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Abstract

This study investigates the performances in a terrestrial ecosystem of gross primary
production (GPP) estimation of a suite of spectral vegetation indexes (VIs) that can
be computed from currently orbiting platforms. Vegetation indexes were computed
from near-surface field spectroscopy measurements collected using an automatic sys-5

tem designed for high temporal frequency acquisition of spectral measurements in the
visible near-infrared region. Spectral observations were collected for two consecu-
tive years in Italy in a subalpine grassland equipped with an Eddy Covariance (EC)
flux tower which provides continuous measurements of net ecosystem carbon dioxide
(CO2) exchange (NEE) and the derived GPP.10

Different VIs were calculated based on ESA-MERIS and NASA-MODIS spectral
bands and correlated with biophysical (Leaf Area Index, LAI; fraction of photosynthet-
ically active radiation intercepted by green vegetation, f IPARg), biochemical (chloro-
phyll concentration) and ecophysiological (green light-use efficiency, LUEg) canopy
variables. In this study, the normalized difference vegetation index (NDVI) showed15

better correlations with LAI and f IPARg (r = 0.90 and 0.95, respectively), the MERIS
terrestrial chlorophyll index (MTCI) with leaf chlorophyll content (r =0.91) and the Pho-
tochemical Reflectance Index (PRI551), computed as (R531 −R551)/(R531 +R551) with
LUEg (r =0.64).

Subsequently, these VIs were used to estimate GPP using different modelling so-20

lutions based on the light-use efficiency model describing the GPP as driven by the
photosynthetically active radiation absorbed by green vegetation (APARg) and by the
efficiency (ε) with which plants use the absorbed radiation to fix carbon via photosyn-
thesis. Results show that GPP can be successfully modelled with a combination of VIs
and meteorological data or VIs only. Vegetation indexes designed to be more sensi-25

tive to chlorophyll content explained most of the variability in GPP in the ecosystem
investigated, characterized by a strong seasonal dynamic of GPP. Accuracy in GPP
estimation slightly improves when taking into account high frequency modulations of
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GPP driven by incident PAR or modelling LUEg with the PRI in model formulation.
Similar results were obtained for both measured daily VIs and VIs obtained as 16-day
composite time series and then downscaled from the compositing period to daily scale
(resampled data). However, the use of resampled data rather than measured daily
input data decreases the accuracy of the total GPP estimation on an annual basis.5

1 Introduction

The availability of simultaneous acquisition of near-surface spectral observations and
gas flux measurements quantified with the eddy covariance (EC) technique (Baldocchi
et al., 1996) has notably increased in recent years (Sims et al., 2006a; Nakaji et al.,
2007, 2008; Hilker et al., 2008a; Cheng et al., 2009; Middleton et al., 2009; Rossini10

et al., 2010) due to its potential to identify effective links between optical signals and
photosynthesis at canopy level (Gamon et al., 2006, 2010). Currently, several research
groups have developed different automatic devices to collect canopy spectral proper-
ties (Leuning et al., 2006; Hilker et al., 2007; Nakaji et al., 2007, 2008; Daumard et al.,
2010; Hilker et al., 2010; Ide et al., 2010; Balzarolo et al., 2011; Meroni et al., 2011) for15

the purpose of gaining new insights in the quantification and monitoring of plant photo-
synthesis on a temporal scale. Such devices are generally operated automatically for
long periods in the sampling area of flux towers. The increased availability of coupled
spectral and flux measurements acquired with comparable temporal and spatial scales
has encouraged the revision of existing approaches to modelling photosynthesis and20

the assessment of the potential for using remotely sensed inputs to spatially extrap-
olate at landscape level predictions of carbon exchange from information acquired at
tower sites.

One of the most widely applied approaches to modelling gross primary production
(GPP) based on remote sensing (RS) data is the light-use efficiency (LUE) model pro-25

posed by Monteith (1972, 1977), in which GPP is modelled as a function of the incident
photosynthetically active radiation absorbed by vegetation (APAR), determined as the
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product of the fraction of photosynthetically active radiation absorbed by vegetation
(fAPAR) and the incident photosynthetically active radiation (PAR), and the conversion
efficiency of absorbed energy to fixed carbon (light-use efficiency, ε).

Different studies have used RS derived quantities to feed the LUE model (Hilker
et al., 2008b; Coops et al., 2010; Rossini et al., 2010; Penuelas et al., 2011).5

fAPAR is usually modelled as a function of VIs. Besides the normalized difference
vegetation index (NDVI, Rouse et al., 1974), several recent satellite products or indexes
(e.g., Enhanced Vegetation Index, EVI, Huete et al., 2002) have been explored to es-
timate fAPAR. With the advent of hyperspectral RS and the availability of commercial
sensors and field instruments the exploration of a number of different wavelengths and10

VIs has been promoted to estimate fAPAR (Inoue et al., 2008).
A more challenging component of the Monteith model to be inferred from RS is ε.

In most LUE models, ε is expressed as a biome-specific constant at its potential max-
imum, adjusted for unfavorable environmental conditions (e.g., limitations of tempera-
ture, humidity, soil moisture, etc.) (Nouvellon et al., 2000; Veroustraete et al., 2002;15

Heinsch et al., 2006). Some attempts have recently been made to directly infer ε from
RS data by exploiting variations in vegetation spectral properties resulting from photo-
protection, a process closely linked to photosynthesis. For this purpose, Gamon et al.
(1990) originally proposed to exploit changes in reflectance in a narrow-waveband in-
terval centered at 531 nm to track the xanthophyll de-epoxidation state and formulated20

the Photochemical Reflectance Index (PRI, Gamon et al., 1992) as:

PRI=
R531−Rref

R531+Rref
(1)

where Rref is a xanthophyll-insensitive reference band. Several studies have demon-
strated that ε can be successfully estimated with PRI at leaf (Meroni et al., 2008a),
canopy (Evain et al., 2004; Meroni et al., 2008b) and ecosystem (Drolet et al., 2005,25

2008; Middleton et al., 2009) scale.
An alternative approach recently proposed to directly infer ε from RS exploits the link

between carbon fixation and sun-induced chlorophyll fluorescence, derived from the
1715
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oxygen absorption band located at 760 nm (Meroni et al., 2009). Tests of this method
have been limited to few studies (Damm et al., 2010; Rossini et al., 2010; Frankenberg
et al., 2011) and consequently, the potential of this approach has not yet been fully
evaluated.

Another approach to estimating GPP proposed in recent years builds on a simplified5

version of Monteith’s model, which does not need independent estimates of the fAPAR
and the ε terms. Based on the assumption that chlorophyll is related to the presence
of photosynthetic biomass, which is essential for primary production and thus con-
ceptually related to GPP (Sellers et al., 1992), recent studies (Gitelson et al., 2008;
Harris and Dash, 2010) suggest that GPP can be estimated through direct correlation10

with chlorophyll-related indexes. Successful results have been obtained in agricultural
crops (Gitelson et al., 2008). In these ecosystems, in fact, chlorophyll-related VIs can
be considered as a proxy of photosynthesis or primary productivity because, in un-
stressed conditions, ε tends to be correlated with chlorophyll content, thus making an
independent estimate of ε unnecessary (Sims et al., 2006a). However, these models15

are unable to model high frequency GPP variations due to changing illumination con-
ditions. To take into account these variations, several studies modelled GPP as the
product of VIs and the incident PAR (Gitelson et al., 2006; Wu et al., 2009; Peng et al.,
2011).

In this study two years of field spectroscopy measurements acquired with an auto-20

matic spectral system (Meroni et al., 2011) on a subalpine grassland equipped with an
EC tower have been analyzed to: (1) evaluate the potential of automatic continuous
spectral measurements to monitor the seasonal development of a grassland ecosys-
tem; (2) test the performances of different LUE model formulations driven by remote
sensing indexes and meteorological data to estimate GPP. While several studies have25

evaluated the possibility of modelling grassland GPP based on remote sensing indexes
derived from satellite data (Sims et al., 2006b; Li et al., 2007; Harris and Dash, 2010),
we are aware of only one study, by Wohlfahrt et al. (2010), that investigated the relation-
ship between EC-derived carbon fluxes and ground measurement of NDVI collected at
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similar temporal (i.e. daily) and spatial scale in a mountain grassland. In this study,
near-surface spectral measurements were resampled at the same spectral and tem-
poral resolution as the NASA’s Moderate Resolution Imaging Spectrometer (MODIS)
and the European Space Agency’s (ESA) Medium Resolution Imaging Spectrometer
(MERIS) onboard Envisat to evaluate the usefulness of currently available global satel-5

lite mission observations for modeling GPP by means of the LUE approach.Thus, the
research presented in this paper is expected to advance our current ability to monitor
and model grassland photosynthesis and it should be useful for the future application
of these models to better quantify CO2 fluxes in different terrestrial ecosystems.

2 Materials and methods10

2.1 Experimental site

The study site is an unmanaged grassland of the subalpine belt located in the North-
Western Italian Alps (45◦50′40′′ N, 7◦34′41′′ E, Torgnon, Aosta Valley) at 2160 m a.s.l.
(Migliavacca et al., 2011). The vegetation of the site is composed mainly of mat-
grass and the dominant species are Nardus stricta, Arnica montana, Trifolium alpinum15

and Carex sempervirens. The area is classified as an intra-alpine region with semi-
continental climate with an annual mean temperature of 3.1 ◦C and mean annual pre-
cipitation of about 920 mm (Mercalli and Berro, 2003). The snow-free period lasts
generally from late May to early November.

2.2 Biochemical and structural field data20

Leaf Area Index (LAI) was determined destructively every two weeks during the two
growing seasons (2009 and 2010) at 12 plots of 30×30 cm. Collected phytomass was
kept on ice and transported to the laboratory. Sample leaves were run through an
area meter (Model LI-3100, Li-Cor, Inc., Lincoln NE) and the leaf area index was de-
termined. Total LAI for the 12 plots were then averaged to obtain a site-level value.25
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Furthermore, in correspondence to the 12 plots identified for LAI estimation, a nadiral
picture of an area of 50×50 cm of the canopy (identified by a square positioned on
the ground) was acquired every week. The collected images were then analyzed with
the Wincam software (Regent Instruments Inc., Quebec, Canada) to classify the per-
centage of photosynthetic (green) and non-photosynthetic components of the canopy5

during the growing season. The percentage of green components of the canopy de-
rived from image classification was fitted with a 4th order polynomial to obtain a daily
time series.

The fraction of photosynthetically active radiation intercepted by vegetation (f IPAR)
was computed using measurements from four LI-190 PAR sensors (Li-Cor, Inc., Lincoln10

NE): one sensor was installed above the canopy at a height of 2.20 m while three
sensors were positioned on ground below the canopy at a distance of approximately
2 m one from the other. fIPAR was then computed as:

fIPAR=
PARi −PARt

PARi
(2)

In the grassland studied, yellow and/or dead biomass represented a significant fraction15

of the above-ground biomass during much of the growing season. To adjust the inter-
ception of this non-photosynthetic biomass in the calculation of f IPAR, the fraction of
standing green vegetation derived from the analysis of nadiral pictures was multiplied
by f IPAR to give an estimation of “green” or photosynthetic f IPAR (f IPARg, Hall et al.,
1992).20

Furthermore, in 2010, leaf samples were collected every ten days at the 12 plots
used for LAI estimation. Leaf samples were immediately stored in sealed plastic bags,
kept fresh in an ice chest until transported to the laboratory and stored at −80 ◦C. Leaf
pigments were extracted in the following days with N,N-dimethylformamide (DMF) from
100 mg of fresh biomass. The tissue samples were crushed by adding liquid nitro-25

gen, ground in 10 ml DMF for 2 h and then centrifuged (Thermo Electron Corporation
Mod. PK110) at 4000 rpm for 25 min to remove particulates. The absorbance of the ex-
tracted solutions was measured at 663.8 and 646.8 nm by a Varian UV-Visible Cary100
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spectrophotometer. Chlorophyll-a and chlorophyll-b concentrations per unit leaf mass
(µg g−1) were then calculated using the extinction coefficients derived by Porra et al.
(1989).

2.3 Eddy covariance and meteorological data

The turbulent vertical fluxes of CO2 and latent and sensible heat were measured us-5

ing the eddy covariance technique (Baldocchi et al., 1996), according to EUROFLUX
methodology (Aubinet et al., 2000). To evaluate temporal variations of CO2 fluxes and
compare these data with spectral measurements, half-hourly measurements of NEE
were partitioned to derive GPP. For the gap-filling and partitioning, the marginal distri-
bution sampling (MDS) method and the partitioning method described in Reichstein10

et al. (2005), implemented in the online tool (http://www.bgc-jena.mpg.de/bgc-mdi/
html/eddyproc/), were used. Different CO2 flux metrics were used in the analyses:
midday mean GPP (GPPm) for the same time period used for calculating spectral prop-
erties (11:00–13:00 local solar time) and daily sums of GPP (GPPd). A detailed de-
scription of the EC flux measurements and flux footprint is reported in Migliavacca15

et al. (2011). Since only PAR absorbed by photosynthetic pigments (approximated
with IPARg in this study) enables photosynthesis processes, to provide more realistic
LUE estimates, a “green” LUE (LUEg, Zhang et al., 2009) was computed as:

LUEg =
GPP

fIPARg×PAR
=

GPP
IPARg

(3)

Along with EC fluxes, the main meteorological variables were measured with a time20

step of 30 min, among these the incident photosynthetically active radiation (PAR) and
air temperature were measured above the grassland by means of a quantum sen-
sor (LI-190s, LI-COR Inc.) and a shielded thermo-hygrometer (HMP45C, Vaisala Inc.,
Woburn MA, USA), respectively. Precipitation was measured using a tipping bucket
rain gauge (CS700, Campbell Scientific, Logan, Utah, USA); soil water content (SWC)25
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was measured with water content reflectometers (CS-616, Campbell Scientific, Logan,
Utah, USA) installed at two different depths (5–30 cm).

2.4 Radiometric measurements and spectral index computation

Canopy radiance spectra were collected using the HyperSpectral Irradiometer (HSI,
Meroni et al., 2011). This instrument is designed for unattended high temporal fre-5

quency acquisition of high spectral resolution radiometric measurements. HSI employs
a rotating arm equipped with a cosine-response optic to observe alternately the sky and
the target surface, thus allowing the computation of the Bi-Hemispherical Reflectance
factor (BHR, Schaepman-Strub et al., 2006). HSI uses two HR4000 (OceanOptics,
USA) spectrometers sharing the same optical signal, one covering the visible and10

near-infrared range (400–1000 nm) with a full width at half maximum (FWHM) of 1 nm,
and the other providing higher spectral resolution (0.1 nm FWHM) within a narrower
spectral interval (700–800 nm) in the near-infrared. In this study only the visible and
near-infrared spectrometer was used. The spectrometer was spectrally calibrated
with a source of known characteristics (CAL-2000 mercury argon lamp, OceanOptics,15

USA), while the radiometric calibration was inferred from cross-calibration measure-
ments performed with a calibrated FieldSpec FS FR spectrometer (ASD, USA). This
spectrometer is calibrated by the manufacturer with yearly frequency. Furthermore, the
stability of the spectral calibration is regularly assessed during the season using field
measured data and the SpecCal algorithm (Meroni et al., 2010; Busetto et al., 2011).20

The instrument was installed in the proximity of the EC tower at a height of 3.5 m above
the investigated surface using a dedicated tower, thus allowing the measurement of the
BHR with a nadiral viewing geometry. With this configuration, 97 % of the total signal
comes from a circular ground area with a radius of about 20 m.

Unattended operations were carried out during the snow-free season in 2009 and25

2010. During 2009, the instrument was operated between 9 June and 17 October
and in 2010 from 20 May to 15 October. Spectral measurements were acquired every
5 min during daylight hours. Only data collected close to solar noon (between 11:00
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and 13:00 local solar time) were used for the analyses to minimize changes in solar
angle. The spectral system was operated automatically through dedicated software
(Meroni and Colombo, 2009). For each acquisition session the following spectra were
collected: spectrometer dark current, incident irradiance, upwelling irradiance and fi-
nally incident irradiance again. The target measurement was “sandwiched” between5

two downwelling irradiance measurements collected some seconds apart. The incident
irradiance at the time of target measurement was then computed by linear interpolation.
For every acquisition, ten scans were averaged and stored as a single file.

Collected data were processed with a specifically developed IDL (ITTvis IDL 7.1.1)
application. This application allowed the basic processing steps of raw data necessary10

for the computation of BHR and the application of a set of quality criteria for automatic
data selection, described in Meroni et al. (2011). These criteria are intended to identify
poor-quality data due to unfavourable meteorological conditions (e.g. clouds, rain or
fog) or instrumental causes (e.g. problems in the optimization procedure). Whenever
one of the quality criteria is not satisfied, the measurement is rejected and excluded15

from further analyses.
For each retained measurement, canopy reflectance spectra were used to simulate

MERIS and MODIS spectral bands, on the basis of the spectral bandwidths and spec-
tral response functions of the two sensors. The list of spectral indexes investigated in
this study is reported in Table 1. The NDVI, EVI and PRI spectral indexes were com-20

puted from MODIS simulated data, while the MTCI index was computed from MERIS
simulated data. In particular, the MODIS PRI was calculated using the MODIS band 11,
centered at 531 nm, which is affected by the xanthophyll de-epoxidation state, and the
spectral bands 1 (620–670 nm) (PRI645), 4 (545–565 nm) (PRI555), 12 (546–556 nm)
(PRI551), and 13 (662–672 nm) (PRI667) as potential reference bands, in accordance25

with recent studies (Drolet et al., 2005, 2008; Goerner et al., 2011).
Daily time series of solar-noon spectral indexes were then computed by daily aver-

aging the values of the indexes collected between 11:00 and 13:00 local solar time.
Sixteen-day composite time series of the different indexes were finally derived from
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the daily data using the maximum value composite technique to simulate the 16-day
dataset routinely produced from MODIS NDVI and EVI and MERIS MTCI acquisitions.
The 16-day composite VIs time series were then smoothed with a cubic smoothing
spline to downscale from the compositing period to daily VI values (Bradley et al.,
2007). We will refer to this VI time series as resampled VIs hereafter in this paper.5

2.5 Testing of different RS models to estimate GPP

Four groups of models with an increasing data requirement and complexity (i.e. number
of model parameters) were tested to estimate GPP:

i. model 1, direct linear relationship between GPP and a VI related to canopy green-
ness (VIg)10

GPP=aVIg+b (4)

ii. model 2, direct linear relationship between GPP and the product of a VI related to
canopy greenness and incident photosynthetically active radiation

GPP=a(VIg×PAR)+b (5)

iii. model 3, LUE model assuming constant ε and fAPAR estimated as a linear func-15

tion of a VI related to canopy greenness

GPP=ε× (aVIg+b)×PAR (6)

Finally, to overcome the limitation of a constant ε, a fourth set of models in which
ε is estimated as a linear function of PRI was tested:

iv. model 4, assuming ε and fAPAR estimated as a linear function of PRI and VIg,20

respectively

GPP= (a0PRI+b0)× (aVIg+b)×PAR (7)
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Finally, the widely used LUE model MOD17 (Heinsch et al., 2006), which is the al-
gorithm used for the MODIS gross primary production product, was also included in
model comparison. MOD17 is driven by meteorological variables (air temperature and
VPD), PAR and fAPAR. In this study, fAPAR is estimated as a linear function of VIg, so
the resulting model formulation is:5

GPP=εmax× (aVIg+b)×PAR× f (VPD)× f (Tmin) (8)

where εmax is the maximum radiation use efficiency (g C MJ1); f (VPD) and f (Tmin) var-
ied linearly between 0 and 1 as a consequence of suboptimal temperatures and water
availability for photosynthesis. We use site measurements of PAR, VPD and Tmin to
feed the MOD17 algorithm. To take into account the nonlinear relationship between10

GPP and the incident PAR (Gilmanov et al., 2007), the inclusion of ln(PAR) instead
of PAR in model formulations was also tested. Models 1 to 4 were tested using both
the measured and resampled VI time series and midday average or daily value of the
measured meteorological variables. The performances of MOD17 were evaluated us-
ing measured and resampled VI time series and daily meteorological variables.15

2.6 Statistical analysis

Pearson’s correlation analysis was used to test the significance of relationships of VIs
and biochemical and structural field data. Model coefficients were derived by fitting
each model against both the daily midday average GPP estimated with the eddy co-
variance technique (GPPm, µmol CO2 m−2 s−1) and the daily cumulated GPP (GPPd,20

g C m−2 d−1) for each day where HSI data were available and for the resampled VI
time series. Model coefficients and their relative standard errors were estimated us-
ing the Gauss-Newton nonlinear least square optimization method (Bates and Watts,
1988), implemented in the R standard package (R, version 2.6.2, R Development Core
Team, 2011). The main fitting (determination coefficient r2 and root mean square error25

RMSE) and cross-validated statistics (r2
cv and RMSEcv) obtained with the k-fold cross-

validation procedure were computed to compare performances of different groups of
1723
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models. The k-fold cross-validation approach (Hastie et al., 2001) divides the data into
k subsets, then the model is fitted using (k−1) subsets as the training set and the vali-
dation is conducted using the omitted subset. In this study, the k subsets were defined
by partitioning the dataset into 10 ordinal subsets of equal length (each subset corre-
sponds to 1-month data). This approach is more restrictive than the random definition5

of the k subsets and was chosen to assess the model performances when large gaps
occurred in the data time-series (Richardson et al., 2006). Finally, the Akaike informa-
tion criterion (AIC, Akaike, 1973) was adopted to compare performances of the various
model formulations.

3 Results10

3.1 Seasonal variation of meteorological and biophysical variables

During the snow-free period (DOY 146–306 and DOY 143–303 in 2009 and 2010,
respectively), the average midday PAR was 1390 and 1305 µmol m−2 s−1 in 2009 and
2010, respectively, having maximum values of about 2050 µmol m−2 s−1 (Fig. 1a).

For the same period, the average midday air temperature was 19.2 and 19.7 ◦C in15

2009 and 2010, respectively (Fig. 1b). The total amount of precipitation (Fig. 1c) during
the snow-free period markedly differed in the two years: 172 mm in 2009 and 362 mm
in 2010. The precipitation amount recorded in 2010 was similar to the long-term av-
erage (400 mm, 1927–2001) in the same area (Mercalli and Berro, 2003), while 2009
was particularly dry. Soil water content (SWC) was strongly related to precipitation20

inputs during the growing season. As a consequence, the average seasonal SWC
in 2010 was higher (24.6 mm3 mm−3) than in 2009 (15.0 mm3 mm−3). In particular, in
2010 there was a precipitation event exceeding 65 mm (DOY 226) which considerably
affected SWC. Leaf area index increased from May and reached its annual maximum in
mid July in both years (Fig. 2a). The maximum LAI in 2009 was 2.7 m2 m−2 (DOY 194),25

slightly lower than the 3 m2 m−2 in 2010 (DOY 201). LAI decreased earlier and steeper
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in 2010 than in 2009 autumn. The variation of leaf chlorophyll content during the grow-
ing season was measured only in 2010 (Fig. 2b). The first available sampling was on
DOY 176, when the chlorophyll content was already high. It peaked at around DOY
201, as did LAI, and after that it started to decrease. The seasonal pattern of IPARm
(Fig. 2c) showed an increasing trend at the beginning of the growing season, it reached5

a maximum in about early August and then remained quite stable, with a slightly de-
creasing course. Therefore, IPARm failed to detect the reduction of PAR absorbed by
the canopy and thus used for CO2 fixation at the end of the growing season when the
canopy was dominated by yellow and dead material. This trend was instead captured
by (IPARg)m (Fig. 2d). Both IPARm and (IPARg)m were also characterized by consider-10

able day-to-day oscillations due to variations in the ratio of direct to diffuse radiation.

3.2 Seasonal variability of spectral data

HSI was operated for 130 days in 2009 (9 June–17 October) and 148 days in 2010
(20 May–15 October). A total of 7331 spectra were collected in the time-window used
in the present study. Of these, 32.5 % was not considered in the following analyses15

since they did not fulfil the data-quality criteria. Most data were rejected due to instable
meteorological conditions, typical of the study site, while only a small percentage was
rejected due to instrument failures (Table 2).

Figure 3 shows the daily time series of midday (11:00–13:00) VIs computed from
HSI data.20

In both years, measurements started about two weeks after snow melting when the
grassland was already greening. As the growing season proceeded, all the vegetation
indexes except PRI555 and PRI551 increased as a result of green biomass accumula-
tion, reaching maximum values in July (around DOY 190) at the same time as maximum
LAI and (IPARg)m. Then, in the senescent phase of the grassland (from August on),25

indexes decreased due to plant yellowing and wilting. The patterns of MTCI resembled
that of NDVI but, due to the higher sensitivity of MTCI to chlorophyll content with respect
to NDVI (Dash and Curran, 2004), it started to decrease earlier. The EVI dynamics,

1725

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/1711/2012/bgd-9-1711-2012-print.pdf
http://www.biogeosciences-discuss.net/9/1711/2012/bgd-9-1711-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 1711–1758, 2012

Remote estimation of
gross primary

production

M. Rossini et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

as compared with other VIs, showed a higher scatter, in particular for high EVI values.
This result confirmed a previous study by Miura et al. (2000) which demonstrated that
EVI uncertainties tended to increase with increasing VI values and attributed this un-
certainty to the inclusion of the blue band in VI formulation for EVI values above 0.4
(between DOY 180 and 225 in our study). PRI645 and PRI667 exhibited a pattern sim-5

ilar to other VIs, while PRI555 and PRI551 showed an opposite trend characterised by
a progressive decrease at the beginning of the growing season up to maximum canopy
development and a slower increase in the senescent phase. The most notable differ-
ences between the two years analysed were observed in the seasonal dynamics of
MTCI and PRI645/677 between DOY 220 and 250.10

3.3 Retrieval of biochemical, biophysical and ecophysiological variables from
HSI data

The higher sensitivity of MTCI to chlorophyll content was confirmed by the correlation
analysis. MTCI correlated with Chl content with an r of 0.91 (p< 0.001), followed by
NDVI (r = 0.80, p< 0.01) and EVI (n.s.) (Table 3). NDVI was the VI that related best15

to total green LAI (r = 0.90, p< 0.001) and f IPARg (r = 0.95, p< 0.001). PRI551 was
instead the index best related to LUEg (r = 0.64, p< 0.001). The correlation between
PRI using reference band 4 at 555 nm (PRI555) and LUEg was similar to that obtained
for a PRI using reference band 12 at 551 nm (PRI551); while the correlations between
PRI using reference band 1 at 645 nm (PRI645) or band 13 at 645 nm (PRI667) and20

LUEg were weaker.

3.4 Comparison of VIs and micrometeorological measurements

The comparison between seasonal variations of VIs and variables derived from EC
measurements (Fig. 4) showed that the temporal behaviour of VIs related to canopy
chlorophyll content (i.e. MTCI, Fig. 3) tracked quite well the one of GPPm (Fig. 4a).25
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In 2010, both MTCI and GPPm tracked a rebound around DOY 240, probably caused
by a rain pulse that occurred on DOY 226 (Fig. 1c). Seasonal courses of PRI667 and
PRI645 were more similar to those of MTCI than PRI555 or PRI551. Although PRI667
and PRI645 were supposed to be a proxy for (LUEg)m the correlation analysis con-
firmed that in this study they were correlated most with leaf chlorophyll content and5

fIPARg. The different concavity of PRI555 or PRI551 compared to PRI667 or PRI645 can
be explained by the different position of the reference bands on the grassland spectra
(Fig. 5). Bands 4 and 12 (551 and 555 nm band center wavelength, respectively) fell
on the peak of vegetation reflectance in the green region while bands 1 and 13 (645
and 667 nm, respectively) were in the chlorophyll absorption well in the red region of10

the spectrum. Thus, bands 4 and 12 always had a higher value than band 11 (531 nm)
during the growing season. On the contrary, bands 1 and 13 were much higher than
band 11 at the beginning and end of the growing season, while they had similar values
during maximum canopy development (July and August).

(LUEg)m (Fig. 4b) showed high values at the beginning of the growing season, with15

a maximum around DOY 165, corresponding to a LAI of 1.5 m2 m−2 in both 2009 and
2010, and then it suddenly started to decrease. In both years, (LUEg)m exhibited indis-
tinct seasonality from around DOY 190 to 250, but day-to-day fluctuation, especially on
cloudy and partly cloudy days (Fig. 1b) and in correspondence of sharp meteorologi-
cal events. As an example, the 68 mm precipitation event that occurred on DOY 22620

in 2010 caused a sudden increase in SWC and appeared to stimulate (LUEg)m which

started to increase and reached a value of 0.048 µmol CO2 µmol−1 photon on DOY 236.
From DOY 250 on, (LUEg)m started to increase probably due to the reduction of the
incoming PAR (Fig. 1b). Finally, LUEg dropped after DOY 280, when the canopy was
composed almost entirely by yellow and dead material. A similar seasonal course was25

observed for both PRI555 and PRI551, thus suggesting that these PRI formulations were
the best suited to track (LUEg)m in this ecosystem. Better performances of these ref-
erence bands confirmed previous studies by Middleton et al. (2009) on a Douglas-fir
forest and Goerner et al. (2011) on non-boreal/savanna sites. This result supports
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the hypothesis that the suitability of different reference wavelengths may depend on
species composition and stand structure (Gamon et al., 1992; Goerner et al., 2011).

3.5 Evaluation of different RS models to estimate GPP

3.5.1 Measured time series

The summary statistics in fitting and cross-validation of different models tested in this5

study for GPP estimation starting from HSI data are shown in Tables 4 and 5. All
different VIs combinations were tested and are discussed in the following sections.

The regression analysis (model 1) confirmed that vegetation indexes averaged over
midday hours explained most of the variability in GPP averaged over that same pe-
riod (GPPm) and in daily GPP (GPPd). MTCI was the best predictor for both GPPm10

and GPPd with a RMSEcv of 1.50 µmol CO2 m−2 s−1 and 0.74 g C m−2 d−1, respectively,
followed by NDVI and EVI. The inclusion of incident PAR as a multiplicative term of
VIg in model formulation (model 2) decreased model performances in GPPm estima-
tion up to a RMSEcv of almost double relative to the corresponding model 1. As
an example, RMSEcv of the model fitted against MTCI increased from 1.50 up to15

3.30 µmol CO2 m−2 s−1 and AIC increased from 157 to 417. Similar results were ob-
tained on including the PAR in the form of model 3 when the model was fitted against
GPPm, thus yielding a RMSEcv between 2.99 and 3.53 µmol CO2 m−2 s−1 (depend-
ing on the vegetation index used). The same occurred for GPPd estimation with an
increase of RMSEcv of the model driven by MTCI (the best-performing index) from20

0.74 g C m−2 d−1 to 1.17 g C m−2 d−1 (model 2) and 0.99 g C m−2 d−1 (model 3). Thus,
in the majority of cases PAR did not appear to be a useful model component in es-
timating GPP. On the contrary, results obtained with model 2 including the logarithm
of the incident PAR in the model, as the product between VI and ln(PAR), showed an
improvement of the performances in both GPPm and GPPd estimation. The extent of25

the improvement changed with the different indexes considered. Similar results were
obtained with model 3 formulation.
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The use of PRI to estimate ε tended to increase model performances, in particular
when it was used in combination with MTCI to estimate fAPAR. Better results in both
GPPm and GPPd estimation were obtained when ln(PARm) was used instead of PARm.
This class of models showed the best performances in estimating GPPm with a RMSEcv

of 1.42 µmol CO2 m−2 s−1, estimating fAPAR as a function of MTCI and ε as a function5

of PRI555. It is interesting to note that this model also showed the lowest AIC, despite
the increase in the number of model variables with respect to model 1. The best-
performing model in estimating GPPd was instead model 2 with ln(PARd) and fAPAR
estimated as a function of MTCI. MOD17, in which ε was expressed as constant ε at its
potential maximum adjusted for unfavorable Tmin and VPD, showed a RMSEcv between10

0.78 g C m−2 d−1 for the model driven by MTCI and ln(PARd) and 1.57 g C m−2 d−1 for
the model driven by EVI and ln(PARd). These results were slightly poorer than those
obtained on estimating ε as a function of PRI and, due to the higher complexity of this
model, it had a higher AIC.

3.5.2 Resampled time series15

Results obtained on performing the same analysis on data aggregated at the 16-day
time scale and then downscaled to a daily time step (Tables 6 and 7) confirmed overall
those obtained by feeding models with data measured at a daily step. MTCI was the
best estimator of fAPAR in models 1, 2 and 3 for both GPPm and GPPd estimation;
ln(PAR) performed better than PAR in models 2, 3 and 4, and the improvement in using20

ln(PAR) instead of PAR was higher for GPPm estimation. Regarding MOD17, the use of
ln(PAR) instead of PAR increased the performances in GPP estimation only when it was
used in combination with MTCI. Models performing better in estimating GPPm based
on the AIC value were model 1 estimating fAPAR as a function of MTCI and model 4
estimating fAPAR as a function of MTCI and ε as a function of PRI555. Model 2 driven25

by MTCI and ln(PAR) was instead the one that performed better in GPPd estimation.
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To obtain an overall view of the capability of different models to represent the sea-
sonal time courses of GPP, we compared EC daily observations (EC-GPP) and daily
model outputs obtained with the best-performing model for each class fed with both
measured and resampled daily inputs (RS-based estimation of GPP, RS-GPP) (Fig. 6).
Both measured and resampled daily RS-GPP values agreed quite well with EC-GPP as5

concerns both amplitude and seasonal phase and successfully described the dynam-
ics captured by tower fluxes. As noticeable in Fig. 6, the limitation behind the use of
resampled rather than measured daily inputs to model seasonal GPP trends was their
inability to model GPP day-to-day variations. Even though the statistics in fitting (r2

and RMSE) and cross-validation (r2
cv, RMSEcv and AIC) of different models fed with re-10

sampled VIs were in most cases better than their daily counterpart, these models had
poorer performances in predicting the sums of daily GPP related to the two growing
seasons. Figure 7 shows the sums of daily GPP estimated using the best-performing
model for each class. Considering the days for which both spectral and eddy data were
available (i.e. 130 and 148 days in 2009 and 2010, excluding a few instrumental gaps),15

the sums of daily GPP for the analysed periods calculated from EC-GPP were 473.8
and 421.2 g C m−2 in 2009 and 2010, respectively. The use of RS data to estimate total
GPP made it possible to obtain good estimates with both measured and resampled
daily inputs. However, absolute average errors in GPP estimation using daily inputs
ranged from 0.5 to 1.2 % with models 2 and 1, respectively, and from 1.8 to 2.8 % with20

models 3 and 1 respectively using resampled data inputs. MOD17 fed by both RS
and meteorological inputs produced an average error of 2.4 % in GPP estimation using
daily inputs and 1.8 % using resampled data inputs. In general, in 2009 RS-GPPres
tended to underestimate the EC-GPPd. This was caused by the inability of RS- GPPres
to track the peak of EC-GPPd occurring between DOY 180 and 210 and the recovery of25

EC-GPPd at the end of the growing season (DOY 260–290). On the contrary, in 2010,
RS-GPPres tended to overestimate the EC-GPPd, it being more evident at the end of
the growing season.
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4 Discussion

Unattended high temporal and spectral resolution canopy spectra coupled with EC data
were acquired for two consecutive years on a subalpine grassland to exploit different
strategies for evaluating the potential of RS in estimating carbon uptake. Collected data
were processed using automatic procedures which took into account a series of qual-5

ity criteria related to the illumination conditions during the acquisition and the system
performances and reliable time series of VIs providing useful information on the time
course of different grassland variables have been obtained. In particular, MTCI was
the index most related to Chl content and NDVI to f IPARg and LAI (Table 3). More-
over, PRI computed using a reference band at 555 nm (PRI555) and 551 nm (PRI551)10

showed better correlations with LUEg, with a coefficient of correlation of 0.63 and 0.64,
respectively. This value lies in the range of previous studies at canopy level, recently
reviewed by Garbulsky et al. (2011). However, these studies often analyse the relation-
ships between PRI and light-use efficiency, computed as GPP/APAR or GPP/incident
PAR, while we are not aware of studies evaluating the relationship between PRI and ε15

expressed in terms of LUEg. In this study, an attempt to estimate LUEg was made. Due
to the uncertainty in the quantification of the photosynthetically active radiation effec-
tively used to drive photosynthesis (APARg) (Serrano et al., 2000; Di Bella et al., 2004),
the strength of the relationship between PRI and LUEg can be lowered with respect to
previous studies. It is worth noting that, as opposed to PRI555/551, PRI computed using20

a reference band positioned in proximity of the chlorophyll absorption well, i.e. 1 and
13 (PRI645/667), were more closely related to leaf chlorophyll concentration than LUEg
(Table 3). So the choice of the reference band to be used to compute PRI appears
to play a key role in the determination of the sensitivity of this index to photosynthetic
efficiency. This result confirmed recent studies by Middleton et al. (2009) and Goerner25

et al. (2011), although we believe that further studies are needed to explore the best
reference band for estimating PRI across vegetation types and temporal scales.
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Most VIs peaked in the first half of July, in correspondence to maximum canopy de-
velopment, attested by maximum values of LAI and GPP (Figs. 2, 3 and 4). However,
due to the different sensitivity of VIs to grassland variables, their minimum and maxi-
mum values occurred at different DOYs and their slope changed in time. For example,
PRI555 and PRI551 had a less distinct seasonal course and they reached minimum val-5

ues about 10–20 days after full canopy development. This time-lag observed between
the peak of PRI555/551 and indexes using red bands can be explained by considering
selective light absorption by photosynthetic pigments. Chlorophyll controls the energy
flux that can be transferred to the dark reaction of photosynthesis and, because of
the lower chlorophyll absorption of green light (Terashima et al., 2009), indexes based10

on green wavebands may therefore reach their peak later in the season compared to
indexes involving a strong chlorophyll absorption band in the red spectral region.

The analysis conducted with LUE models indicated that GPP can be successfully
modelled using RS indexes or combining RS indexes with meteorological data. Re-
sults of model 1 confirmed that VI related to canopy greenness explained most of the15

variability in GPP in an ecosystem characterized by a strong seasonality in green-up
and senescence (Gitelson et al., 2006; Wu et al., 2009). MTCI was the best predic-
tor for both GPPm and GPPd, followed by NDVI and EVI, respectively. This sequence
precisely reflects the strengths of the relationship between VIg and chlorophyll concen-
tration. Furthermore, this result confirmed better performances of MTCI, with respect20

to EVI, in estimating GPP in grassland ecosystems (Harris and Dash, 2010). As ob-
served in previous studies (Wu et al., 2009; Harris and Dash, 2010; Peng et al., 2011),
chlorophyll content is a main driver of seasonal carbon dynamic and thus provides
a dominant indicator of CO2 exchange in ecosystems characterised by strong sea-
sonality such as grasslands. However, as highlighted by Gitelson et al. (2008), the25

limitation behind this model formulation is that variations in GPP due to short-term
(hours to days) variations of illumination or environmental stresses (such as temper-
ature and water availability), cannot be estimated by VI alone. This limitation was
overcome by exploiting models 2 and 3, which take into account variations related to
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changing incident irradiance. Somewhat surprisingly, the inclusion of incident PAR in
model formulation did not result in improved estimation of GPP. However, using ln(PAR)
instead of PAR in model parameterization, the accuracy of GPP estimation improved.
This means that the grassland increases its efficiency at low values of incident PAR
while, given its moderate LAI and erectophile leaf angle distribution, it is not able to5

fully exploit high radiation loads. This higher efficiency with low PAR can probably re-
sult from more diffuse light incidence within the canopy, less photoinhibition on the top
of the canopy and consequently a reduced tendency toward saturation (Chen et al.,
2009). Furthermore, in our case, low PAR conditions can probably be associated with
precipitation events and associated SWC increases which stimulate photosynthetic ef-10

ficiency (Polley et al., 2011). Another possible explanation is that low PAR conditions
can also be related to a decrease in temperature. Alpine plants are adapted to living in
low temperatures (Billings and Mooney, 1968) and can cope with this temperature de-
crease by enhancing their photosynthetic systems and increasing their carbon fixation
(Korner and Diemer, 1987).15

To account for stress-induced changes in photosynthetic efficiency, the PRI was also
tested to directly infer ε from RS data. The inclusion of PRI in model formulation
showed slight improvement in GPP estimation, in particular for that of GPPm. Physio-
logically, this means that in our ecosystem APARg is coupled with ε, and the inclusion
of the ε term in the model slightly improves its ability to track seasonal variations. Sim-20

ilar results were obtained by Rossini et al. (2010) and Gitelson et al. (2006) in other
ecosystems characterised by strong seasonal variability (crops). These results were
compared with those obtained with the widely used MOD17 algorithm, in which ε is
modulated as a function of meteorological conditions. Our results indicate that when
ε and fAPAR are estimated as linear functions of PRI and VI (i.e. model 4) the GPP25

is generally estimated with higher accuracy rather than MOD17 (Table 5) in which the
ε parameter is instead modulated as a function of meteorological conditions. In this
study, the vegetation indexes tested were calculated with reflectances simulated in the
spectral bands of the MODIS and MERIS sensors. The temporal resolution of VI time
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series can theoretically influence the ability to estimate GPP from satellite data, since
the temporal dynamics inherent in plant photosynthesis requires frequent observations
of vegetation status. To evaluate the effect of acquisition frequency on GPP estimation,
16-day composite time series of MODIS- (i.e. NDVI, EVI and PRI) and MERIS-derived
(MTCI) products were simulated and downscaled to daily frequency and results were5

compared. Short-term variability (hours to days) in both VIs and flux data is damp-
ened out by averaging data over one or two weeks, thus leading to obtain good per-
formances when fitting GPP against resampled VIs (Tables 6 and 7). However, when
these models are used to simulate annual GPP, they inevitably introduce a decrease
in the accuracy of total GPP estimation. The results from models driven only by RS10

and PAR variables were as good as, and in many cases better than, the more complex
MOD17 GPP model which requires meteorological and vegetation type data inputs in
addition to remote sensing indexes.

This study provides a conceptual background for GPP estimation using real satellite
data and a better understanding the spatio-temporal variations of productivity. The15

choice of the index depends on the spectral characteristics of the satellite sensor being
used. In particular, MTCI can be derived from satellite systems with spectral bands in
the red edge region (MERIS in this study), EVI and NDVI from satellites having blue,
red and near-infrared bands (MODIS in this study) and PRI from satellites with a narrow
green band centered at 531 nm (MODIS in this study). Our results show that red edge20

indexes like MERIS can be used both as single variables or in combination with PRI
and meteorological variables to obtain accurate estimations of GPP in a grassland
ecosystem. Unfortunately, the computation of MTCI and PRI from a single satellite
is currently not feasible because no in-orbit sensor has the right spectral bands. The
launching of new image spectrometers, such as the NASA HyspIRI or the DLR EnMAP,25

will allow the calculation of a greater number of indexes, including MTCI and PRI, thus
offering significant potential to enhance the accuracy of the assessment of CO2 uptake
in terrestrial ecosystems from space. Finally, we remark that NDVI and EVI showed
poorer performances when used as single variables to predict GPP and it is preferable
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to use these indexes in combination with PRI and meteorological variables to improve
accuracy in GPP estimation.

5 Conclusions

This study investigated the potential of automatic continuous near-surface spectral
measurements to monitor the seasonal development of a grassland ecosystem and5

to evaluate different strategies for terrestrial ecosystem GPP estimation. The main
outcomes of this research can be summarized as follows:

– continuous field spectroscopy measurements provided reliable information on the
seasonal variations of vegetation biophysical and ecophysiological variables with
daily temporal resolution. The correlation analysis between VIs and different10

canopy variables suggested the possibility of using NDVI as an indicator of LAI
and f IPARg (r =0.90 and 0.95, respectively), the MTCI of leaf chlorophyll content
(r =0.91) and the PRI551 of LUEg (r =0.64);

– the spectral vegetation index designed to be more sensitive to chlorophyll content
explained most of the variability in GPP in the ecosystem investigated, which was15

characterized by a strong seasonal dynamic of green up and senescence;

– accuracy in GPP estimation improved when taking into account high frequency
modulations of GPP driven by incident PAR (in the form of ln(PAR)) or modelling
LUEg with the PRI in model formulation; the model formulation which gave the
best results in GPP estimation was based on fAPARg estimated as a function of20

MTCI and ε as a function of PRI551;

– results from models driven only by PAR and RS indexes were in many cases better
than those from the MOD17 model which requires meteorological and vegetation
type data inputs in addition to remote sensing indexes;
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– the use of VIs obtained as 16-day composite time series, simulating the 16-day
dataset produced from satellite acquisitions, and then downscaled from the com-
positing period to daily scale rather than measured daily input data, decreased
the accuracy of the total GPP estimation on the annual basis.

The approach proposed in this study finds application within the framework of the es-5

tablished SpecNet (Gamon et al., 2010) and recent activities related to the EuroSpec
COST action which propose to collect spectral data continuously, regularly and from
a worldwide network in connection with the well-established network of flux towers
(FLUXNET). Furthermore, improvements in operational LUE algorithms for monitoring
global GPP are desirable in the context of efforts to understand trends in global carbon10

uptake.
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Table 1. Spectral vegetation indexes investigated in this study: normalized difference vegeta-
tion index, NDVI; Enhanced Vegetation Index, EVI; MERIS terrestrial chlorophyll index, MTCI;
photochemical reflectance index, PRI. R is the reflectance at the specified wavelength (nm).
Rref used in this study are 645, 555, 551 and 667 nm.

Index Formulation Reference

NDVI (R858.5−R645)/(R858.5+R645) Rouse et al. (1974)
MTCI (R753.75−R708.75)/(R708.75−R681.25) Dash and Curran (2004)
EVI 2[R858.5−R645]/[1+R858.5+6R645−7.5R460] Huete et al. (2002)
PRIref (R531−Rref)/(R531+Rref) Gamon et al. (1992)
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Table 2. Data collected by HSI during the study period.

Year No. of spectra analysed No. of retained spectra % of rejected spectra

2009 3217 2135 33.6
2010 4114 2814 31.6
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Table 3. Coefficients of correlation (r) between the HSI VIs and ancillary and eddy data (LUEg)
measured at the study site. n is the number of samples for each correlation analysis. The aster-
isk indicates significance of correlation: ***p< 0.001; **p< 0.01; *p< 0.05; n.s.: not significant
(Pearson’s correlation test). The VI best-correlated with each variable is in bold print.

Index LAI (n=16) Chl (n=11) f g (n=162) LUEg (n=162)

NDVI 0.90*** 0.80** 0.95*** −0.55***
MTCI 0.79*** 0.91*** 0.81*** −0.30***
EVI 0.78*** n.s. 0.82*** −0.37***
PRI645 0.83*** 0.86*** 0.86*** −0.39***
PRI555 −0.73*** n.s. −0.71*** 0.63***
PRI551 −0.84*** n.s. −0.86*** 0.64***
PRI667 0.86*** 0.84*** 0.89*** −0.42***
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Table 4. Summary of statistics in fitting (r2 and RMSE) and cross-validation (r2
cv, RMSEcv

and AIC) of different models tested in this study using average GPPm and PARm data. The
best-performing model in each class is in bold print.

Model RS data Meteo data r2 r2
cv RMSE RMSEcv AIC

– – µmol CO2 m−2 s−1 –

1 MTCI – 0.89 0.88 1.47 1.50 157
NDVI – 0.71 0.62 2.40 2.72 354
EVI – 0.44 0.31 3.32 3.68 454

2 MTCI PARm 0.52 0.45 3.06 3.30 417
NDVI PARm 0.45 0.34 3.28 3.58 445
EVI PARm 0.46 0.36 3.26 3.55 442

MTCI ln(PARm) 0.88 0.88 1.53 1.56 169
NDVI ln(PARm) 0.71 0.64 2.37 2.64 344
EVI ln(PARm) 0.54 0.43 2.99 3.35 423

3 MTCI PARm 0.55 0.54 2.98 2.99 385
NDVI PARm 0.42 0.35 3.38 3.56 443
EVI PARm 0.49 0.36 3.18 3.53 440

MTCI ln(PARm) 0.90 0.89 1.42 1.44 143
NDVI ln(PARm) 0.72 0.64 2.34 2.66 347
EVI ln(PARm) 0.52 0.40 3.06 3.42 430

4 MTCI, PRI555 PARm 0.56 0.55 2.93 2.98 384
NDVI, PRI555 PARm 0.54 0.39 3.01 3.46 433
EVI, PRI555 PARm 0.63 0.47 2.68 3.21 408

MTCI, PRI555 ln(PARm) 0.90 0.90 1.39 1.42 138
NDVI, PRI555 ln(PARm) 0.87 0.81 1.61 1.94 242
EVI, PRI555 ln(PARm) 0.56 0.38 2.94 3.48 436

MTCI, PRI551 PARm 0.56 0.54 2.95 3.01 387
NDVI, PRI551 PARm 0.54 0.36 3.00 3.53 440
EVI, PRI551 PARm 0.57 0.45 2.90 3.29 417

MTCI, PRI551 ln(PARm) 0.90 0.89 1.40 1.44 143
NDVI, PRI551 ln(PARm) 0.87 0.78 1.61 2.06 261
EVI, PRI551 ln(PARm) 0.53 0.11 3.04 4.18 496
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Table 5. Summary of statistics in fitting (r2 and RMSE) and cross-validation (r2
cv, RMSEcv and

AIC) of different models tested in this study using GPPd and PARd data. The best-performing
model in each class is in bold print.

Model RS data Meteo data r2 r2
cv RMSE RMSEcv AIC

– – g C m−2 d−1 –

1 MTCI – 0.88 0.88 0.72 0.74 −121
NDVI – 0.67 0.59 1.21 1.34 157
EVI – 0.43 0.31 1.58 1.75 281

2 MTCI PARd 0.71 0.69 1.12 1.17 95
NDVI PARd 0.67 0.62 1.21 1.30 144
EVI PARd 0.70 0.65 1.14 1.24 121

MTCI ln(PARd) 0.92 0.91 0.61 0.62 −199
NDVI ln(PARd) 0.73 0.67 1.08 1.21 108
EVI ln(PARd) 0.54 0.45 1.42 1.56 229

3 MTCI PARd 0.78 0.78 0.98 0.99 17
NDVI PARd 0.69 0.65 1.17 1.24 122
EVI PARd 0.73 0.67 1.10 1.22 112

MTCI ln(PARd) 0.90 0.90 0.65 0.66 −170
NDVI ln(PARd) 0.71 0.64 1.13 1.26 130
EVI ln(PARd) 0.51 0.40 1.47 1.63 249

4 MTCI, PRI555 PARd 0.79 0.78 0.95 0.99 18
NDVI, PRI555 PARd 0.78 0.76 0.98 1.03 36
EVI, PRI555 PARd 0.80 0.75 0.94 1.04 41

MTCI, PRI555 ln(PARd) 0.91 0.90 0.64 0.67 −163
NDVI, PRI555 ln(PARd) 0.88 0.86 0.72 0.79 −90
EVI, PRI555 ln(PARd) 0.56 0.45 1.39 1.56 227

MTCI, PRI551 PARd 0.79 0.78 0.96 1.00 19
NDVI, PRI551 PARd 0.78 0.76 0.98 1.03 34
EVI, PRI551 PARd 0.77 0.70 1.02 1.16 88

MTCI, PRI551 ln(PARd) 0.91 0.90 0.64 0.68 −162
NDVI, PRI551 ln(PARd) 0.88 0.86 0.72 0.79 −88
EVI, PRI551 ln(PARd) 0.51 0.33 1.47 1.72 273

MOD17 MTCI PARd, Tmin,VPD 0.82 0.78 0.89 0.99 15
NDVI PARd, Tmin,VPD 0.72 0.66 1.12 1.22 115
EVI PARd, Tmin,VPD 0.74 0.62 1.07 1.29 141

MTCI ln(PARd), Tmin,VPD 0.90 0.86 0.66 0.78 −95
NDVI ln(PARd), Tmin,VPD 0.61 0.58 1.31 1.36 164
EVI ln(PARd), Tmin,VPD 0.55 0.44 1.41 1.57 231
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Table 6. Summary of statistics in fitting (r2 and RMSE) and cross-validation (r2
cv, RMSEcv and

AIC) of different models tested in this study using GPPd and PARd data. The best-performing
model in each class is in bold print.

Model RS data Meteo data r2 r2
cv RMSE RMSEcv AIC

– – µmol CO2 m−2 s−1 –

1 MTCI – 0.87 0.86 1.53 1.60 166
NDVI – 0.72 0.64 2.24 2.55 312
EVI – 0.62 0.49 2.63 3.04 366

2 MTCI PARm 0.47 0.37 3.11 3.39 400
NDVI PARm 0.37 0.23 3.38 3.73 430
EVI PARm 0.41 0.29 3.26 3.60 418

MTCI ln(PARm) 0.85 0.84 1.63 1.70 187
NDVI ln(PARm) 0.71 0.64 2.29 2.55 312
EVI ln(PARm) 0.64 0.53 2.54 2.91 353

3 MTCI PARm 0.47 0.45 3.11 3.15 377
NDVI PARm 0.36 0.30 3.40 3.56 415
EVI PARm 0.32 0.24 3.51 3.70 427

MTCI ln(PARm) 0.88 0.87 1.50 1.56 159
NDVI ln(PARm) 0.74 0.66 2.19 2.49 305
EVI ln(PARm) 0.64 0.53 2.54 2.93 355

4 MTCI, PRI555 PARm 0.47 0.43 3.11 3.21 383
NDVI, PRI555 PARm 0.41 0.27 3.28 3.63 421
EVI, PRI555 PARm 0.44 0.23 3.19 3.74 431

MTCI, PRI555 ln(PARm) 0.88 0.86 1.48 1.62 171
NDVI, PRI555 ln(PARm) 0.78 0.65 1.99 2.52 307
EVI, PRI555 ln(PARm) 0.79 0.35 1.97 3.43 404

MTCI, PRI551 PARm 0.47 0.43 3.10 3.21 383
NDVI, PRI551 PARm 0.41 0.29 3.27 3.59 417
EVI, PRI551 PARm 0.42 0.23 3.25 3.73 430

MTCI, PRI551 ln(PARm) 0.88 0.85 1.49 1.63 173
NDVI, PRI551 ln(PARm) 0.78 0.68 2.01 2.42 296
EVI, PRI551 ln(PARm) 0.75 0.40 2.13 3.30 391
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Table 7. Summary of statistics in fitting (r2 and RMSE) and cross-validation (r2
cv, RMSEcv and

AIC) of different models tested in this study using GPPd and PARd data. The best-performing
model in each class is in bold print.

Model RS data Meteo data r2 r2
cv RMSE RMSEcv AIC

– – g C m−2 d−1 –

1 MTCI – 0.89 0.88 0.69 0.72 −120
NDVI – 0.72 0.63 1.10 1.25 117
EVI – 0.69 0.60 1.15 1.31 137

2 MTCI PARd 0.73 0.70 1.08 1.13 75
NDVI PARd 0.64 0.59 1.23 1.32 141
EVI PARd 0.67 0.62 1.18 1.27 125

MTCI ln(PARd) 0.92 0.91 0.58 0.61 −191
NDVI ln(PARd) 0.77 0.70 0.98 1.13 72
EVI ln(PARd) 0.74 0.67 1.04 1.19 95

3 MTCI PARd 0.77 0.77 0.98 0.99 16
NDVI PARd 0.69 0.65 1.15 1.22 108
EVI PARd 0.66 0.62 1.19 1.28 126

MTCI ln(PARd) 0.91 0.90 0.61 0.64 −170
NDVI ln(PARd) 0.75 0.68 1.02 1.17 89
EVI ln(PARd) 0.72 0.64 1.08 1.23 111

4 MTCI, PRI555 PARd 0.77 0.77 0.98 1.00 20
NDVI, PRI555 PARd 0.73 0.66 1.08 1.19 98
EVI, PRI555 PARd 0.74 0.71 1.04 1.10 63

MTCI, PRI555 ln(PARd) 0.91 0.88 0.61 0.71 −124
NDVI, PRI555 ln(PARd) 0.81 0.62 0.89 1.27 123
EVI, PRI555 ln(PARd) 0.84 0.75 0.82 1.02 31

MTCI, PRI551 PARd 0.77 0.77 0.98 0.99 18
NDVI, PRI551 PARd 0.72 0.66 1.08 1.21 102
EVI, PRI551 PARd 0.73 0.68 1.07 1.16 85

MTCI, PRI551 ln(PARd) 0.91 0.89 0.61 0.68 −144
NDVI, PRI551 ln(PARd) 0.81 0.64 0.90 1.24 114
EVI, PRI551 ln(PARd) 0.81 0.69 0.89 1.14 79

MOD17 MTCI PARd, Tmin,VPD 0.80 0.73 0.93 1.07 49
NDVI PARd, Tmin,VPD 0.70 0.63 1.13 1.26 120
EVI PARd, Tmin,VPD 0.71 0.62 1.11 1.27 126

MTCI ln(PARd), Tmin,VPD 0.90 0.83 0.66 0.83 −45
NDVI ln(PARd), Tmin,VPD 0.60 0.54 1.31 1.40 165
EVI ln(PARd), Tmin,VPD 0.58 0.54 1.33 1.40 165
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Fig. 1. Seasonal variation of midday average air temperature (Air T ,◦C) (a) and PAR
(µmol m−2 s−1) (b) in 2009 (solid line) and 2010 (dotted line); precipitation (mm) in 2009 (black
bars) and 2010 (white bars) and soil water content (SWC, %) at 10 cm (c) in 2009 (solid line)
and 2010 (dotted line).
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Fig. 2. Seasonal variation of Leaf Area Index (LAI, m2 m−2) in 2009 (full dots and solid line) and
2010 (empty dots and dotted line) (a), leaf chlorophyll concentration (Chl, µg g−1) in 2010 (b),
midday IPAR (IPARm, µmol m−2 s−1) in 2009 (full dots) and 2010 (empty dots) (c) and midday
green IPAR ((IPARg)m), µmol m−2 s−1) in 2009 (full dots) and 2010 (empty dots) (d). For LAI
and Chl, each point indicates the average value (± standard deviation, n=12).
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Fig. 3. Seasonal temporal profiles of measured vegetation indexes in 2009 (full dots) and 2010
(empty dots): (a) NDVI, (b) MTCI, (c) EVI, (d) PRI645, (e) PRI555, (f) PRI551 and (g) PRI667.
Each point indicates the average value between 11:00 and 13:00 (local solar time).
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Fig. 4. Seasonal variation of midday gross primary productivity (GPPm, µmol CO2 m−2 s−1) (a)
and midday green LUE ((LUEg)m), µmol CO2 µmol−1 photon) (b) in 2009 (full dots) and 2010
(empty dots).
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Fig. 5. Temporal changes of monthly grassland reflectance spectra collected at midday during
2009. Grey and shaded areas represent the position and bandwith of the MODIS spectral
bands used to compute PRI.
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Fig. 6. Time courses of daily GPP (g C m−2 d−1) estimated from EC measurements (EC-GPP)
(full circles), GPP modelled (open circles) with models fed with measured daily inputs (RS-
GPPd) and GPP modelled (full triangles) with models fed with resampled daily inputs (RS-
GPPres) in 2009 (left panels) and 2010 (right panels). The best performing formulation of each
class of models is shown: model 1 parameterized with MTCI (a and b), model 2 parameterized
with MTCI and ln(PAR) (c and d), model 3 parameterized with MTCI and ln(PAR) (e and f),
model 4 parameterized with MTCI, PRI555 and ln(PAR) (g and h), and MOD17 parameterized
with MTCI and ln(PAR) (i and j).
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Fig. 7. Cumulated daily GPP (g C m−2) estimated from EC measurements, modelled with daily
measured and resampled inputs in 2009 (left bars) and 2010 (right bars).
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