Biogeosciences Discuss., 9, 18039–18081, 2012 www.biogeosciences-discuss.net/9/18039/2012/ doi:10.5194/bgd-9-18039-2012 © Author(s) 2012. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Interannual variation in the epibenthic megafauna at the shallowest station of the HAUSGARTEN observatory (79° N, 6° E)

K. S. Meyer¹, M. Bergmann², and T. Soltwedel²

¹Oregon Institute of Marine Biology, 63466 Boat Basin Road, Charleston, Oregon, 97420, USA

²HGF–MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

Received: 29 November 2012 – Accepted: 30 November 2012

- Published: 13 December 2012

Correspondence to: K. S. Meyer (kimeyer@alumni.nmu.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

iscussion Pa	BC 9, 18039–1	GD 8081, 2012
aper Discussion	Interannua in the ep mega K. S. Me	al variation bibenthic fauna yer et al.
Pap	Title	Page
ēr	Abstract	Introduction
_	Conclusions	References
Discuss	Tables	Figures
ion F	14	►I.
aper	•	•
_	Back	Close
Discussi	Full Scre	een / Esc
on Pa	Interactive	Discussion
aper		O

Abstract

Epibenthic megafauna play an important role in the deep-sea environment and contribute significantly to benthic biomass, but their population dynamics are still understudied. We used a towed deep-sea camera system to assess the population densi-

- ties of epibenthic megafauna in 2002, 2007 and 2012 at the shallowest station (HG I, ~ 1300 m) of the deep-sea observatory HAUSGARTEN, in the eastern Fram Strait. Our results indicate that the overall density of megafauna was significantly lower in 2007 than in 2002, but was significantly higher in 2012, resulting in overall greater megafaunal density in 2012. Different species showed different patterns in population density,
- ¹⁰ but the relative proportions of predator/scavengers and suspension-feeding individuals were both higher in 2012. Variations in megafaunal densities and proportions are likely due to variation in food input to the sea floor, which decreased slightly in the years preceding 2007 and was greatly elevated in the years preceding 2012. Both average evenness and diversity increased over the time period studied, which indicates that HG
- ¹⁵ I may be food-limited and subject to bottom-up control. The varying dynamics of different species may have been caused by differential capacities of populations to respond to increased food input through either recruitment or migration.

1 Introduction

Epibenthic megafauna are defined as those organisms > 1 cm which inhabit the
 sediment-water interface, or are arbitrarily delineated as any organism which is visible with a camera (Bergmann et al., 2011a). Despite their comparatively low abundances, megafauna play an important role in the benthic community, exerting significant effects on bioturbation (Wheatcroft et al., 1989), carbon budgeting (Piepenburg, 2005), oxygen consumption (Piepenburg et al., 1995), and sediment composition
 (Gallucci et al., 2008b). Megafauna make up a large proportion of the biomass at the sediment-water interface (Piepenburg et al., 1995) and enhance habitat complexity –

both by virtue of their physical structure (Beaulieu, 2001) and by modifying the texture of the sediment with burrows, tracks, and traces (Wheatcroft et al., 1989; Kaufmann and Smith, 1997). Furthermore, through predation, megafauna control the population dynamics of smaller-sized prey and therefore shape benthic community composition (Gallucci et al., 2008a; Feder and Pearson, 1988; Sardá et al., 1998).

As a rule, megafauna are underrepresented in samples obtained with grabs or cores because of their low abundance and large size (Piepenburg et al., 1995). Sample collection by trawl is also not ideal because of damage to specimens and habitats and because it is not quantitative (Piepenburg et al., 1996b). On the other hand, image sampling of megafauna with a towed-camera system is highly useful because the organisms can be seen in their natural positions and there is no risk of specimen destruc-

tion. Randomly-collected images can also be used to quantify organism abundances and thus enable characterization of the community. However, physical samples are needed for ground-truthing as most species cannot be identified from images alone.

- In recent years, towed-camera studies have been undertaken in the Arctic at stations in the central Arctic (Gamber and Clark, 1978), Canadian Basin (MacDonald et al., 2010; Afanas'ev, 1978), north Alaska (Bluhm et al., 2005), Makarov Basin (Hunkins et al., 1960), the Alpha Ridge (Paul and Menzies, 1974), in the Greenland Sea (Jones et al., 2007; Mayer and Piepenburg, 1996; Schulz et al., 2010; Starmans and Gutt, 2002),
 in the Fram Strait (Bergmann et al., 2011b; Soltwedel et al., 2009) and Svalbard waters
 - (Piepenburg et al., 1996a; Bergmann et al., 2011a).

5

10

However, despite these efforts, the megafauna of the deep sea remain largely understudied. There exists a present urgency to effectively characterize benthic communities and establish a base-line against which future changes can be tracked, espe-

cially in the Arctic, where recent years have seen decreases in perennial sea-ice cover (Comiso et al., 2008) and associated changes in megafaunal densities and community patterns are to be expected. Ice shrinkage has progressed faster than projected by models (Comiso et al., 2008; Kauker et al., 2009). Significant changes in the relative abundances of epibenthic megafaunal species on the scale of years to decades

have already been observed in the northeast Pacific (Ruhl et al., 2008), the Fram Strait (Bergmann et al., 2011b), and the Porcupine Abyssal Plain (Billett et al., 2001, 2010). Such alterations were attributed by their respective authors to changes in food supply and environmental forcing, which may be related to long-term shifts in climate or decadal climate cycles.

The goal of the present study is to assess interannual changes in the benthic megafaunal community at the shallowest station of the HAUSGARTEN observatory in the eastern Fram Strait. More specifically, we describe differences in the megafaunal density and diversity over the time period 2002–2012, and how the benthic community may be influenced by biotic and abiotic environmental factors. This study also represents a contribution to the species inventory of the deep Fram Strait.

2 Methods

10

2.1 Study area

Sampling was conducted at the HAUSGARTEN station HG I (also Transect A in
Soltwedel et al., 2009) at approximately 79°8′ N, 6°0′ E, the easternmost and shallowest (~1300 m) station of the HAUSGARTEN observatory, located in the eastern Fram Strait (Soltwedel et al., 2005). This long-term observatory, maintained for over a decade by the Alfred Wegener Institute for Polar and Marine Research, provides a unique opportunity to study long-term dynamics in an area marked by exchange of Atlantic and Arctic water masses (Soltwedel et al., 2005). Though some stations of the HAUSGARTEN observatory experience seasonally varying ice conditions, HG I is primarily influenced by Atlantic water and thus generally not covered by ice at any time during the year because of its easterly location.

2.2 Sampling procedures

Photographic samples of the seafloor at HG I were collected during the expeditions ARK-XVIII/1 (2002), ARK-XXII/2 (2007), and ARK-XXVII/2 (2012) of the German icebreaker R/V *Polarstern*. Still images were collected in situ using a vertically-facing

- towed camera system, the Ocean Floor Observation System (OFOS). The OFOS was towed for 3–5 h at approximately 0.5 knots along a transect of the seafloor. The actual start and end points as well as the length of the transects varied slightly from year to year, though the spatial variation was small (5.5 nautical miles between the start and end points which lie the furthest apart) and all photographs were taken at comparable
- ¹⁰ depths (1274–1325 m, Fig. 1, Table 1). The OFOS was towed at an altitude of approximately 1.5 m. The altitude was controlled by the winch operator, who relied on video feed from the OFOS camera. In 2002 and 2007, altitude was indicated by the position of a fore-runner weight, and in 2012, altitude was measured directly by an altimeter on the OFOS frame and displayed on the screen.
- ¹⁵ In 2002, the OFOS frame (145 × 225 × 145 cm) was equipped with a still camera (Benthos Inc.) and a black and white video camera (Deep-Sea Power and Light), two high-intensity discharge lights of 250 W each, strobes (600 W s^{-1}) and three red laser points. These lights were aligned at an angle of 90° to the seafloor. Energy was provided by two lead storage batteries. The red laser pointers were fixed vertically on each
- OFOS frame at a distance of 50 cm to each other and served as a size reference for the imaged area and to determine the camera's footprint. In 2007, the frame of a slightly modified OFOS (120 × 110 × 120 cm) was equipped with a still (Benthos model 372–A) and a black and white video camera (OKTOPUS, Germany), two green laser pointers (Scholz) at a distance of 52 cm to each other for size reference, telemetry (AdiTech-
- Koax), forerunner weight, 2 xenon head lamps (OKTOPUS) and 2 flash lights (BEN-THOS flash, model 383). In both 2002 and 2007, an aperture of 5.6 and a double flash (600 WS) were used, and the still camera was loaded with a 30 m Kodak Ektachrome 100 ASA film, allowing r800 exposures. In 2012, a completely newly designed OFOS

was equipped with a Canon camera (EOS–1Ds Mark III, modified for underwater applications by iSiTEC GmbH, Germany), a strobe (Kongsberg 0E11–242), four LED lights (LED Multi-Sealite, DeepSea Power & Light), telemetry (LRT–400 Fiber, iSiTEC), and three red laser points (OKTOPUS), positioned 50 cm apart from each other. The still
 camera of each OFOS was mounted on the frame in a vertical position to the sea floor and was triggered automatically every 30 s to minimize spatial overlap of images

floor and was triggered automatically every 30 s to minimize spatial overlap of images. Additional manually triggered images were taken when features of particular interest occurred in the viewfinder.

Physical specimens of observed species were obtained using an Agassiz trawl in 2004, 2008 and 2012 and a box core in 2007 (Table 1) to enable "ground-truthing" (=taxonomic identification). Taxa were identified by taxonomic experts (see Acknowledgments) either by examination of physical samples or from photographs available on the web-based image database BIIGLE (see below).

2.3 Image analysis

- All images were analyzed and stored using the image analysis program and database BIIGLE (Bio-Image Indexing, Graphic Labelling, and Exploration) web-2.0, which can be accessed from any standard web browser (www.BIIGLE.de) (Bergmann et al., 2011a; Ontrup et al., 2009). The laser points present in each image were detected by a computer algorithm and used as a standard to calculate the surface area of each image, which could then be used to convert species abundances to densities. Images that were within the most common surface area (altitude) range (2002 and 2007: 3.3–4.1 m²; 2012: 1.3–1.5 m altitude), were recorded automatically, and were not unusually bright or dark were eligible for analysis. Each transect was split into three equal segments represented by three equal groups of statistically-recorded images,
- and the first 30 randomly-selected eligible images from each segment of each transect were used for analysis. Because there was no visible overlap in content, each image was treated as a replicate sample (MacDonald et al., 2010; Bergmann et al., 2011a; 2011b).

To label taxa and habitat features in BIIGLE, the working species name was selected from a drop-down list and pinned to the feature by clicking on its location in the image. Image labelling was completed in a shaded room using a 19–20" computer monitor connected to a PC. All images were investigated using the maximum available zoom

in BIIGLE, and all observable biota and biotic habitat features were labelled. To eliminate practice effects, each image underwent one or more "quality checks", in which the image was re-examined for accuracy and thoroughness of taxa identification. Image analysis was completed by the same individual to avoid interpersonal effects (Schoening et al., 2012).

10 2.4 Environmental parameters

Benthic environmental parameters were determined from sediment samples obtained by a multiple corer during annual research expeditions between 2001 and 2011 aboard the research vessels *Polarstern* and *Maria S. Merian*. The top centimetres of sediment were sub-sampled using syringes (1 cm in diameter) with the tips cut off and analyzed for different biochemical parameters. Sediment-bound particulate proteins, indicating the biomass of small organisms and detrital matter, were determined by photometry. Chloroplastic pigments, indicating phytodetritus (food) at the sea floor, were extracted in 90 % acetone and measured with a Turner fluorometer (Shuman and Lorenzen, 1975).

20 2.5 Data analysis

15

25

For data analysis, we focused on 11 species which were large enough to be reliably recognized in all photographs taken by the different camera systems. Species counts in each image were converted to densities using area estimates for each image. Densities of habitat features such as worm tubes, "white debris", and tracks in the sediment ("Lebensspuren") were also recorded, and diversity indices (species richness (total species m⁻²), Pielou's evenness (Pielou, 1969), Shannon-Wiener diversity (Shannon

and Weaver, 1963)) for each image were calculated with the software Primer v6 (Clarke and Gorley, 2006). Comparison of species densities, habitat feature densities, and diversity indices between years was carried out using (non-) parametric analysis of variance in SPSS (IBM, USA). A Levene's test was used to test equality of variance, and ⁵ post-hoc Bonferroni tests showed differences between pairs of years. In the instance that a log(x+1) transformation ensured equal variance, an ANOVA test on log(x+1)transformed data was used. For cases of unequal variance, pairwise differences between the years were discerned using Mann-Whitney U-tests with a Bonferroni correction of p = 0.05/3 comparisons = 0.017. Species-accumulation curves were constructed for each year using Primer to determine the number of images necessary to sufficiently sample the 11 most reliably identified species.

Multivariate statistics based on a Bray-Curtis similarity matrix were carried out in Primer to determine differences in the biological community between years. Species density data were square-root transformed to reduce the effects of overly-dominant

- species. A 2-way nested ANOSIM design was used to test for differences between transect segments and between years, and a non-metric multi-dimensional scaling (MDS) ordination plot was constructed to visualize these differences. Using a SIMPER routine, we also determined discriminating "character species" responsible for the average similarity between images from a particular year. For each year, species were grouped by
- ²⁰ mobility (vagile or sessile, as inferred from the images) and trophic group according to the results of Bergmann et al. (2009) and information from taxonomic experts to assess differences in the relative dominance of these groups between years.

3 Results

3.1 Image labelling

²⁵ Image labelling took between 15 and 45 min per image and control checks between five and 15 min per image. Altogether, 270 images were analyzed (90 from each year),

representing a total area of 767.92 m² of the sea floor (281.14 m² in 2002; 253.26 m² in 2007; and 238.58 m² in 2012). The average area per image was 3.12 ± 0.21 m² in 2002, 2.85 ± 0.16 m² in 2007, and 2.65 ± 0.06 m² in 2012 (mean ± standard error).

A total of 20 (putative) species and four habitat features were identified from the images at HG I (Table 2). Of these, only the 11 taxa which were most reliably recognizable were used for statistical analysis; all results from here on are reported for these 11 taxa (Fig. 2, Table 2). Four habitat features (see below) were also tested for variations in mean density between years.

Permutated species-accumulation curves showed an asymptotic levelling after approximately 40 images in each sampling year, so it was assumed that sampling was sufficient to accurately document the presence of the 11 most recognizable species in these years (Fig. 3).

3.2 Differences between years

The 2-way nested ANOSIM test showed that segments of each transect were significantly similar (R = 0.141, p = 0.001), but different years were significantly different (R = 0.909, p = 0.004). Because there was significant similarity between transect segments, all further multivariate analyses were conducted with respect to year only, with no division between transect segments.

To visualize differences in the benthic community between years, an MDS (nonmetric multi-dimensional scaling) ordination plot was constructed (Fig. 4). The MDS plot shows that the years form natural groups; there is significant overlap between points from 2002 and 2007, and 2012 is more different from these years than they are from each other. Also, 2007 is the year with the highest inter-image variability (Fig. 4). A stress value of 0.12 indicates a good 2-D representation of the data.

The mean total megafaunal density was 19.6 ± 0.4 ind m⁻² in 2002, 17.2 ± 0.4 ind m⁻² in 2007, and 54.8 ± 1.0 ind. m⁻² in 2012. These means indicate lower overall faunal density in 2007 than 2002 and higher faunal density in 2012

than 2007, which resulted in overall higher faunal density in 2012 than 2002 (Fig. 5). All differences between years are statistically significant (Table 2).

The densities of six of the 11 analyzed taxa showed no significant differences between years; these include "purple cerianthid", *Bylgides* sp., *Colossendeis probiscidea*,

- ⁵ *Bythocaris* cf. *leucopis*, *Bathybiaster vexillifer*, and *Lycodes squamiventer* (Kruskal-Wallis (K-W) or ANOVA, p > 0.05; Table 2). The eelpout *Lycodonus flagellicauda* stayed at relatively constant density, the only significant difference being a decrease from 2002 to 2007 that fell right on the cut-off for statistical significance (post-hoc pairwise Mann-Whitney test (M-W), U = 3736, p = 0.017). The density of the pycnogonid
- ¹⁰ cf. *Nymphon macronyx* increased from 2002 to 2012 with significant differences between each pair of tested years (K-W, d*f* = 2, χ^2 = 219, *p* < 0.001). The tube-building polychaete *Jasmineira schaudinni* had a much higher density in 2012 than in 2007, with statistically significant differences between the year pairs 2002–2012 and 2007–2012 (K-W, d*f* = 2, χ^2 = 175, *p* < 0.001; Table 2). The same pattern was observed for the holothurian *Elpidia* sp., which had much higher density in 2012 (K-W, d*f* = 2, χ^2 = 25,
- ¹⁵ Holothunan *Elpidia* sp., which had much higher density in 2012 (K-W, df = 2, $\chi^2 = 25$, p < 0.001; Table 2). Population density of the ophiuroid *Ophiocten gracilis* decreased from 2002–2007 and then increased from 2007 to 2012, leading to an overall higher density in 2012 than in 2002 (K-W, df = 2, $\chi^2 = 190$, p < 0.001; Table 2).

Results of the SIMPER routine helped to identify "character species", which defined
the community in each year. An average similarity of 84.2% was found between images in 2002, along with 81.2% average similarity between images in 2007, and 88.2% average similarity between images in 2012. In 2002, 2007, and 2012, the largest percent contribution to within-year similarity was made by the brittlestar *O. gracilis* (2002: 96.4%, 2007: 94.8%, 2012: 71.3%). In 2012, other species also contributed to the
within-year similarity, and these included cf. *N. macronyx* (17.6%) and *J. schaudinni* (10.0%).

Both Pielou's evenness and Shannon-Wiener diversity increased over the time period studied, and differences between each pair of years were significant (evenness, K-W, df = 2, χ^2 = 129, p < 0.001; Diversity, K-W, df = 2, χ^2 = 139, p < 0.001). Species

richness, measured as the number of taxa m⁻², was significantly higher in 2012 than in other years (K-W, d*f* = 2, χ^2 = 100, *p* < 0.001).

3.3 Mobility of fauna and trophic groups

The benthic megafaunal community of HG I can be characterized as overwhelmingly
vagile. Nine of the 11 species included in analysis, consisting of over 99% of observed individuals (97.3% in 2012), are vagile, the only exceptions being the polychaete *J. schaudinni* and the "purple cerianthid." The majority of observed individuals could also be categorized as deposit feeders, and this group accounted for over 90% of the fauna. The average density of deposit feeders was lower in 2007 (16.6 ± 0.4 m⁻²) than in 2002 (19.3 ± 0.4 m⁻²) but much higher in 2012 (49.8 ± 1.0 m⁻²). The relative proportion of deposit feeders decreased over the time period studied, from 98.2% in 2002 to 96.3% in 2007 to 90.7% in 2012. The second most significant trophic group was predator/scavengers, which accounted for 0.9–6.6% of the fauna and increased in proportion over time. The proportion of suspension feeders also increased, from 0.6% in 2002 and 2007 to 2.5% of individuals in 2012, and this pattern was most likely due to increases in the density of *J. schaudinni* (Fig. 5).

3.4 Species not included in statistical analyses

The results presented and discussed above concern the 11 most recognizable and re-liably identified benthic megafaunal species present at HG I. Other (putative) species
were also observed, though they could not be included in the results. In 2012, numerous short-tubed translucent polychaetes were observed actively feeding with their tentacles splayed (Fig. 6a). These polychaetes appeared somewhat similar to *J. schaudinni* individuals in the same images, though the size (*J. schaudinni* individuals were much larger) and feeding behaviour (no individuals identified as *J. schaudinni* were actively feeding) set the two forms apart. The two putative species are both sabellid polychaetes (N. Budaeva, personal communication, 2012). It is possible that they

are both members of J. schaudinni, and it is also possible that the small, activelyfeeding polychaetes belong to Chone sp., as these sabellids were caught in a trawl at HG I in 2008 (Table 2). Small, actively feeding polychaetes were not included in the 2012 results because similar individuals were not observed in other years and because

- it could not be determined whether or not they belonged to J. schaudinni. If these small, 5 actively-feeding individuals were included in the 2012 results for J. schaudinni, it would increase the average density for this species from $1.4 \pm 0.8 \text{ m}^{-2}$ (the average reported in this study) to $6.8 \pm 0.4 \text{ m}^{-2}$ (mean \pm standard error); if considered separately, they would have a density of $5.4 \pm 0.4 \text{ m}^{-2}$ in 2012. We unfortunately cannot rule out the possibility that some of the "upright worm tubes" labelled from 2002 and 2007 images 10
- were in fact short, actively-feeding polychaetes whose transparent tentacles were not visible.

Small white isopods, cf. Munnopsidae (Fig. 6c), were observed in images from all years sampled, but they could not be identified to higher taxonomic resolution. Despite

- their abundance and potentially important role in the epibenthic community, the isopods 15 were not included in the statistical analysis because they could not be assigned to a trophic group, and because their small size made them potentially subject to camera effects. Indeed, in an earlier study by Soltwedel et al. (2009), these crustaceans had been categorized as amphipods. We were not confident in the accuracy of their re-
- ported densities, as they were very difficult to detect and label accurately in the 2002 20 and 2007 images (K. S. Meyer, personal observation, 2011).

Another species, the bivalve Bathyarca frielei (Fig. 6f), was also only visible in images from 2012 because of enhanced resolution and guality of images in that year. Bathyarca frielei individuals were observed burrowed half-way into the sediment and

had their valves partially open as they presumably siphoned the bottom water. The 25 resulting appearance was one of a circular or sub-circular hole in the sediment, within which the pale soft tissues of the bivalve were visible. Previously, numerous circular or sub-circular holes in the sediment had been marked in images from 2002 and 2007, and it is suspected that these structures may have been the result of marginally visible

B. frielei individuals. It should be especially noted that no circular holes in the sediment were observed in 2012 which could not be attributed to an individual of *B. frielei*. Upon re-examination of the 2002 and 2007 images, a few bivalve individuals could be noticed on the surface of the sediment, which could potentially also be attributed to *B. frielei*.

⁵ If it is assumed that all bivalves present on the surface of the sediment and all small circular holes in the sediment in 2002 and 2007 are indeed individuals of *B. frielei*, then this species would have a population density of $10.4 \pm 0.5 \text{ m}^{-2}$ in 2002, $4.9 \pm 0.3 \text{ m}^{-2}$ in 2007, and 17.9 ± 0.4 in 2012.

Other noteworthy habitat structures or organisms which were not included in statistical analysis because of their infrequency or lack of reliability in identification include the following (Fig. 6): a gastropod, possibly *Mohnia* sp., with an anemone on its shell seen in 2002; two large, oblong depressions, possibly (inactive?) pockmarks, in the seafloor in 2007; two crinoids in 2007; a ctenophore in 2007 and in 2012; a red and white superbenthic swimming isopod seen in 2012; the benthic crustacean *Halirages* sp., seen in 2012; and a superbenthic chaetognath seen in all years.

3.5 Biotic habitat features

Each of the four biotic habitat features tested showed different patterns of change in density. Tracks in the sediment ("Lebensspuren") decreased from 2002 to 2012 with statistical differences between each pair of tested years (ANOVA, $F_{2,267} = 184$, p < 0.001). There was a large increase in the frequency of "white debris," which probably consists mostly of shell fragments, in 2012 compared to in other years (K-W, df = 2, $\chi^2 = 176$, p < 0.001). Worm tubes, both upright tubes and those lying on the sediment, were most abundant in 2012 and more frequent in 2002 than in 2007. Each pair of years tested was found to be significantly different from the others (upright worm tubes, p < 0.001).

3.6 Environmental and biochemical parameters

Chloroplastic pigments in the sediment, indicating food input to the sea floor, and chlorophyll *a*, which indicates comparably "fresh" phytodetritus, show much higher values in the years 2007–2012 than in the years 2001–2006 (Fig. 7). The data suggest higher food input to the seafloor following the year 2006. Additionally, the protein con-

⁵ higher food input to the seafloor following the year 2006. Additionally, the protein content of the sediments, indicating benthic biomass, shows a steady increase from 2001 to 2010, with particularly high values in 2007 and 2011 (Fig. 8).

4 Discussion

This study provides the first investigation into temporal dynamics of the benthic megafauna at the shallowest HAUSGARTEN station, HG I. We were able to identify megafauna to greater taxonomic resolution than Soltwedel et al. (2009), though it should be emphasized that the fauna of HG I are still not completely known. Some of the most recognizable taxa included in this study remain to be identified (e.g. "purple cerianthid"), and additional sampling efforts will undoubtedly add new species to the station's inventory.

Despite the fact that photographic sampling was not conducted over the exact same transect location in each sampling year, we are confident that our transects are comparable and represent the same benthic megafaunal community. Transect sampling was completed at similar depths (1274–1321 m) in each year, and spatial variation in the transects was also low, as the lateral distance between the two start and end points which were furthest from each other was 5.5 nautical miles. Furthermore, the same species were observed in each year. These facts indicate that the benthic megafaunal composition varies on a spatial scale much larger than that sampled, and that the comparison of our sampled transects is justified.

4.1 Biogeographic range of species recorded from HG I footage

Of the organisms that we were able to identify to species or suspected species, the fauna of HG I includes both north Atlantic and pan-Arctic fauna. *Ophiocten gracilis* seems to have the southernmost range of the HG I species, having been found at
the Håkon Mosby Mud Volcano (HMMV), in the Norwegian sea north of Iceland, as well as within the Rockall Trough and Wyville Thomson Ridge and extending as far south as western Ireland and the eastern seaboard of North America (Paterson et al., 1982; Gebruk et al., 2003; Rybakova et al., 2012). Congeners of *Byglides* sp. have been collected on the St. Georges Bank (Newton et al., 1866) and off New England
(Pettibone, 1963; Smith, 1964), as well as at the HMMV (Gebruk et al., 2003). *Lycodes squamiventer* is well-known throughout much of the north Atlantic, including the waters of Greenland, Iceland, Norway, the HMMV and Svalbard (Møller, 2001; Gebruk et al., 2003; Hildebrandt et al., 2011), while *Lycodonus flagellicauda* is also known from the northeast Atlantic and the waters of Iceland and Norway and the HMMV (Wienerroither)

- et al., 2011; Gebruk et al., 2003; Rybakova et al., 2012). Bathybiaster vexillifer has been identified from the Porcupine Abyssal Plain and Rockall Trough and as far east as the Kara Sea (Farn, 1950; Zenkevich, 1963). Similarly, Nymphon macronyx has been collected in the southern and western Norwegian sea, from the Faroe Islands to Jan Mayen (Meinert, 1899), at the HMMV (Gebruk et al., 2003; Rybakova et al., 2012), near
- ²⁰ Bear Island (Svalbard archipelago), from Franz-Josef Land and the Kara Sea (Arndt et al., 1900). The range of *Colossendeis proboscidea* extends across the Eurasian Arctic, from east and west Greenland and the Faroe islands, as far as the Barents Sea, the HMMV, off Franz-Josef Land, the Kara Sea, and the waters of Siberia (Zenkevich, 1963; Stephensen, 1913; Gebruk et al., 2003; Rybakova et al., 2012). *Jasmineira schaudinni*
- is a true circumpolar species, having been documented in the Beaufort Sea (Feder et al., 1978), Kara Sea (Zenkevich, 1963), but also near Iceland, the Faroe Islands, in the Norwegian Sea (Wesenberg-Lund, 1899), and at the HMMV (Gebruk et al., 2003). Congeners of the holothurian *Elpidia* are found in all world oceans (Rogacheva, 2007),

though only *Elpidia heckeri* has previously been identified from the HAUSGARTEN area (Bergmann et al., 2009); this latter species is pan-Arctic in distribution, having been found in the Nansen, Amundsen, Makarov, and Canadian Basins, as well as on the Lomonosov, Alpha, and Mendeleev Ridges and in the Greenland and Norwegian Seas (Bogacheva, 2007). Our overall conclusion is that the fauna of HG Linclude both

Seas (Rogacheva, 2007). Our overall conclusion is that the fauna of HG I include both North Atlantic and pan-Arctic species, which are found together at HG I because of the intersection of their ranges.

4.2 Interannual differences in megafaunal densities

The changes in the benthic megafaunal community at HG I presented in this study beg explanation, and hints may be found in the biochemical sediment parameters analyzed. In the years leading up to 2007, food input to the seafloor was slightly lower, as indicated by sediment-bound pigments in the top sediments. This lower phytodetrital input could explain the lower overall faunal density, in particular that of the dominant deposit-feeding ophiuroid *O. gracilis* in 2007. In the years 2007–2012, elevated levels

- ¹⁵ of phytodetrital input were recorded, which is evidenced by consistently much higher chlorophyll *a*, phaeopigment, and protein content of the sediment. This also may help to explain the large increase in total megafaunal density between 2007 and 2012. In particular, there was a higher average density of deposit feeders in 2012 than in previous years, which corresponded to significantly greater densities of *O. gracilis* and *Elpidia*
- ²⁰ sp. and may be attributed to higher food input. Density of the suspension-feeding tubed polychaete *J. schaudinni* also increased significantly from 2007 to 2012, accompanied by an increase in the proportion of fauna accounted for by suspension feeders. While it is not possible to draw a direct connection between detrital food input and suspension feeder density, there may have been greater levels of suspended food particles in the
- ²⁵ bottom water during the time period leading up to 2012, which contributed to higher *J. schaudinni* population densities.

Bergmann et al. (2011b) found an overall decrease in the density of fauna between 2002 and 2007 at the nearby station HG IV (\sim 2500 m depth), which corresponds with

a similar decrease in faunal density in 2007 observed in this study. In a comparison of megafaunal assemblages across a bathymetric gradient in the HAUSGARTEN area, Soltwedel et al. (2009) reported higher proportions of deposit feeders at shallower depth (i.e., HG I) and greater proportions of suspension feeders at greater depth (i.e.,

⁵ HG IV). This conclusion is supported by the results of the present study, in which we found great dominance of deposit feeders (> 90 % of fauna) at HG I.

Food input to the seafloor has been linked to abundance and biomass of benthic fauna over latitudinal scales in the North Atlantic (Thurston et al., 1994, 1998) and temporal scales in the Pacific (Ruhl and Smith, 2004; Ruhl et al., 2008) and the Fram Strait

- (Bergmann et al., 2011b). Sedimentation and benthic food input are greatly influenced by productivity at the surface, and in Arctic waters, productivity is often concentrated at the ice edge (Schewe and Soltwedel, 2003; Bauerfeind et al., 2009; Hebbeln and Wefer, 1991). HG I is not usually covered by ice because of its easterly location within the Fram Strait, and examination of satellite-derived ice cover maps confirms that this is the
- ¹⁵ case (K. Meyer, unpublished data). It is thus believed that ice cover and ice-edge phytoplankton blooms did not significantly influence phytodetrital flux to the seafloor at HG I during the time period studied. Interestingly, differences in benthic food input reported here for HG I do not seem to be correlated with temperature anomalies or the volume of water transported into the eastern Fram Strait as reported by Beszczynska-Möller et
- al. (2012). Sedimentation rates also depend on multiple factors, including degradation or consumption of detritus in the water column and mesoscale hydrodynamics such as eddies (Lalande et al., 2011). Just what may have caused the higher phytodetrial input at HG I in the years following 2006 is thus an open question.

Ruhl and Smith (2004) found a 7–12 month time lag between particulate organic ²⁵ carbon flux to the seafloor and benthic megafaunal abundance in the northeast temperate Pacific. We sampled benthic megafauna at lower temporal resolution than Ruhl and Smith (2004), though our data also suggest the existence of a time lag between benthic food input and megafaunal abundance in the eastern Fram Strait. In particular, the lower densities of megafauna observed in 2007 can best be explained by lower

food input to the seafloor in years preceding 2007 rather than the elevated food input measured in 2007.

4.3 Interannual differences in diversity and evenness

Bergmann et al. (2011b) found lower evenness and diversity of the megafauna at HG
 IV in 2007, which corresponded to dominance of fewer organisms and food limitation in that year. In contrast, we found that evenness and diversity of the fauna at HG I were significantly higher than in 2007 than in the previous sampling year, in 2002. Bergmann et al. (2011b) ascribed the lower evenness they observed in 2007 to disproportionate success of species with lower energy requirements in a food-limited environ-

- ¹⁰ ment; however we cannot draw the same conclusion, as our data show the opposite relationship. The higher evenness and diversity in 2007 may be due to significantly lower densities of *O. gracilis*, which dominated the fauna in 2002. Lower food input to the seafloor may have affected recruitment, mortality, and emigration of this depositfeeding species, thereby undermining its dominance of the epibenthic megafauna.
- ¹⁵ Other deposit-feeding species (*C. proboscidea, Elpidia* sp.), which did not have lower density in 2007, may not have been as strongly affected by the lower food input because their populations were already at relatively low density, and lower food input was still sufficient to sustain the population.

Both evenness and diversity were also significantly higher in 2012, and we again ²⁰ suspect this is related to food input to the seafloor. The higher species richness (total species m⁻²) recorded in 2012 may have been merely a result of the higher total faunal density and will not be discussed further. Higher relative proportions of suspension feeders and predator/scavengers were observed in 2012. Thus, it could be argued that the megafauna of HG I became more trophically diverse. Unlike 2002 and 2007, ²⁵ which had only one character species (*O. gracilis*) that accounted for 94–96 % of the within-year similarity, 2012 was characterized by multiple "character species". These included *O. gracilis*, cf. *N. macronyx* and *J. schaudinni*. The average density of *Elpidia* sp. was also much higher in 2012. Elevated levels of food input to the seafloor may

have relaxed competition for limited resources, allowing for higher densities of multiple species through bottom-up control. The deep sea is generally considered to be food-limited (Iken et al., 2001). The significantly higher faunal density, diversity and evenness we observed following years of elevated food input suggest that HG I is no exception.

5 4.4 Possible mechanisms for change in faunal density

There are a few possible mechanisms by which populations of the benthic megafauna at HG I may have responded to changes in food availability. For deposit feeders and suspension feeders, the slight decrease in detrital input observed in 2004–2005 may have caused increased mortality, decreased recruitment, or caused emigration to ar-

- eas of higher food supplies that lead to lower observed population densities in 2007. Conversely, the increase in detrital input in 2007–2011 may have caused elevated recruitment or migration of individuals from adjacent areas of lower food input. The vast majority of fauna (10 of 12 species and 97–99% of individuals) at HG I are vagile, so migration could have been an important mechanism for changes in faunal density. How-
- ever, for the sessile tube-building polychaete *J. schaudinni*, migration cannot explain the large increase in density from 2007–2012, so this species must have undergone elevated recruitment.

4.5 Differential dynamics of species

While some species had significantly higher or lower densities in the years sampled,
 the majority (7 of 11 species) showed no significant differences in density. In the case of predator/scavengers, differential dynamics of each species may be related to the dynamics of different types or species of prey. Whereas cf. *N. macronyx* increased in density 2002–2012, each of the other, larger predator/scavenger species (*Byglides* sp., *Bythocaris* sp., *B. vexillifer, L. squamiventer, L. flagellicauda*) stayed at constant density. The larger body size of these species compared to cf. *N. macronyx* suggests they may be feeding on different kinds of prey and their population dynamics are thus

influenced by different food sources; however, further investigation along this avenue is needed before conclusions can be drawn.

4.6 Reproductive biology of species recorded from HG I footage

The steady population densities in five of six observed predator/scavenger species may be caused by slow generation times, which restrict the population from responding quickly to changes in potential prey species. For example, the zoarcid fish *Lycodes squamiventer* is slow-growing and long-lived (~ 21 yr) within the HAUSGARTEN area, and females of this species produce only a few (~ 60) large demersal eggs in June of each year (Hildebrandt et al., 2011). *Bathybiaster vexillifer* is believed to undergo continuous reproduction and have direct-developing lecithotrophic larvae (Farn, 1950), and cf. *Nymphon macronyx* may develop by means of "attached larvae" (Bain, 2003). However, to our knowledge, the developmental time to become a feeding juvenile or adult is not known for these or any other of the HG I species. Reproductive modes could not be determined for other predator/scavenger species at HG I, though it is generally held that species at higher latitudes have longer generation times and slower growth rates (Hildebrandt et al., 2011).

Of the deposit feeders, *O. gracilis* undergoes an annual reproductive cycle in which ophiopluteus larvae are produced (Sumida et al., 2000). Fecundity is high (up to 51 000 eggs individual⁻¹) and dependent on body size (Gage, 2003), so if the growth of reproductive adults was affected by food availability, this could impact fecundity. If settling

- ²⁰ ductive adults was affected by food availability, this could impact fecundity. If settling postlarvae encountered either higher or lower food input to the seafloor in a given year, this could have affected survival and growth of *O. gracilis* juveniles and lead to the population density dynamics observed for this species at HG I. HG I (~ 1300 m) is at the lower limit of the depth range of *O. gracilis* (~ 600–1200 m) reported in the northeast
- ²⁵ Atlantic by Gage and Tyler (1981) and Gage (2003), so food availability may be even more important to survival of postlarvae that are already at the limit or outside of their optimum bathymetric range. Ophiuroids are also known to occur in high densities and

capitalize on favourable conditions (Metaxas and Giffin, 2004), so migration from areas of lower food availability may have contributed to their high abundance at HG I in 2012.

Though the reproductive biology of *Elpidia* sp. was unable to be determined, a study at the Porcupine Abyssal Plain showed a large opportunistic increase in population

- ⁵ density of the elpidiid holothurian Amperima rosea, which was ascribed to higher fecundity in response to greater flux of organic matter to the seafloor (Billett et al., 2010). We were unable to find information in the literature on the reproductive mechanisms of other deposit feeders or suspension feeders observed at HG I. Very little is known about the reproductive timing and mechanisms of the HAUSGARTEN fauna; to our
- ¹⁰ knowledge, no study to date has documented recruitment of benthic megafauna in the Fram Strait. Further investigations into the life histories and reproductive mechanisms of the HAUSGARTEN fauna would greatly increase our understanding of megafaunal dynamics.

4.7 Biotic habitat features

- ¹⁵ In addition to the benthic megafauna, we quantified the densities of four biotic habitat features at HG I: upright worm tubes, worm tubes lying on the sediment, "Lebensspuren" (tracks in the sand), and "white debris" (probably mostly shell fragments). Vertical and horizontal worm tubes were differentiated because of the different effects each would have on the texture of the sediment, surface area of the sediment
- available for deposit feeding, and small-scale water flows. Both upright worm tubes and those lying on the sediment had lower density in 2007 than in 2002 but much higher density in 2012. This pattern may be influenced by polychaete mortality and decomposition, destruction, or burial of worm tubes by physical factors or other fauna. Similarly, the significant increase in "white debris" observed in 2012 may have been caused by
- increased sedimentation or mortality of shelled organisms. Both a gastropod (cf*Mohnia* sp.) and the bivalve *Bathyarca frielei* were observed in the images, though their densities in each year could not be quantified. "Lebensspuren" densities decreased between each pair of sampling years, which is either a camera effect or an indication that there

are fewer megafaunal movements. Since the lower density of "Lebensspuren" was not accompanied by lower densities of megafauna suspected to create them (i.e., B. vexillifer, O. gracilis), it is quite likely that the lower observed densities of "Lebensspuren" were due to a camera effect. Unfortunately, we were unable to quantify the lengths of "Lebensspuren". Vertical and horizontal worm tubes and "white debris" are all small 5 compared to the largest megafaunal species identified from HG I. However, for small megafaunal organisms such as *Bylgides sp.* or cf. *Nymphon macronyx* – or perhaps also for macrofauna, which we did not sample - changes in the densities of these habitat features could be important, as these organisms experience their habitat on a small spatial scale (Quéric and Soltwedel, 2007).

Summary and conclusions 5

10

Using a towed deep-sea camera system, we observed a decrease in the overall density of epibenthic megafauna from 2002-2007 followed by a large increase in megafaunal densities from 2007–2012 at the station HG I in the eastern Fram Strait. The relative proportions of predator/scavengers and suspension feeders increased over this time 15 period, though the density of deposit feeders was also higher in 2012. Interannual differences in the megafaunal community can be attributed to variations in food input to the seafloor, as measured by sediment-bound chlorophyll a, phaeopigment, and particulate proteins. Evenness and diversity were significantly higher in 2012, following years of elevated food input to the seafloor, which suggests the community at HG I 20

is food-limited and subject to bottom-up control. Investigations into the reproductive mechanisms and timing of the HG I species would greatly improve our understanding of megafaunal population dynamics. Furthermore, continued sampling in the coming years with the same high-resolution camera used in 2012 would allow us to track and

Acknowledgements. We would like to thank the officers and crews of R/V *Polarstern* and R/V *Maria S. Merian* for their assistance at sea. M. Blume operated the OFOS in 2007. I. Schewe was responsible for deployments of the multiple corer, and he was assisted by C. Hasemann, A. Pappert, and a large number of volunteers in the analysis of biochemical

- ⁵ parameters. The following taxonomic experts are thanked for their identifications of specimens: R. Bramber (pycnogonids, Natural History Museum, London); M. Blazewicz-Paszkowycz (Tanaidacea, University of Lodz); A. Brandt, U. Mühlenhardt-Siegel (isopods, cumaceans Universität Hamburg); S. Gromisz, M. Kedra, J. Legezynska, J. M. Weslawski (polychaetes, sipunculids, amphipods, Institute of Oceanology of the Polish Academy of Sciences); M. Türkay
- 10 (decapods, Forschungsinstitut und Naturmuseum Senckenberg); P. R. Møller (fish, Zoological Museum Copenhagen); A. Peňa (hydroids, Universidad de Valencia); D. Piepenburg, (echin-oderms, Universität Kiel); A. Warén (molluscs, Swedish Museum of Natural History), N. Budaeva, V. Mokievsky, A. Vedenin (polychaetes, crustaceans, bivalves, P. P. Shirshov Institute of Oceanology). T. Schoening and J. Ontrup provided user support with BIIGLE. K. Meyer was funded have Fullbricht Church Descent during the during the during (here 2010) of here.
- ¹⁵ funded by a Fulbright Study-Research Grant during the duration (July 2011–May 2012) of her tenure at the AWI. This work was part of the EU funded projects HERMES (Contract number: GOCE-CT-2005-511234-1) and HERMIONE (Contract number: 226354). This is publication Eprint ID 31642 of the Alfred Wegener Institute for Polar and Marine Research.

References

- ²⁰ Afanas'ev, I. F.: Investigations of the deep-sea bottom fauna in the central part of the Arctic Ocean, Oceanology, 18, 950–951, 1978.
 - Arndt, W., Brauer, A., Römer, F., and Schaudinn, F. R.: Fauna arctica: eine Zusammenstellung der arktischen Tierformen mit besonderer Berücksichtigung des Spitzbergen-Gebietes auf Grund der Ergebnisse der Deutschen Expedition in das Nördliche Eismeer im Jahre 1898, Eiseber G. Jong. 1900.
- ²⁵ Fischer, G., Jena, 1900.
 - Bain, B. A.: Larval types and a summary of postembryonic development within the pycnogonids, Invertebr. Reprod. Dev., 43, 193–222, 2003.
 - Bauerfeind, E., Nöthig, E.-M., Beszczynska-Möller, A., Fahl, K., Kaleschke, L., Kreker, K., Klages, M., Soltwedel, T., Lorenzen, C., and Wegner, J.: Particle sedimentation patterns

in the eastern Fram Strait during 2000–2005: Results from the Arctic long-term observatory HAUSGARTEN, Deep-Sea Res. I, 56, 1406–1417, doi:10.1016/j.dsr.2009.04.011, 2009.

- Beaulieu, S. E.: Colonization of habitat islands in the deep sea: recruitment to glass sponge stalks, Deep-Sea Res. I, 48, 1121–1137, 2001.
- ⁵ Bergmann, M., Dannheim, J., Bauerfeind, E., and Klages, M.: Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN, Deep-Sea Res. I, 56, 408–424, doi:0.1016/j.dsr.2008.10.004, 2009.
 - Bergmann, M., Langwald, N., Ontrup, J., Soltwedel, T., Schewe, I., Klages, M., and Nattkemper,
 T. W.: Megafaunal assemblages from two shelf stations west of Svalbard, Mar. Biol. Res., 7, 525–539. doi:10.1080/17451000.2010.535834. 2011a.

10

- Bergmann, M., Soltwedel, T., and Klages, M.: The interannual variability of megafaunal assemblages in the Arctic deep sea: Preliminary results from the HAUSGARTEN observatory (79° N), Deep-Sea Res. I, 58, 711–722, doi:10.1016/j.dsr.2011.03.007, 2011b.
- Beszczynska-Möller, A., Fahrbach, E., Schauer, U., and Hansen, E.: Variability in Atlantic water
 temperature and transport at the entrance to the Arctic Ocean, 1997–2010, ICES J. Mar.
 Sci., 69, 852–863, doi:10.1093/icesjms/fss056, 2012.
 - Billett, D. S. M., Bett, B. J., Rice, A. L., Thurston, M. H., Galéron, J., Sibuet, M., and Wolff, G. A.: Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic), Prog. Oceanogr., 50, 325–348, 2001.
- Billett, D. S. M., Bett, B. J., Reid, W. D. K., Boorman, B., and Priede, I. G.: Long-term change in the abyssal NE Atlantic: The "*Amperima* Event" revisited, Deep-Sea Res. I, 57, 1406–1417, 2010.
 - Bluhm, B. A., MacDonald, I. R., Debenham, C., and Iken, K.: Macro– and megabenthic communities in the high Arctic Canada Basin: initial findings, Polar Biol., 28, 218–231, 2005.
- ²⁵ Clarke, K. R. and Gorley, R. N.: Primer v6: User Manual/Tutorial, edited by: PRIMER-E, Plymouth, 190 pp., 2006.
 - Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703, doi:10.1029/2007gl031972, 2008.
 Farn, A. E.: Bulletin of the British Museum (Natural History), 45, BM(NH), London, 1950.
- Feder, H. M. and Pearson, T. H.: The Benthic Ecology of Loch Linnhe and Loch Eil, a Sea-Loch System on the West-Coast of Scotland, 5, Biology of the Dominant Soft-Bottom Epifauna and Their Interaction with the Infauna, J. Exp. Mar. Biol. Ecol., 116, 99–134, doi:10.1016/0022-0981(88)90050-0, 1988.

Feder, H. M., Carey, A., Barton, L., and Merrell, T.: Environmental assessment of the Alaskan continental shelf: Annual reports of principal investigators, US Department of Commerce, Boulder, 1978.

Gage, J. D.: Growth and production of *Ophiocten gracilis* (Ophiuroidea: Echinodermata) on the

Scottish continental slope, Mar. Biol., 143, 85–97, doi:10.1007/s00227-003-1050-7, 2003.
 Gage, J. D. and Tyler, P. A.: Non-Viable Seasonal Settlement of Larvae of the Upper Bathyal Brittle Star *Ophiocten gracilis* in the Rockall Trough Abyssal, Mar. Biol., 64, 153–161, doi:10.1007/Bf00397104, 1981.

Gallucci, F., Fonseca, G., and Soltwedel, T.: Effects of megafauna exclusion on nematode as-

- semblages at a deep-sea site, Deep-Sea Res. I, 55, 332–349, doi:10.1016/j.dsr.2007.12.001, 2008a.
 - Gallucci, F., Sauter, E., Sachs, O., Klages, M., and Soltwedel, T.: Caging experiment in the deep sea: Efficiency and artefacts from a case study at the Arctic long-term observatory HAUS-GARTEN, J. Exp. Mar. Biol. Ecol., 354, 39–55, doi:10.1016/j.jembe.2007.10.006, 2008b.
- ¹⁵ Gamber, J. H. and Clark, D. L.: Distribution of microscopic molluscs, echinoderms and sponges in the central Arctic Ocean, Micropalaeontology, 24, 422–431, 1978.
 - Gebruk, A. V., Krylova, E. M., Lein, A. Y., Vinogradov, G. M., Anderson, E., Pimenov, N. V., Cherkashev, G. A., and Crane, K.: Methane seep community of the Håkon Mosby mud volcano (the Norwegian Sea): composition and trophic aspects, Sarsia, 88, 394–403, doi:10.1080/00364820310003190, 2003.
 - Hebbeln, D. and Wefer, G.: Effects of ice coverage and ice-rafted material on sedimentation in the Fram Strait, Nature, 350, 409–411, 1991.

20

25

- Hildebrandt, N., Bergmann, M., and Knust, R.: Longevity and growth efficiency of two deepdwelling Arctic zoarcids and comparison with eight other zoarcid species from different climatic regions, Polar Biol., 34, 1523–1533, doi:10.1007/s00300-011-1011-4, 2011.
- Hunkins, K. L., Ewing, M., Heezen, B. C., and Menzies, R. J.: Biological and geological observations on the first photographs of the Arctic Ocean deep-sea floor, Limnol. Oceanogr., 5, 154–161, 1960.

Iken, K., Brey, T., Wand, U., Voigt, J., and Junghans, P.: Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis, Prog. Oceanogr., 50, 383–405, 2001.

- Jones, D. O. B., Bett, B. J., and Tyler, P. A.: Depth-related changes in the arctic epibenthic megafaunal assemblages of Kangerdlugssuaq, East Greenland, Mar. Biol. Res., 3, 1111–1128, 2007.
- Kaufmann, R. S. and Smith, K. L.: Activity patterns of mobile epibenthic megafauna at an
- abyssal site in the eastern North Pacific: results from a 17-month time-lapse photographic study, Deep-Sea Res. I, 44, 559–579, 1997.
 - Kauker, F., Kaminski, T., Karcher, M., Giering, R., Gerdes, R., and Voßbeck, M.: Adjoint analysis of the 2007 all time Arctic sea-ice minimum, Geophys. Res. Lett., 36, L03707, doi:10.1029/2008gl036323, 2009.
- Lalande, C., Bauerfeind, E., and Nöthig, E. M.: Downward particulate organic carbon export at high temporal resolution in the eastern Fram Strait: influence of Atlantic Water on flux composition, Mar. Ecol.-Prog. Ser., 440, 127–136, doi:10.3354/meps09385, 2011.
 - MacDonald, I. R., Bluhm, B. A., Iken, K., Gagaev, S., and Strong, S.: Benthic macrofauna and megafauna assemblages in the Arctic deep-sea Canada Basin, Deep-Sea Res. I, 57, 136– 152. doi:10.1016/i.dsr2.2009.08.012. 2010.
- 152, doi:10.1016/j.dsr2.2009.08.012, 2010.
 Mayer, M. and Piepenburg, D.: Epibenthic community patterns on the continental slope off East
 - Greenland at 75° N, Mar. Ecol.-Prog. Ser., 143, 151–164, 1996.

Meinert, F.: The Danish Ingolf-Expedition: Pycnogonida, H. Hagerup, Copenhagen, 1899.

Metaxas, A. and Giffin, B.: Dense beds of the ophiuroid *Ophiacantha abyssicola* on the continental slope off Nova Scotia, Canada, Deep-Sea Res. I, 51, 1307–1317, doi:10.1016/j.dsr.2004.06.001, 2004.

Møller, P. R.: Redescription of the *Lycodes pallidus* species complex (Pisces, Zoarcidae), with a new species from the Arctic/North Atlantic Ocean, Copeia, 2012, 972–996, 2001.

Newton, H. A., Brush, G. J., Lyman, C. S., Loomis, E., Verrill, A. E., and Whitney, W. D.: Trans-

- actions of the Connecticut Academy of Arts and Sciences, Tuttle, Morehouse, and Taylor, New Haven, 1866.
 - Ontrup, J., Ehnert, N., Bergmann, M., and Nattkemper, T. W.: Biigle Web 2.0 enabled labelling and exploring of images from the Arctic deep-sea observatory HAUSGARTEN, OCEANS 2009 – EUROPE, doi:10.1109/OCEANSE.2009.5278332, 2009.
- Paterson, G. J. L., Tyler, P. A., and Gage, J. D.: The taxonomy and zoogeography of the genus Ophiocten (Echinodermata: Ophiuroidea) in the North Atlantic Ocean, Bulletin of the British Museum of Natural History (Zoology), 43, 109-128, 1982.

- Paul, A. Z. and Menzies, R. J.: Benthic ecology of the high arctic deep sea, Mar. Biol., 27, p. 251, 1974.
- Pettibone, M. H.: Bulletin of the United States National Museum, 227, Smithsonian Institution Press, Washington, DC, 1963.
- ⁵ Pielou, E. C.: An introduction to mathematical ecology, Wiley, New York, 286 pp., 1969.
 Piepenburg, D.: Recent research on Arctic benthos: common notions need to be revised, Polar Biol., 28, 733–755, doi:10.1007/s00300-005-0013-5, 2005.
 - Piepenburg, D., Blackburn, T. H., Vondorrien, C. F., Gutt, J., Hall, P. O. J., Hulth, S., Kendall, M. A., Opalinski, K. W., Rachor, E., and Schmid, M. K.: Partitioning of Benthic Community
- Respiration in the Arctic (Northwestern Barents Sea), Mar. Ecol.-Prog. Ser., 118, 199–213, 1995.
 - Piepenburg, D., Chernova, N. V., von Dorrien, C. F., Gutt, J., Neyelov, A. V., Rachor, E., Saldanha, L., and Schmid, M. K.: Megabenthic communities in the waters around Svalbard, Polar Biol., 16, 431–446, 1996a.
- Piepenburg, D., Chernova, N. V., vonDorrien, C. F., Gutt, J., Neyelov, A. V., Rachor, E., Saldanha, L., and Schmid, M. K.: Megabenthic communities in the waters around Svalbard, Polar Biol., 16, 431–446, 1996b.
 - Quéric, N.-V. and Soltwedel, T.: Impact of small-scale biogenic sediment structures on bacterial distribution and activity in Arctic deep-sea sediments, Mar. Ecol.-Evol. Persp., 28, 66–74, 2007.
 - Rogacheva, A. V.: Revision of the Arctic group of species of the family Elpidiidae (Elasipodida, Holothuroidea), Mar. Biol. Res., 3, 367–396, doi:10.1080/17451000701781880, 2007.
 - Ruhl, H. A. and Smith, Jr., K., L.: Shifts in Deep-Sea Community Structure Linked to Climate and Food Supply, Science, 305, 513–515, doi:10.1126/science.1099759, 2004.
- Ruhl, H. A., Ellena, J. A., and Smith, K. L.: Connections between climate, food limitation, and carbon cycling in abyssal sediment communities, P. Natl. A. Sci., 105, 17006–17011, doi:10.1073/pnas.0803898105, 2008.
 - Rybakova, E., Galkin, S., Bergmann, M., Soltwedel, T., and Gebruk, A.: Density and distribution of megafauna at the Håkon Mosby Mud Volcano (the Barents Sea) based on image analysis,
- ³⁰ Biogeosciences Discuss., in press, 2012.

20

Sardá, R., Foreman, K., Werme, C. E., and Valiela, I.: The impact of epifaunal predation on the structure of macroinfaunal invertebrate communities of tidal saltmarsh creeks, Estuar. Coast. Shelf. S., 46, 657–669, doi:10.1006/ecss.1997.0322, 1998.

- Schewe, I. and Soltwedel, T.: Benthic response to ice-edge-induced particle flux in the Arctic Ocean, Polar Biol., 26, 610–620, doi:10.1007/s00300-003-0526-8, 2003.
- Schoening, T., Bergmann, M., Ontrup, J., Taylor, J., Dannheim, J., Gutt, J., Purser, A., and Nattkemper, T. W.: Semi-Automated Image Analysis for the Assessment of Megafau-
- ⁵ nal Densities at the Arctic Deep-Sea Observatory HAUSGARTEN, Plos One, 7, e38179, doi:10.1371/journal.pone.0038179, 2012.

Schulz, M., Bergmann, M., von Juterzenka, K., and Soltwedel, T.: Colonisation of hard substrata along a channel system in the deep Greenland Sea, Polar Biol., 33, 1359–1369, 2010.

Shannon, C. E. and Weaver, W.: The mathematical theory of communication, University of Illinois Press, Urbana, Illinois, 144 pp., 1963.

Shuman, F. R. and Lorenzen, C. J.: Quantitative Degradation of Chlorophyll by a Marine Herbivore, Limnol. Oceanogr., 20, 580–586, 1975.

Smith, R. I.: Keys to marine invertebrates of the Woods Hole region: a manual for the identification of the more common marine invertebrates, Systematics-Ecology Program, Marine Biological Laboratory, Woods Hole, 1964.

Soltwedel, T., Bauerfeind, E., Bergmann, M., Budaeva, N., Hoste, E., Jaeckisch, N., Von Juterzenka, K., Matthiessen, J., Mokievsky, V., Nöthig, E.-M., Quéric, N.-V., Sablotny, B., Sauter, E., Schewe, I., Urban-Malinga, B., Wegner, I., Wlodarska-Kowalczuk, M., and Klages, M.: HAUSGARTEN: Multidisciplinary investigations at a deep-sea, long-term observatory in

the Arctic Ocean, Oceanography, 18, 46–61, 2005.

10

15

25

30

Soltwedel, T., Jaeckisch, N., Ritter, N., Hasemann, C., Bergmann, M., and Klages, M.: Bathymetric patterns of megafaunal assemblages from the arctic deep-sea observatory HAUS-GARTEN, Deep-Sea Res. I, 56, 1856–1872, doi:10.1016/j.dsr.2009.05.012, 2009.

Starmans, A. and Gutt, J.: Mega-epibenthic diversity: a polar comparison, Mar. Ecol.-Prog. Ser., 225, 45–52, doi:10.3354/meps225045, 2002.

Stephensen, K.: Grønlands krebsdyr og pycnogonider (conspectus crustaceorum et pycnogonidorum groenlandiae), B. Lunos, Kjøbenhavn, 1913.

Sumida, P. Y. G., Tyler, P. A., Lampitt, R. S., and Gage, J. D.: Reproduction, dispersal, and settlement of the bathyal ophiuroid *Ophiocten gracilis* in the NE Atlantic Ocean, Mar. Biol., 137, 623–630, 2000.

Thurston, M. H., Bett, B. J., Rice, A. L., and Jackson, P. A. B.: Variations in the Invertebrate Abyssal Megafauna in the North-Atlantic Ocean, Deep-Sea Res. I, 41, 1321–1348, 1994.

- Thurston, M. H., Rice, A. L., and Bett, B. J.: Latitudinal variation in invertebrate megafaunal abundance and biomass in the North Atlantic Ocean Abyss, Deep-Sea Res. I, 45, 203-224, 1998.
- Wesenberg-Lund, E.: The Danish Ingolf-expedition: Polychaeta, H. Hagerup, Copenhagen, 1899.

5

10

- Wheatcroft, R. A., Smith, C. R., and Jumars, P. A.: Dynamics of Surficial Trace Assemblages in the Deep-Sea, Deep-Sea Res. I, 36, 71-91, 1989.
- Wienerroither, R. M., Nedreaas, K. H., Uiblein, F., Christiansen, J. S., Byrkjedal, I., and Karamushko, O.: The marine fishes of Jan Mayen Island, NE Atlantic - past and present, Marine Biodiversity, 41, 395-411, doi:10.1007/s12526-010-0055-y, 2011.
- Zenkevich, L. A.: Biology of the seas of the USSR, translated by: Botcharskaya, S., Interscience Publishers, New York, 1963.

Discussion Pa	BC 9, 18039–1	GD 8081, 2012
per Discussior	Interannua in the ep mega K. S. Me	al variation ibenthic fauna yer et al.
ר Pap	Title	Page
Ō	Abstract	Introduction
	Conclusions	References
iscussi	Tables	Figures
on P	I	►I.
aper	•	•
_	Back	Close
Discus	Full Scre	en / Esc
sion	Printer-frier	dly Version
Pap	Interactive	Discussion
Ör	6	•

Station no.	Date (dd-month-yy)	Latitude	Longitude	Depth (m)	Gear
PS 59/91	12 Jul 2001	79°7.98′ N	6°04.50′ E	1284	MUC
PS 62/171–2	6 Aug 2002	79°8.46′ N	6°5.52′ E	1292	MUC
PS 62/191–1	10 Aug 2002	79°08.80′ N	5°59.66′ E	1299	OFOS start
		79°08.03′ N	5°46.52′ E	1325	OFOS end
PS 64/402–1	21 Jul 2003	79°7.98′ N	6°5.52′ E	1277	MUC
PS 66/103–1	7 Jul 2004	79°08.97′ N	5°56.35′ E	1323	AGT
PS 66/104–1	7 Jul 2004	79°7.99′ N	6°5.46′ E	1281	MUC
PS 68/277–2	26 Aug 2005	79°8.00′ N	6°5.57′ E	1279	MUC
MSM2-4/773-1	22 Aug 2006	79°8.00′ N	6°5.42′ E	1257	MUC
PS 70/163–1	12 Jul 2007	79°8.07′ N	5°59.40′ E	1304	MUC
PS70/189–1	16-Jul-2007	79°7.93′ N	6°5.26′ E	1290	GBC
PS 70/207–1	18 Jul 2007	79°07.97′ N	5°59.62′ E	1299	OFOS start
		79°08.04′ N	5°46.40′ E	1322	OFOS end
PS 72/137–2	12 Jul 2008	79°8.07′ N	6°5.51′ E	1281	MUC
PS72/137–5	12 Jul 2008	79°7.75′ N	6°7.46′ E	1273	AGT
PS 74/109–2	13 Jul 2009	79°8.07′ N	6°5.74′ E	1285	MUC
PS 76/132–2	6 Jul 2010	79°8.16′ N	6°6.35′ E	1283	MUC
PS 78/140–6	14 Jul 2011	79°8.11′ N	6°6.27′ E	1283	MUC
PS 80/168–1	17 Jul 2012	79°07.94′ N	6°15.70′ E	1321	OFOS start
		79°8.00′ N	6°07.84′ E	1274	OFOS end
PS 80/168–6	18 Jul 2012	79°8.17′ N	6°5.46′ E	1281	AGT

Table 1. Summary of gear deployments conducted at HG I. (MUC) multiple corer, (OFOS) Ocean Floor Observation System, (AGT) Agassiz trawl, (GBC) giant box core.

Discussion Paper

Discussion Paper

Discussion Paper

Table 2. Mean densities (ind m^{-2}) of megafaunal taxa recorded from images in 2002, 2007, and 2012 at HG I. The presence of other species collected from bottom samples is indicated (no numbers given). Asterisk denotes the 11 taxa which were reliably recognized and were used in statistical analyses. Abbreviations as in Table 1, plus the following: (SF) suspension feeder, (P/S) predator/scavenger, (DF), deposit feeder.

	Sampling	Feeding			20	002	2007 2012							
Species/Taxon	gear	Station No.	mode	Mobility	Mean	\pm SEM	Mean	\pm SEM	Mean	$\pm \text{SEM}$	Test used	f or χ^2	р	Significant difference
Demospongiae														
Tentorium semisuberites Cnidaria	AGT	PS80/168-6												
Purple cerianthid * White anemone Hormathiidae Stegopoma plicatile Mollusca	OFOS OFOS AGT AGT	PS80/168-6 PS66/103-1	SF SF	Sessile Sessile	0.01	0.01	0.03	0.01	0.05	0.01	K-W, M-W	4.87	0.09	no differences
Mohnia sp.	AGT, OFOS AGT,	PS80/168-6	P/S											
Bathyarca frielei Thyasira dunbari Yoldiella propinqua Yoldiella annenkovae Alvania wyvillethomsoni Oenopota sp. Siphonodentalium laubieri Chaetoderma nitidulum	OFOS AGT AGT AGT AGT AGT AGT	PS80/168-6 PS72/137-5 PS72/137-5 PS72/137-5 PS72/137-5 PS72/137-5 PS66/103-1 PS72/137-5	SF	Sessile										

Table 2. Continued.

	Sampling	Feeding			2	2002		007	2	012				
Species/Taxon	gear	Station No.	mode	Mobility	Mean	± SEM	Mean	± SEM	Mean	\pm SEM	Test used	f or χ^2	p	Significant difference
Pycnogonida														
Colossendeis	OFOS,													
proboscidea*	AGT OFOS,	PS66/103-1	DF	Vagile	0.01	0.01	0.01	0.01	0.01	0.01	ANOVA	0.27	0.77	no differences
cf. Nymphon macronyx *	AGT	PS72/137-5	P/S	Vagile	0.01	0.01	0.30	0.04	3.45	0.14	K-W, M-W	219	0	2002 < 2007 < 2012
Sipuncula														
Nephasoma diaphanes														
diaphanes	AGT	PS72/137-5												
Nephasoma lilljeborgi	GBC	PS70/189-1												
Echiura														
Hamingia arctica	AGT	PS66/103-1												
Annelida														
	OFOS,													2002 > 2007, 2002 < 2012,
Jasminiera schaudinni *	AGT	PS72/137-5	SF	Sessile	0.17	0.02	0.10	0.02	1.42	0.79	K-W, M-W	175.4	0	2007 < 2012
Thin tube worm	OFOS													
Bylgides sp.*	OFOS		P/S	Vagile	0.06	0.01	0.09	0.02	0.07	0.02	K-W, M-W	3.19	0.20	no differences
Abyssoninoe sp.	AGT	PS72/137-5		-										
Axionice maculata	AGT	PS66/103-1												
Chone sp.	AGT	PS72/137-5												
Glyphanostomum														
pallescens	AGT	PS66/103-1												
Laonice cirrata	AGT	PS72/137-5												
Lumbrinereidae	AGT	PS80/168-6												

Discussion Paper

Discussion Paper

Discussion Paper

											cussion Pa	B(9, 18039–1	GD 8081, 2012
Table 2. Contir	Sampling	Feeding			2002	2007	2012				aper Discus	Interannua in the ep mega K. S. Me	al variation bibenthic fauna eyer et al.
Species/Taxon	gear	Station No.	mode	Mobility	Mean ± SEM	Mean ± SEM	Mean ± SEM	Test used	$f \text{ or } \chi^2 \mu$	Significant difference	•		
Mariachele fragilis	AGT	PS66/103-1									on		
Mvriochele heeri	AGT	PS66/103-1											
Myriochele cf. Oculata	AGT	PS66/103-1									0	Title	Page
Ophelina abranchiata	AGT	PS72/137-5									đ		. ugo
Polyphysia sp.	AGT	PS80/168-6									Ō		
Praxillura longissima	AGT	PS66/103-1										Abstract	Introduction
Prinospio cirrifera	AGT	PS72/137-5										Abstract	introduction
Siboglinidae	AGT	PS80/168-6											
Crustacea												Conclusions	References
Bythocaris cf. leucopis*	OFOS, AGT	PS66/103-1	P/S	Vagile	0.02 0.01	0.02 0.01	0.02 0.01	ANOVA	0.16 0	0.85 no differences)is(Tables	Figure
Small white isopod, cf.				g							2	Tables	Figures
Munnopsidae	OFOS										o		
Halirages sp.	OFOS, AGT	PS80/168-6	P/S								<u>o</u> .		
Unciola sp.	AGT	PS72/137-5									0		
Haploops setosa	AGT	PS72/137-5											► I
Harpinia abyssi	GBC, AGT	PS70/189-1									J		
Unciola cf. petalocera	GBC	PS70/189-1									0	and the second se	and the second second
Byblis minuticornis	AGT	PS72/137-5									00		• • • • • • • • • • • • • • • • • • •
Onisimus cf. leucopis	GBC	PS70/189-1											
Anonyx nugax	AGT	PS66/103-1											
iscnyrocerus previcornis	AGI	PS/2/137-5										Back	Close

18071

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

 \Box

Table 2. Continued.

	Sampling	Feeding			20	02	20	2007		12				
Species/Taxon	gear	Station No.	mode	Mobility	Mean	- SEM	Mean :	⊧ SEM	Mean -	± SEM	Test used	f or χ^2	p	Significant difference
Paranarthrurella voeringi Pseudosphyrapus	AGT	PS66/103-1												
anomalus	AGT	PS66/103-1												
Diastylis lepechini	AGT	PS66/103-1												
Diastylis sp.1 nearglabra	AGT	PS66/103-1												
Eurycope cf. producta	AGT	PS72/137-5												
Echinodermata														
	OFOS,													
Bathybiaster vexillifer *	AGT	PS66/103-1	P/S	Vagile	0.03	0.01	0.04	0.01	0.05	0.01	ANOVA	0.50	0.61	no differences
Onhiocten gracilis *	AGT	PS66/103-1	DF	Vagile	19.22	0.04	16.53	0.04	49 59	0 10	K-W M-W	190	0	2002 < 2012 2007 < 2012
Elnidia sp. *	OFOS AGT	PS80/168-6	DF	Vagile	0.05	0.01	10.00	0.02	0.17	0.03	K-W M-W	25	õ	2002 < 2012, 2007 < 2012
Crinoid	OFOS	1 000,100 0	SE	ragiio	0.00	0.01		0.02	0.11	0.00		20	Ũ	2002 (2012, 2007 (2012
onnola	0.00		0.											
Vertebrata														
	OFOS,													
Lycodes squamiventer *	AGT	PS66/103-1	P/S	Vagile	0.04	0.01	0.02	0.01	0.01	0.01	K-W, M-W	5.17	0.08	no differences
	OFOS,													
Lycodonus flagellicauda *	AGT	PS66/103-1	P/S	Vagile	0.03	0.01	0.00	0.00	0.01	0.01	K-W, M-W	7.89	0.02	2002 > 2007
Lycodes frigidus	AGT	PS80/168-6												
Gaidropsarus argentatus	AGT	PS66/103-1												
Amblyraja hyperborea	AGT	PS66/103-1												
Other observed taxa														
Chaetognatha	OFOS													
Ctenophora	OFOS													

BGD 9, 18039–18081, 2012 Interannual variation in the epibenthic megafauna K. S. Meyer et al. Title Page Abstract Introduction Conclusions References Figures Tables 14 ◀ Close Back Full Screen / Esc Printer-friendly Version Interactive Discussion $(\mathbf{\hat{H}})$ (cc)

Discussion Paper

Discussion Paper

Discussion Paper

Table 2. Continued.

Species/Taxon	Sampling gear	Feeding Station No.	mode	Mobility	200 Mean ±	02 ⊧SEM	20 Mean	2007 Mean ± SEM		12 ⊧SEM	Test used	f or χ^2	р	Significant difference
Habitat features														
Upright worm tubes Worm tube on	OFOS				10.34	0.36	3.49	0.42	15.01	0.60	K-W, M-W	147	0	2002 > 2007, 2002 < 2012, 2007 < 2012 2002 > 2007, 2002 < 2012,
sediment	OFOS				5.27	0.22	8.54	0.47	49.54	1.82	K-W, M-W	194	0	2007 < 2012
											ANOVA [log(x+1) of			
Lebensspur	OFOS				2.26	0.12	1.32	0.08	0.30	0.05	data]	184	0	2002 > 2007 > 2012
white debris	OFUS				0.16	0.03	0.08	0.02	1.37	0.10	K-VV, IVI-VV	176	0	2002 < 2012, 2007 < 2012
Biodiversity indices														
Pielou's evenness Shannon-Wiener					0.12	0.01	0.16	0.01	0.30	0.01	K-W, M-W	129	0	2002 < 2007 < 2012
diversity					0.11	0.01	0.17	0.02	0.39	0.01	K-W, M-W	139	0	2002 < 2007 < 2012
Total species m ⁻²					2.23	0.10	2.43	0.13	3.87	0.09	K-W, M-W	100	0	2002 < 2012, 2007 < 2012
Tatal individuals m ⁻²					10.64	0.41	17.00	0.00	E4.0E	0.00	ANOVA [log(x+1) of	010	0	2002 > 2007, 2002 < 2012,
Total Individuals m					19.64	0.41	17.20	0.38	54.85	0.98	ualaj	010	U	2007 < 2012

Discussion Paper

Discussion Paper

Discussion Paper

Fig. 1. Location of OFOS transects at HAUSGARTEN I sampled in 2002, 2007 and 2012.

Fig. 2. Taxa found at station HG I. **(A)** purple cerianthid; **(B)** cf. Nymphon macronyx; **(C)** Colossendeis proboscidea; **(D)** Elpidia sp.; **(E)** Bylgides sp.; **(F)** Bathybiaster vexillifer; **(G)** Bythocaris cf. leucopis; **(H)** Lycodonus flagellicauda; **(I)** Ophiocten gracilis; **(J)** Lycodes squamiventer; **(K)** Jasmineira schaudinni. Scale bar = 10 cm, **(A–B)**, **(D–K)**; 5 cm, **(C)**.

Fig. 3. Permutated species-accumulation curves based on documentation of the 11 most recognizable species at HG I. An asymptote appears to be reached in each year.

Fig. 4. Non-metric MDS plot depicting megafaunal composition in images from 2002, 2007, and 2012 at station HG I. Data have been square-root transformed. A 2-D stress value of 0.12 indicates a good fit of the data.

Fig. 5. Mean total density of megafauna and trophic groups in images from 2002, 2007 and 2012 at HG I (based on 11 most reliably identified taxa). Differences in density of total fauna are significant between every pair of years.

Fig. 6. Taxa observed at HG I but not included in statistical analysis. **(A)**, sabellid polychaete; **(B)**, gastropod, probably *Mohnia* sp., with anemone; **(C)**, small white isopod, cf. Munnopsidae; **(D)**, *Halirages* sp.; **(E)**, superbenthic isopod; **(F)**, *Bathyarca frielei*; **(G)**, superbenthic chaetognath; **(H)**, ctenophore; **(I)**, large depression, possibly a (inactive) pockmark. Scale bar = 10 cm, **(E)**; 45 cm, **(G)**, **(H)**.

Fig. 7. Chlorophyll *a* and phaeopigment content averaged over the top 5 cm of sediment at HG I, 2001–2011.

