

Discontinuities challenge the detection of trends in climate data since the disconti-
nuity effect represents an additional parameter that must be estimated along with the
magnitude of the trend, and therefore, longer time series of observations are required25

to achieve the same level of statistical confidence (Box and Tiao, 1975; Tiao et al.,
1990; Weatherhead et al., 1998). For example, Weatherhead et al. (1998) estimated
that in the worst-case scenario, a discontinuity could increase the number of years of
data necessary to detect a linear trend (with a probability of detection of 90 %) by as
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much as 50 %. Any potential discontinuity in satellite ocean color data must be taken
into account in assessing the number of years of observations necessary to distinguish
trends from internal variability in ocean chlorophyll and productivity.

The general objective of this study is to investigate the statistical factors that chal-
lenge the detection of trends in ocean color data and show why globally, and in most5

ocean basins, linear trends are not yet distinguishable from red noise (i.e. the inter-
nal variability) on a statistical basis. We use generalized least squares regression to
detect trends in ocean chlorophyll satellite data and test the hypothesis that those
trends detected are not an artifact of red noise. We quantify how a discontinuity in the
time series would affect our ability to detect trends in ocean chlorophyll concentration10

given the observed variability and the expected trends estimated from a range of ocean
models. More specifically, we assess how many additional years of satellite data would
be needed to detect a trend if the current satellite fails before new satellite data are
available. We also quantify how red noise affects the number of years of observations
needed to detect trends in ocean chlorophyll concentration.15

The remainder of this paper is organized as follows: Sect. 2 presents the ocean
chlorophyll concentration observed from satellite ocean color data, chlorophyll pro-
jected by three biogeochemical-climate coupled models, and the methodology that we
use to test for the presence of long-term trends and to estimate the number of years of
observations necessary to detect a trend. The results are presented in Sect. 3. A dis-20

cussion concerning the limitations and implications of these results and a conclusion
are presented in Sect. 4. More details about the data and methodology and additional
results are presented in the appendices.
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2 Data and methods

2.1 Data and models

We use monthly mean chlorophyll concentration data covering the January 1998–
December 2007 period collected by SeaWiFS (version R2010.0; available at http:
//oceancolor.gsfc.nasa.gov/) averaged globally and in 14 biomes (shown in Fig. 1).5

The biome definition separates the regions where phytoplankton growth is seasonally
light limited (for mid to high latitudes), regions where the ocean is gaining heat (equa-
torial regions) and oligotrophic regions (Henson et al., 2010). Observations taken af-
ter 2007 were not used as they are not continuous due to intermittent problems with
the SeaWiFS instrument. The seasonal cycle was removed from the monthly means10

by subtracting from each month the mean of all observations taken during the same
month for all years. Figure 2 presents the global and biome mean chlorophyll concen-
trations. To estimate long-term trends in surface ocean chlorophyll, we use the same
three coupled physical-biogeochemical models as presented in Henson et al. (2010):
GFDL-TOPAZ (Dunne et al., 2005, 2007), IPSL-PISCES (Aumont and Bopp, 2006) and15

NCAR-CCSM3 (Doney et al., 2009; Thornton et al., 2009). We estimate the trends in fu-
ture climate change simulations forced with the IPCC A2 global warming scenario from
2001–2100. This scenario represents high cumulative carbon emissions due to human
population growth and an increasing gap between the industrialized and developing
nations (Nakicenovic and Swart, 2000). The use of three models allows us to repre-20

sent the uncertainty associated with the trend estimates. The global and biome mean
chlorophyll concentrations predicted from the three models are presented in Fig. 3.
More details of the three model projections and biome definition are presented in Hen-
son et al. (2010).

The different trends in chlorophyll concentration estimated by each of the three mod-25

els are due in part to their different representations of the ecosystem. In particular,
changes in the relative proportions of large (diatoms) versus small phytoplankton can
contribute substantially to the magnitude of the estimated climate-change driven trend
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(Steinacher et al., 2010). Diatoms and other large phytoplankton are expected to de-
cline more rapidly in response to increasing nutrient limitation than small phytoplankton
(e.g. Bopp et al., 2005), and so models that exhibit a more substantial contribution by
large phytoplankton under current conditions may project larger climate-driven declines
in chlorophyll than those that exhibit larger contributions by small phytoplankton as nu-5

trient limitation increases in response to increased vertical stratification under climate
change (Sarmiento et al., 2004). Here we use output from three different models to
give an estimate of the mean and range of possible future trends in surface chlorophyll
concentration.

2.2 Trend detection in presence of autocorrelation and discontinuity10

A linear temporal trend can be expressed as:

yt = µ+ωt+Nt (1)

where yt is the data (chlorophyll concentration) at time t, µ is the intercept, ω is the
trend and Nt represents the residual noise at time t. This regression model was used in
Henson et al. (2010) to represent trends in monthly mean chlorophyll and productivity15

data. When this model is fitted using ordinary least squares regression (OLS), it is
assumed that the residuals are independent (white noise). However, in time series of
climate and environmental records, there is often red noise in the regression residuals.
In the presence of red noise, OLS tends to underestimate the variance and therefore
inflates the test statistics on the regression coefficients, so that a trend can appear20

statistically significant when it is not (e.g. Wunsch, 1999).
Technically, we assume that the errors follow a first-order autoregressive process

(AR 1):

Nt =φNt−1 +εt (2)

where φ is the first-order autocorrelation and εt are normally distributed random errors25

(white noise) with a mean of zero and a common variance of σ2
ε . It should be noted
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that the variance of the white noise process (εt) is directly related to the variance of the
noise (Nt) by

σ2
N = σ2

ε/
(

1−φ2
)

(3)

where σ2
N is the noise variance. The regression parameters and their associated vari-

ance can be estimated using generalized least squares regression (GLS) to account5

for the presence of autocorrelation in the errors. To simplify these expressions we use
matrix notation here. In matrix notation, the regression model presented in Eq. (1) is:

y = Xb+N (4)

where y is the n×1 data vector, X is a n×2 design matrix with ones in the first column
and the time in the second column, b is a 2×1 vector representing the intercept and10

trend and N is a n×1 vector representing the noise. The generalized least squares
parameters (b) and their variance (V (b)) are given by:

b =
(

X′S−1X
)−1

X′S−1y (5)

V (b) =
(

X′S−1X
)−1

(6)
15

where S is the n×n error-covariance matrix. The entries in the error covariance matrix
represent the covariance of two errors depending on their separation in time s. For
a first-order autoregressive process, the covariance of two residuals separated by s
time units (months in this case) can be expressed as:

C (Nt,Nt+s) = C
(
Nt,Nt−s

)
= σ2

Nφ
s (7)20

More details on GLS estimation can be obtained in Brockwell and Davis (2002).
Statistical analyses of chlorophyll concentrations are sometimes performed on log-
transformed data (e.g. Campbell, 1995). However, a log-transformation did not help in
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stabilizing the variance of the model errors or making them more normally distributed,
so we used the untransformed chlorophyll concentration by principle of parsimony.

Tiao et al. (1990) developed a simple equation allowing the estimation of the num-
ber of observations required to distinguish a trend (with a specified magnitude of ω0)
from red noise. The number of observations required depends on the signal-to-noise5

ratio and on the desired confidence level and power of detection for the test. It can be
expressed as:

n∗ ≈

3.3σN

|ω0|

√
1+φ
1−φ

2/3

(8)

where n∗ is the number of observations required to detect the trend. The magnitude of
the trend can be expressed in absolute terms (e.g. changes in chlorophyll concentration10

in mgm−3 yr−1) or in relative terms (e.g. changes in percent per year or per decade).
The factor 3.3 accounts for a power of detection of at least 0.90 and a significance level
of 5 % (or a confidence level of 95 %) (Tiao et al., 1990; Weatherhead et al., 1998).
The null hypothesis for the regression is that there is no trend. The significance level is
the probability of incorrectly rejecting the null hypothesis when, in fact, it is true (false15

positive rate). The power of detection is the probability that the regression analysis will
reject the null hypothesis when there is a trend (true positive rate). This means that if
GLS regression is applied using a 5 % significance level to thousands of series having
an approximate length of n∗ and with the same parameters as presented in Eq. (8)
(i.e. a lag-1 autocorrelation of φ, a variance of σ2

N and a trend with a magnitude of20

ω0), in at least 90 % of the cases the trend would be detected if it exists. For a smaller
significance level and/or a larger probability of detection, the number of observations
necessary to detect a trend would increase.

If a change of instrumentation or measurement procedures occurs, a discontinuity
might be introduced in the observations and should be taken into account in the trend25

detection. An indicator function representing the effect of the change can be added to
16428
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the model:

yt = µ+ωt+δIt +Nt (9)

It =

{
0, t < T0

1, t ≥ T0
(10)

where It is a binary variable having a value of zero before the discontinuity and one5

after, T0 represents the number of observations before the discontinuity and δ repre-
sents the magnitude (or the effect) of the discontinuity. The fraction of data before the
discontinuity can be represented by:

τ = (T0 −1)/n (11)

where n is the total number of observations.10

Weatherhead et al. (1998) provided an estimate of the number of observations re-
quired to distinguish a trend (with a specified magnitude of ω0) from the noise in the
presence of a discontinuity. They showed that the number of observations required to
detect a trend is larger in comparison to continuous data due to the additional param-
eter (δ) that needs to be estimated and depends on the time of the discontinuity:15

n∗ ≈

3.3σN

|ω0|

√
1+φ
1−φ

2/3

1

[1−3τ (1− τ)]1/3
(12)

It is important to note the distinction between a discontinuity and a gap. In the context
of satellite data, a discontinuity would occur if no cross-calibration between one instru-
ment and another was possible. In this case, n∗ can be estimated using Eq. (12). In
presence of a gap only (i.e. the measurements are taken with the same instrument,20

but there is a gap in the time series), the number of observations necessary to detect
a trend can be estimated using Eq. (8) as there is no discontinuity effect to estimate.
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Furthermore, it must be noted that the timing of the discontinuity (T0) is known since we
assume the discontinuity is caused by a change of instrument. However, if the timing
of the discontinuity is unknown and needs to be estimated, Eq. (12) is not applicable
and techniques developed to detect undocumented discontinuities would be required.
Such techniques have been developed for in situ climate data for example (e.g. Peter-5

son et al., 1998; Beaulieu et al., 2008).

2.3 Estimation of trends and noise in ocean color satellite data and
biogeochemical models

To test for the presence of global and regional trends in ocean chlorophyll in SeaWiFS
data, we fit the regression model presented in Eq. (1) to deseasonalized monthly mean10

SeaWiFS observations for 1998–2007, globally and in the 14 biomes presented in
Fig. 1. We also estimate the first-order autocorrelation and standard deviation (Eqs. 2,
3) in the ocean chlorophyll concentration from the deseasonalized monthly mean Sea-
WiFS observations. We estimate the trends predicted by the three ocean biogeochem-
ical models also using the regression model presented in Eq. (1). For all the regression15

analyses, we verify the underlying assumptions of independently distributed normal er-
rors with a constant variance using the Anderson–Darling normality test, the Breusch–
Pagan homoscedasticity test and the Durbin–Watson independence test. All the statis-
tical tests are performed using R (R Development Core team 2008) and using a 5 %
significance level.20

We compute the number of years necessary to detect a trend for discontinuities at
different points in the time series. The range of expected magnitudes in trends is esti-
mated from the annual global and regional means of ocean chlorophyll for the 2001–
2100 period in the three model runs described in Sect. 2.1. Furthermore, we compute
the number of years necessary to detect a trend for no discontinuity and the multi-model25

mean trend for different values of autocorrelation and standard deviation to show their
effects on trend detection.
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3 Results

3.1 Trends in satellite data and in ocean models

Table 1 presents the GLS trends for 1998–2007 in SeaWiFS satellite chlorophyll
concentration for the global mean and average in 14 biomes. Globally and in most
biomes, trends are not significant with the exception of the high-latitude North Atlantic5

(−1.3 %yr−1) and the Southern Ocean Pacific (0.65 %yr−1). In all cases, the Durbin-
Watson test for the independence of the residual noise is significant, showing the ne-
cessity to take into account the autocorrelation in the analysis through GLS. Additional
evidence for the presence of red noise is also presented in the Appendix A. Figure 2
presents the standardized deseasonalized SeaWiFS chlorophyll concentration monthly10

means for all the regions. We present the standardized chlorophyll concentration to dis-
play all regions on the same scale since they have different ranges of concentrations.
For the two biomes with significant trends (high-latitude North Atlantic and Southern
Ocean Pacific), the fits are also presented. The deseasonalized SeaWiFS chlorophyll
concentration monthly anomalies (not standardized) for all the regions are presented15

in the Appendix A.
Table 2 presents the GLS trend estimates of global and biome-specific annual chloro-

phyll concentration in the three model projections for the period 2001–2100 (Fig. 3).
Globally, IPSL-PISCES shows a strong and significant decreasing global trend. GFDL-
TOPAZ also has a significantly decreasing global trend, but its magnitude is weaker20

than IPSL-PISCES. The global trend in NCAR-CCSM3 is not significant. In many bio-
geochemical models, the global trend reflects a balance between decreasing trends
in some regions and increases in other regions. Thus, we also analyze the biomes
trends that may give a clearer signal than the global mean. In the high-latitude North
Atlantic, the IPSL-PISCES and NCAR-CCSM3 models project decreasing trends, while25

the GFDL-TOPAZ model projects an increasing trend. In the Southern Ocean Pacific,
the trends projected by the GFDL-TOPAZ and NCAR-CCSM3 models are increasing.
The IPSL-PISCES model projects a decreasing trend for the Southern Ocean Pacific.
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Whether the trends detected in the high-latitude North Atlantic and in the Southern
Ocean Pacific in the SeaWiFS data might represent climate change or decadal vari-
ability cannot be answered without a detection and attribution study. Answering this
question is even more challenging since the models often do not agree on the sign of
the projected trends. Other regions in which the three biogeochemical models do not5

all agree on the sign of the trend are: Oligotrophic South Atlantic, Equatorial Pacific,
Oligotrophic South Pacific and the Southern Ocean Indian.

3.2 Discontinuity and red noise effects on trend detection

Figure 4a presents the number of years of observation necessary to detect a global
trend in satellite data for different trend magnitudes and different timing of a discontinu-10

ity. The range of the trend magnitude was set according to the global trend estimated
from output of the three biogeochemical models. It can be seen that the number of
years of observations necessary to detect a trend increases with the fraction of data
before the discontinuity. A discontinuity that occurs halfway in the time series (same
number of observations before and after) has the most negative impact on trend de-15

tection (the results are symmetric above and below τ = 0.5). Furthermore, trends of
a small magnitude also need more observations to be detectable.

Approximately 27 yr of continuous observations would be needed to identify a trend
in globally averaged chlorophyll concentration given the trend magnitude projected by
the multi-model mean of the three biogeochemical models. This estimate is lower than20

the 39 yr estimate of Henson et al. (2010), because the latest SeaWiFS reprocessed
version (R2010.0) used here has less variability than the version 5.2 used in the Hen-
son et al. (2010) study. If a discontinuity occurs halfway through the time series, we
estimate this would increase the number of years of observations needed to detect
a trend from 27 to 43 yr. If the “real” global trend in the chlorophyll concentration is25

best represented by the IPSL-PISCES trend, then it would take approximately 13 yr of
observations. On the other hand, if the “real” trend in the chlorophyll concentration is
closer to the GFDL-TOPAZ trend, then it would take much longer to detect (from 66 yr
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of continuous observations to 105 observations with a discontinuity halfway through
the time series). The NCAR-CCSM3 trend is not significantly different from zero, thus
the estimation of the number of years of observations is not applicable here.

The above presents an idealized scenario. In reality, the scenario could be that
the remaining ocean color sensors, MODIS Aqua and Terra, fail during the present5

year (2012) or next year (2013) before a new satellite is launched, and VIIRS fails to
achieve the necessary data quality. During this period, no measurements would be
taken, cross-calibration would not be possible and calibration would rely exclusively on
in situ observations. Assuming that the real trend in chlorophyll is best represented by
the mean trend of the three models, the trend would be distinguishable from the noise10

only after at least 40 yr (in 2037) of observations. This is because the discontinuity
would occur at a time when approximately 43 % (17 yr) of the data were collected (as
opposed to 27 yr of continuous observations, if there is no interruption). In this case,
the discontinuity would amount to 13 additional years of observations necessary be-
fore a trend could be detected. This estimation does not include the duration of the gap15

(e.g. if the gap lasts two years, a trend would not be detectable until 2039). If the discon-
tinuity occurs during 2018 instead, we would need 43 yr of observations, and the trend
would not be detectable before 2040. In this case, the discontinuity occurs at a time
when approximately 50 % of the data were collected. Overall, it could take an addi-
tional 13–16 yr of observations to detect a trend in satellite ocean chlorophyll under the20

idealized scenario if the two MODIS sensors fail and VIIRS remains of questionable re-
liability before OLCI is launched. Of course, this could be reduced if a cross-calibration
was possible with another instrument that made overlapping measurements for a few
years, so that a consistent, continuous time series was available.

Figure 4b presents the effect of the first-order autocorrelation and standard devia-25

tion on the ability to detect trends of the same magnitude as the multi-model mean
trend. One can see that strong, positive first-order autocorrelation and high standard
deviation seriously inhibit the ability to detect trends. For example, in monthly obser-
vations with a standard deviation of 0.02 mgm−3 and a first-order autocorrelation of 0
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(each month independent from the others), it would take approximately 25 yr of ob-
servations to detect a trend with the same magnitude as the multi-model mean trend
(−1.53×10−4 mgm−3 yr−1). In the presence of large monthly first-order autocorrelation
(0.9), it would take approximately 65 yr of observations to detect the same trend. Fig-
ure 4b also presents the values observed in global monthly chlorophyll by SeaWiFS:5

a first-order autocorrelation of 0.52 and standard deviation of 0.013 mgm−3. The ob-
served satellite autocorrelation corresponds to a decorrelation time of approximately 3
months, which is high enough that it must be taken into account in trend analyses.

Figure 5 presents the number of years of observations necessary to detect a trend in
satellite data in six different biomes for different trend magnitudes and different times of10

discontinuity. The biomes were chosen to represent larger and smaller variability (quan-
tified by the autocorrelation and variance of the red noise) and weaker and stronger
trend projections. In the Equatorial Atlantic, which has relatively large variability, de-
tecting a trend with the same magnitude as the biome multi-model mean trend would
require approximately 60 yr of continuous observations and up to more than 90 yr of15

observations in presence of a discontinuity. In the Equatorial Pacific, even though the
projected multi-model mean trend is smaller than in the Equatorial Atlantic, we would
still require fewer years of observations to detect the trend (between 45 continuous
years and up to 75 yr in presence of a discontinuity) since the variability is smaller
in this biome. In the high-latitude North Pacific, which has large variability, we would20

require approximately between 37 yr (continuous) to 58 yr (discontinuity halfway) of
observations to detect the multi-model mean trend. In the Oligotrophic North Pacific,
which has very small variability and a relatively small projected decline, the multi-model
mean trend should be detectable with approximately 30 yr of observations (or as much
as 45 yr in presence of a discontinuity). The number of observations necessary to25

detect a trend in the eight remaining biomes is presented in the Appendix B.
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4 Discussion and conclusion

We have shown that ten-year trends in SeaWiFS ocean chlorophyll are distinguishable
from the observed red noise in only two of our fourteen biomes: the high-latitude North
Atlantic and the Southern Ocean Pacific (Fig. 1). The magnitude and sign of linear
trends estimated in ten years of monthly SeaWiFS observations are in agreement with5

the trends detected by Vantrepotte and Mélin (2009) and Siegel et al. (2012), even
though the analysis was performed on biome means in the present study. The high-
latitude North Atlantic and the Southern Ocean Pacific biomes exhibit strong linear
trend signals, but a formal detection and attribution study to distinguish between trends
expected from natural variability (e.g. decadal oscillations, natural forcings) and climate10

change would be necessary to assign causality. Alternatively, a simple methodology
that would facilitate the distinction of a long-term trend from a suspected dominant
source of variability, such as the El Niño Southern Oscillation (ENSO) for example,
could be applied. Such a method might include an ENSO index term in the regression
model (Henson et al., 2010) to account for the variability related to ENSO and thus15

highlight any residual trend that may be attributable to other factors such as climate
change.

We discussed the importance of accounting for the red noise in trend analyses of
ocean productivity using ocean color satellite data and quantified its effect on the time
necessary to detect a trend signal. In addition, we showed that a discontinuity in the20

satellite data measurements could have a large negative impact on our ability to un-
derstand ocean productivity’s response to climate change. We estimate approximately
27 yr of continuous observations are required to detect global trends in surface chloro-
phyll concentration. However, if a discontinuity in the satellite record occurs between
2012–2018 due to the failure of MODIS and VIIRS or delay in launching OLCI, it could25

take an additional 13–16 yr of observations to distinguish a trend from the noise. Other
satellites have been launched or are planned, but if the data is not available for cross-
calibration, the same problem will occur.

16435

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/16419/2012/bgd-9-16419-2012-print.pdf
http://www.biogeosciences-discuss.net/9/16419/2012/bgd-9-16419-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 16419–16456, 2012

Factors challenging
our ability to detect
long-term trends in
ocean chlorophyll

C. Beaulieu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Several assumptions were made in this study and our results are valid only if they
are reasonable. These assumptions include:

1. Following Henson et al. (2010), we made the assumption that the trends in ocean
chlorophyll concentration are linear since the biogeochemical models used project
trends that are approximately linear over time. More development would be nec-5

essary in order to detect spatio-temporal trends, nonlinear trends or step-like be-
havior changes or to assess the number of years of observations required to do
so.

2. To assess the number of years necessary to detect trends, we used the trends
projected by three ocean biogeochemical models coupled with climate models.10

We used several models to represent the uncertainty associated with the trend
magnitude. However, if the real observed trends are greater than or less than the
range predicted by the ocean biogeochemical models, the number of years nec-
essary to detect trends may be fewer or more than our estimates, respectively.
For example, the trends could be different if other coupled climate–ocean biogeo-15

chemistry models were used. Coupled climate–ocean biogeochemistry models
projections from the Coupled Model Intercomparison Project Phase 5 database
that are or will be made available should be considered in future work.

3. Similarly, the number of years of observations required to detect a trend could
vary if a different biome definition was used and if we assumed the biomes were20

also expanding as suggested in Polovina et al. (2008, 2011). For example, if we
were using a different biome definition exhibiting smaller internal variability and/or
larger signal, the number of observations required to detect a trend would de-
crease. The number of years of observations necessary to detect a trend may also
vary for chlorophyll at greater depths, which cannot be estimated using satellite25

data. Gliders and floats provide complementary and persistent information about
the vertical structure of ocean chlorophyll as well as surface ocean chlorophyll in
cloudy conditions (Boss et al., 2008; Perry et al., 2008).
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4. The results are also based on the assumption that the red noise estimated by
the standard deviation and first-order autocorrelation from ten years of satellite
data observations is representative of long-term internal variability. We assumed
that these statistical properties are stationary, but the results could vary slightly if
these properties change in time or if it takes longer to estimate internal variability.5

5. We ignore the possible utility of other platforms such as ships, moorings, floats,
gliders, and aircraft for estimating long-term trends in ocean chlorophyll and the
use of these platforms to eliminate or reduce potential discontinuities when merg-
ing satellite data records.

6. Finally, we fixed the desired significance level at 5 % and a probability of detection10

of 0.9 to estimate the number of years of observations necessary to detect a trend,
but if a larger significance level or a smaller probability of detection were targeted,
it would require fewer observations to detect trends in ocean chl.

This work demonstrates the necessity of continuous monitoring of global ocean chloro-
phyll. This requires ensuring overlap in operation between satellites and collecting15

consistent in situ observations, so that validation, monitoring sensor degradation and
cross-calibration of instruments is possible (NRC, 2004). In situ measurements have
been successfully used to validate and reduce uncertainty in satellite ocean color data
(e.g. McClain, 2009). Data from careful cross-calibrations that fully eliminate discon-
tinuities across satellites should be capable of detecting trends with the same confi-20

dence as data from a single satellite. Cross-calibration methods allowing generation of
unbiased time series from SeaWiFS-MODIS-VIIRS-OLCI would be crucially useful to
increase our potential for the detection of climate-change effects on ocean productivity.
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Appendix A

Additional details on the data and models

In this appendix, we provide more details about the SeaWiFS data and the three mod-
els projections that were used. Figure A1 presents the SeaWiFS ocean chlorophyll
concentrations anomalies. The variability is very different between the biomes. High-5

latitude North Atlantic, Equatorial Atlantic, the Southern Ocean Atlantic and the high-
latitude North Pacific regions exhibit the largest variability, while the oligotrophic regions
have very small variability in chlorophyll concentrations.

Figure A2 presents the sample autocorrelation function and partial autocorrelation
function of the SeaWiFS globally averaged anomalies in chlorophyll concentration. The10

autocorrelation function and partial autocorrelation functions are commonly used in
autoregressive moving average model selection. For an autoregressive model of order
p (AR(p)), the theoretical autocorrelation function tails off as an exponential decay or
damped sine wave, and the theoretical partial autocorrelation function is equal to zero
past lag-p (Wei, 1990).15

The exponential decay shape of the autocorrelation function (Fig. A2a) and the par-
tial autocorrelation function drop after lag-1 (Fig. A2b), indicating that a first-order auto-
correlation model appropriately fits the noise and justifies the choice of GLS regression
to study trends in ocean color chlorophyll concentration.

In order to present the differences in variability of chlorophyll concentrations anoma-20

lies from the three models, we also present the model projections in all biomes
(Fig. A3). The variability depends on the biome and model. In general, the oligotrophic
regions also show the smallest variability, in agreement with the satellite data.
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Appendix B

Additional results

Figure B1 presents the number of observations necessary to detect a trend in the
biomes that were not presented in Fig. 5: high-latitude North Atlantic, oligotrophic South
Atlantic, Southern Ocean Pacific, oligotrophic South Pacific, Arabian Sea, Bay of Ben-5

gal, Southern Ocean Indian and oligotrophic Indian.

16439

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/16419/2012/bgd-9-16419-2012-print.pdf
http://www.biogeosciences-discuss.net/9/16419/2012/bgd-9-16419-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 16419–16456, 2012

Factors challenging
our ability to detect
long-term trends in
ocean chlorophyll

C. Beaulieu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Appendix C

List of notations

εt errors following a white noise process
µ intercept in the linear regression model
σ2
ε white noise variance

σ2
N red noise variance

τ fraction of data before the discontinuity
φ first-order autocorrelation
$ magnitude of the trend
$0 expected magnitude of the trend
b 2×1 vector of regression parameters
n number of observations
n∗ number of observations necessary to detect a trend
N n×1 vector of errors following a red noise process
Nt errors following a red noise process
S n×n error-covariance matrix
t time
T0 timing of the discontinuity
X n×2 matrix of explanatory variables
y n×1 vector of observations
yt time series of observations
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Table 1. Generalized least square trends, variability and autocorrelation of the SeaWiFS
monthly ocean chlorophyll data. The trends (ω), noise standard deviation (σN) and autocor-
relation (φ) are computed for the global mean and for the mean of each biome from January
1998–December 2007. For each region, we test whether the trends are significantly different
from zero at the 5 % significance level.

Region Chlorophyll concentration linear trends
ωb φc σd

N

mgm−3 yr−1 ×10−3 mgm−3 yr−1 ×10−2

(% per year)

Global mean 0.49 (0.11)g 0.52 1.26
High-latitude North Atlantic −5.55 (−1.31)a,g 0.16 3.86
Equatorial Atlantic −0.52 (−0.18)e,g 0.61 5.20
Oligotrophic North Atlantic −1.27 (−0.95)e,g 0.59 2.02
Southern Ocean Atlantic 0.78 (0.26)e,g 0.39 2.31
Oligotrophic South Atlantic −0.28 (−0.29)f,g 0.52 0.66
High-latitude North Pacific −1.38 (−0.34)e,f,g 0.37 3.83
Equatorial Pacific 0. 54 (0.30)f,g 0.87 2.51
Oligotrophic North Pacific −0. 30 (−0.34)f,g 0.84 0.60
Southern Ocean Pacific 1.08 (0.65)a,e,g 0.47 1.03
Oligotrophic South Pacific 0.20 (0.23)f,g 0.80 0.45
Arabian Sea 2.57 (1.45)g 0.73 2.69
Bay of Bengal −0. 76 (−0.50)g 0.59 1.51
Southern Ocean Indian −0. 44 (−0.21)g 0.59 1.03
Oligotrophic Indian −0. 29 (−0.32)e,f,g 0.80 0.62

a The trend is significantly different from zero, 5 % significance level.
b Linear trend as expressed in Eq. (1). The trends are computed using monthly data, but expressed yearly to be
consistent with the trends computed using the models that are presented in Table 2.
c First-order autocorrelation of the noise estimated as presented in Eq. (2).
d Standard deviation of the noise as presented in q. (3).
e Normality hypothesis rejected, Anderson–Darling normality test, 5 % significance level.
f Homoskedasticity hypothesis rejected, Breusch–Pagan test, 5 % significance level.
g Independence hypothesis rejected, Durbin–Watson test, 5 % significance level.
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Table 2. Ocean chlorophyll generalized least square trends for 2001–2100 estimated from the
model outputs.

Region Chlorophyll concentration linear trends
mgm−3 yr−1 ×10−3 (% per year)

IPSL-PISCES GFDL-TOPAZ NCAR-CCSM3

Global mean −0.44 (−0.21)a,d −0.04 (−0.0214)a 0. 015 (0.0086)
High-latitude North Atlantic −2.38 (−0.71)a,d 0.01 (0.00)a,b,d −0.39 (−0.15)a,d

Equatorial Atlantic −0.05 (−0.16)a,c,d −0.14 (−0.11)a,c −0.26 (−0.15)a,d

Oligotrophic North Atlantic −0.13 (−0.24)a,b −0.16 (−0.13)a −0.15 (−0.10)a,c,d

Southern Ocean Atlantic 0.26 (0.09)a,d 0.16 (0.07)a,d 0.29 (0.09)a

Oligotrophic South Atlantic −0.12 (−0.24)a,c 0.09 (0.07)a −0.04 (−0.03)a,d

High-latitude North Pacific −0.43 (−0.10)a,b,d −0.31 (−0.10)a,d −0.14 (−0.06)a

Equatorial Pacific −0.42(−0.39) a,b 0.14 (0.06)a −0.06 (−0.04)a,b

Oligotrophic North Pacific −0.12 (−0.20)a −0.22 (−0.23)a,c −0.08 (−0.05)a,d

Southern Ocean Pacific −0.39 (−0.16)a,d 0.11 (0.06)a,c 0.12 (0.05)a

Oligotrophic South Pacific −0.13 (−0.23) a,c,d 0.02 (0.02) a,d −0.03 (−0.02)a,b,d

Arabian Sea −0.02 (−0.07)a,b −0.29 (−0.29)a,c,d −0.24 (−0.16)a,d

Bay of Bengal −0.05 (−0.13)a,b,c −0.19 (−0.15)a,c −0.10 (−0.06)a,d

Southern Ocean Indian −0.05 (0.02)d 0.09 (0.04)a,c 0.15 (0.07)a

Oligotrophic Indian −0.13 (−0.22)a,d −0.11 (−0.14)a,c −0.07 (0.05)a,d

aThe trend is significantly different from zero, 5 % significance level.
b Normality hypothesis rejected, Anderson–Darling normality test, 5 % significance level.
c Homoskedasticity hypothesis rejected, Breusch–Pagan test, 5 % significance level.
d Independence hypothesis rejected, Durbin–Watson test, 5 % significance level.
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Fig. 1. Map of the 14 ocean biomes used in the analysis (1) High-latitude North Pacific, (2)
Oligotrophic North Pacific, (3) Equatorial Pacific, (4) Oligotrophic South Pacific, (5) Southern
Ocean Pacific, (6) High-latitude North Atlantic, (7) Oligotrophic North Atlantic, (8) Equatorial
Atlantic, (9) Oligotrophic South Atlantic, (10) Southern Ocean Atlantic, (11) Bay of Bengal,
(12) Oligotrophic Indian, (13) Southern Ocean Indian, (14) Arabian Sea.
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 1 

Figure 2: Deseasonalized anomalies in SeaWiFS ocean chlorophyll concentrations from 1998-2 

2007 averaged globally and in 14 biomes. Since the magnitude and variability varies among 3 

the different regions, the chlorophyll concentrations are standardized (the mean is subtracted 4 

from the time series and then the time series is divided by its standard deviation) to display on 5 

the same scale. The dotted lines represent the trends. The two panels with a star represent the 6 

trends that are significantly different from zero. 7 
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Fig. 2. Deseasonalized anomalies in SeaWiFS ocean chlorophyll concentrations from 1998–
2007 averaged globally and in 14 biomes. Since the magnitude and variability varies among
the different regions, the chlorophyll concentrations are standardized (the mean is subtracted
from the time series and then the time series is divided by its standard deviation) to display on
the same scale. The dotted lines represent the trends. The two panels with a star represent the
trends that are significantly different from zero.
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 1 

Figure 3: Annual ocean chlorophyll concentrations projected for 2001-2100 averaged globally 2 

and in 14 biomes from three-ocean biogeochemical models forced with the A2 scenario from 3 

the Special Report on Emission Scenarios (Nakicenovic et al., 2000). The projections are 4 

standardized (the mean is subtracted from the time series and then the time series is divided 5 

by its standard deviation) to display concentrations on the same scale.  6 
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Fig. 3. Annual ocean chlorophyll concentrations projected for 2001–2100 averaged globally
and in 14 biomes from three-ocean biogeochemical models forced with the A2 scenario from
the Special Report on Emission Scenarios (Nakicenovic and Swart, 2000). The projections are
standardized (the mean is subtracted from the time series and then the time series is divided
by its standard deviation) to display concentrations on the same scale.
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 1 

Figure 4: a) Number of years of observations ( n* ) necessary to detect a statistically 2 

significant trend in satellite monthly ocean chlorophyll according to the magnitude of the 3 

trend and of the fraction of data before the discontinuity. The standard deviation and 4 

autocorrelation used in the calculations were estimated from global SeaWiFS data from 1998-5 

2007. The range for the trend magnitude was obtained from three biogeochemical models, and 6 

these magnitudes (in absolute value) are shown on the figure as well as the model mean trend. 7 

We present the fraction of data before the discontinuity between 0 and 0.5 only since the 8 

results are symmetric. For example, the number of years necessary to detect a trend of the 9 

same magnitude will be the same if the discontinuity occurs after 25% or 75% of the data 10 

were collected. b) Number of years of continuous observations necessary to detect a trend 11 

(with the magnitude of the multi-model mean trend) in satellite ocean chlorophyll according 12 

to the autocorrelation and standard deviation in the data. The star in the figure shows the 13 

values observed in global SeaWiFS ocean chlorophyll data. 14 
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Fig. 4. (a) Number of years of observations (n∗) necessary to detect a statistically significant
trend in satellite monthly ocean chlorophyll according to the magnitude of the trend and of
the fraction of data before the discontinuity. The standard deviation and autocorrelation used
in the calculations were estimated from global SeaWiFS data from 1998–2007. The range for
the trend magnitude was obtained from three biogeochemical models, and these magnitudes
(in absolute value) are shown on the figure as well as the model mean trend. We present the
fraction of data before the discontinuity between 0 and 0.5 only since the results are symmetric.
For example, the number of years necessary to detect a trend of the same magnitude will be
the same if the discontinuity occurs after 25 % or 75 % of the data were collected. (b) Number of
years of continuous observations necessary to detect a trend (with the magnitude of the multi-
model mean trend) in satellite ocean chlorophyll according to the autocorrelation and standard
deviation in the data. The star in the figure shows the values observed in global SeaWiFS
ocean chlorophyll data.
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 1 

Figure 5: Number of years of observations (n* ) necessary to detect a trend in satellite 2 

monthly ocean chlorophyll in six different biomes according to the magnitude of the trend and 3 

of the fraction of data before the discontinuity. The standard deviation and autocorrelation 4 

used in the calculations were estimated from SeaWiFS data from 1998-2007. The range for 5 

the trend magnitude was obtained from three biogeochemical models, and these magnitudes 6 

are shown on the figure as well as the model mean trend. We present the fraction of data 7 

before the discontinuity between 0 and 0.5 only since the results are symmetric. For example, 8 

the number of years necessary to detect a trend of the same magnitude will be the same if the 9 

discontinuity occurs after 25% or 75% of the data were collected. 10 
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Fig. 5. Number of years of observations (n∗) necessary to detect a trend in satellite monthly
ocean chlorophyll in six different biomes according to the magnitude of the trend and of the
fraction of data before the discontinuity. The standard deviation and autocorrelation used in
the calculations were estimated from SeaWiFS data from 1998–2007. The range for the trend
magnitude was obtained from three biogeochemical models, and these magnitudes are shown
on the figure as well as the model mean trend. We present the fraction of data before the
discontinuity between 0 and 0.5 only since the results are symmetric. For example, the number
of years necessary to detect a trend of the same magnitude will be the same if the discontinuity
occurs after 25 % or 75 % of the data were collected.
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 1 

Figure A1: SeaWiFS ocean chlorophyll concentrations anomalies from 1998-2007 averaged 2 

globally and in 14 biomes. The dotted lines represent the trends. The two panels with a star 3 

represent the trends that are significantly different from zero. 4 
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Fig. A1. SeaWiFS ocean chlorophyll concentrations anomalies from 1998–2007 averaged
globally and in 14 biomes. The dotted lines represent the trends. The two panels with a star
represent the trends that are significantly different from zero.
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 1 

Figure A2: a) Sample autocorrelation function and b) sample partial autocorrelation function 2 

of the SeaWiFS ocean global chlorophyll monthly anomalies from 1998-2007. The dashed 3 

lines present the 95% confidence interval for the partial autocorrelation. The exponential 4 

decay in the autocorrelation function and significance of only the lag 1 in the partial 5 

autocorrelation function indicates a first-order autoregressive process (red noise). 6 
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Fig. A2. (a) Sample autocorrelation function and (b) sample partial autocorrelation function of
the SeaWiFS ocean global chlorophyll monthly anomalies from 1998–2007. The dashed lines
present the 95 % confidence interval for the partial autocorrelation. The exponential decay in
the autocorrelation function and significance of only the lag 1 in the partial autocorrelation
function indicates a first-order autoregressive process (red noise).
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 1 

Figure A3: Ocean chlorophyll concentrations anomalies projected for 2001-2100 averaged 2 

globally and in 14 biomes from three-ocean biogeochemical models forced with the A2 3 

scenario from the Special Report on Emission Scenarios (Nakicenovic et al., 2000).  4 

  5 

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Global

 

 

IPSL−PISCES
GFDL−TOPAZ
NCAR−CCSM3

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

High latitude North Atlantic

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Equatorial Atlantic

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Oligotrophic North Atlantic

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Southern Ocean Atlantic

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Oligotrophic South Atlantic

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

High latitude North Pacific

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Equatorial Pacific

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Oligotrophic North Pacific

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Southern Ocean Pacific

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Oligotrophic South Pacific

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Arabian Sea

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Bay of Bengal

2020 2040 2060 2080 2100
−0.1

0

0.1

Ch
l (

m
g 

m
−3

)

Southern Ocean Indian

2020 2040 2060 2080 2100
−0.1

0

0.1
Ch

l (
m

g 
m
−3

)

Oligotrophic Indian

Fig. A3. Ocean chlorophyll concentrations anomalies projected for 2001–2100 averaged glob-
ally and in 14 biomes from three-ocean biogeochemical models forced with the A2 scenario
from the Special Report on Emission Scenarios (Nakicenovic and Swart, 2000).
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 1 

Figure B1: Number of years of observations ( n* ) necessary to detect a trend in satellite 2 

monthly ocean chlorophyll in eight different biomes according to the magnitude of the trend 3 

and of the fraction of data before the discontinuity. The standard deviation and autocorrelation 4 

used in the calculations were estimated from SeaWiFS data from 1998-2007. The range for 5 

the trend magnitude was obtained from three biogeochemical models and these magnitudes 6 

(in absolute value) are shown on the figure as well as the model mean trend. We present the 7 

fraction of data before the discontinuity between 0 and 0.5 only since the results are 8 

symmetric. For example, the number of years necessary to detect a trend of the same 9 

magnitude will be the same if the discontinuity occurs after 25% or 75% of the data was 10 
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Fig. B1. Number of years of observations (n∗) necessary to detect a trend in satellite monthly
ocean chlorophyll in eight different biomes according to the magnitude of the trend and of the
fraction of data before the discontinuity. The standard deviation and autocorrelation used in
the calculations were estimated from SeaWiFS data from 1998–2007. The range for the trend
magnitude was obtained from three biogeochemical models and these magnitudes (in absolute
value) are shown on the figure as well as the model mean trend. We present the fraction of data
before the discontinuity between 0 and 0.5 only since the results are symmetric. For example,
the number of years necessary to detect a trend of the same magnitude will be the same if the
discontinuity occurs after 25 % or 75 % of the data was collected, assuming a linear trend.
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