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Abstract

Land models, which have been developed by the modeling community in the past two
decades to predict future states of ecosystems and climate, have to be critically eval-
uated for their performance skills of simulating ecosystem responses and feedback to
climate change. Benchmarking is an emerging procedure to measure and evaluate5

performance of models against a set of defined standards. This paper proposes a
benchmarking framework for evaluation of land models. The framework includes (1)
targeted aspects of model performance to be evaluated; (2) a set of benchmarks as
defined references to test model performance; (3) metrics to measure and compare
performance skills among models so as to identify model strengths and deficiencies;10

and (4) model improvement. Component 4 may or may not be involved in a bench-
mark analysis but is an ultimate goal of general modeling research. Land models are
required to simulate exchange of water, energy, carbon and sometimes other trace
gases between the atmosphere and the land-surface, and should be evaluated for their
simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics15

across timescales in response to both weather and climate change. Benchmarks that
are used to evaluate models generally consist of direct observations, data-model prod-
ucts, and data-derived patterns and relationships. Metrics of measuring mismatches
between models and benchmarks may include (1) a priori thresholds of acceptable
model performance and (2) a scoring system to combine data-model mismatches for20

various processes at different temporal and spatial scales. The benchmark analy-
ses should identify clues of weak model performance for future improvement. Itera-
tions between model evaluation and improvement via benchmarking shall demonstrate
progress of land modeling and help establish confidence in land models for their pre-
dictions of future states of ecosystems and climate.25
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1 Introduction

Over the past two decades, tremendous progress has been achieved in the devel-
opment of land models and their inclusion in Earth system models (ESMs). State-
of-the-art land models now account for biophysical processes (exchanges of water
and energy) and biogeochemical cycles of carbon, nitrogen, and trace gases (Ole-5

son, 2010; Wang et al., 2010; Zaehle et al., 2010). They also simulate vegetation
dynamics (Sitch et al., 2003) and disturbances (Thonicke et al., 2010). When coupled
to ESMs, land models now allow simulation of land-atmosphere physical interactions
(Bonan, 2008) and carbon-climate feedback (Bonan and Levis, 2010; Friedlingstein et
al., 2006). These models are now widely used for policy relevant assessment of climate10

change and its impact on ecosystems or terrestrial resources, and more recently on al-
lowable anthropogenic CO2 emissions compatible with a given concentration pathway
(Arora et al., 2011). However, there is still very limited knowledge of the performance
skills of these land models, especially when embedded in ESMs. Without quantification
of the performance skills of land models, their prediction of future states of ecosystems15

and climate cannot be widely accepted.
Model performance has traditionally been evaluated via comparison with common

knowledge, observed data sets, and other models. “Validation” against observed data
is traditionally the most common approach to model evaluation (Oreskes, 2003; Rykiel,
1996). However, a land model typically simulates hundreds or thousands of biophysi-20

cal, biogeochemical, and ecological processes at regional and global scales over hun-
dreds of years. It would be unrealistic to expect validation of so many processes at all
spatial and temporal scales independently, even if observations were available. The
complex performance behavior of these related processes can only be realistically un-
derstood if we holistically assess the land models and their major components. As a25

consequence, there have been many international model intercomparison projects. For
example, the Project for Intercomparison of Land surface Parameterization Schemes
(PILPS) focused on simulation of the water and energy balance (Pitman, 2003). The
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Carbon Cycle Model Linkage Project (CCMLP) evaluated simulation of the terrestrial
carbon cycle (McGuire et al., 2001). The Coupled Carbon Cycle Climate Model Inter-
comparison Project (C4MIP) compared simulation of the climate-carbon cycle coupling
among 11 models (Friedlingstein et al., 2006). Nevertheless, there have been very
few, if any, attempts to systematically evaluate land models against data from a range5

of observation networks and experiments in a comprehensive, objective and transpar-
ent manner.

The International Land Model Benchmarking (ILAMB) project (http://www.ilamb.org/)
has recently been launched to promote model-data comparison to evaluate and im-
prove the performance of land models. ILAMB aims to (1) develop internationally ac-10

cepted benchmarks for land model performance, (2) promote the use of these bench-
marks by the international community for model comparison, (3) strengthen linkages
between experimental, remote sensing, and climate modeling communities, (4) design
new model tests, and (5) support the design and development of a new, open source,
benchmarking software system for use by the international community. ILAMB has the15

potential to stimulate observation and experimental communities to design new mea-
surement campaigns to improve models and reduce uncertainties associated with key
processes in land models.

This paper was a result of discussion during the second ILAMB workshop held in
Irvine, California, USA, on 24–26 January 2011. The workshop participants agreed20

that the community needs to clearly define terms related to benchmark analysis and
specify a general framework of benchmarking to facilitate communication among prac-
titioners in this area of research, as well as with those who are entering into this
field of research (e.g. students, post-doctoral fellows, and other scientists). This pa-
per first defines benchmark analysis and presents a framework for its interpretation,25

which consists of four major components. We then examine each of the four compo-
nents: targeted aspects of land models to be evaluated; defined benchmarks against
which model performance skills can be effectively evaluated; metrics to measure model
performances, and; approaches to identify model deficiencies for future improvement.
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Specifically, we highlight benchmarks to evaluate biophysical processes, hydrological,
biogeochemical cycles and vegetation dynamics. To identify model deficiencies, we
also discuss a variety of metrics to evaluate performance of different models and ap-
proaches.

2 Benchmark analysis and its general framework5

In a general sense, benchmark analysis is a standardized evaluation of one system’s
performance against defined references (i.e. benchmarks) that can be used to diag-
nose the system’s strengths and deficiencies for future improvement. Benchmark
analyses have been widely applied in economics, meteorology, computer sciences,
business, and engineering. In business, for example, benchmark analysis provides a10

systematic approach to improving production efficiency and profitability through iden-
tifying, understanding, and adapting the successful business practices and processes
used by other companies in terms of quality, time and cost (Fifer, 1988). In engineering,
benchmark analysis is used to measure efficiency, productivity, and quality against a
reference or benchmark performance of a stanardized instrument (Jamasb and Pollitt,15

2003). In meteorology, benchmark analysis facilitates testing the accuracy, efficiency,
and efficacy of meteorological model formulations and assumptions against measure-
ments (Bryan and Fritsch, 2002). In computer sciences, benchmark analysis is used to
examine the performance of a processor, code structure, features of processor archi-
tecture, and optimization of compiler against a number of standard tests to gain insight20

into how the processor or code can be improved to handle various applications (Simon
and McGalliard, 2009; Ghosh and Sonakiya, 1998).

Benchmark analysis is urgently needed to evaluate land models against observa-
tions and experimental manipulations as it allows us to identify uncertainties in predic-
tions as well as guiding the priorities for model development (Blyth et al., 2011). Several25

smaller-scale land model evaluation studies have been attempted. For example, the
Carbon-LAnd Model Intercomparison Project (C-LAMP) was conducted to evaluate two
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biogeochemistry models that are integrated within the Community Land Model (CLM)
– Carnegie-Ames-Stanford Approach′ (CASA′) and carbon-nitrogen (CN) against nine
different classes of observations (Randerson et al., 2009). The Joint UK Land Envi-
ronment Simulator (JULES) was evaluated for its performances against surface en-
ergy flux measurements from 10 flux network (FLUXNET) sites with a range of climate5

conditions and biome types (Blyth et al., 2011). Three global models of the coupled
carbon-climate system were evaluated against atmospheric CO2 concentration from a
network of stations to quantify each model’s ability to reproduce the global growth rate,
the seasonal cycle, the El Niño – Southern Oscillation (ENSO) – forced interannual
variability of atmospheric CO2, and the sensitivity to climatic variations (Cadule et al.,10

2010). The evaluation procedures so far are often carried out in largely “ad-hoc” ways,
and done as a matter of personal preference without much coordination among groups.

To effectively evaluate land model performance skills, we need to develop a widely
accepted, consistent and comprehensive framework for benchmark analysis. Land
models typically simulate thousands of processes related to energy balance, hydrolog-15

ical cycles, biogeochemical cycles, and vegetation dynamics. It is impossible to inde-
pendently evaluate each of the modeled processes. We have to develop integrative,
holistic approaches to understand and assess the complex behavior of these models
and major components. Also, a land model is a multidisciplinary product. Evaluation
of such a model requires a framework that enables communication among disciplines.20

In addition, numerous data sets are needed from many research areas to evaluate
various aspects of the land models. Organization of those heterogeneous data sets to
effectively evaluate land models requires a systems approach with assistance of eco-
logical informatics. Moreover, models simulate long-term and large-scale phenomena.
To date, few data sets can match the temporal and spatial scales of global and regional25

model simulations. We need standardized methods to measure mismatches between
models and data given their temporal and spatial characteristics.

A comprehensive benchmarking framework has at least four elements: (1) targeted
aspects of model performance to be evaluated; (2) benchmarks as defined references
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to evaluate model performance; (3) a scoring system of metrics to measure relative
performances among models; and (4) diagnostic approaches to identification of model
strengths and deficiencies for future improvement (Fig. 1). First, a land model typi-
cally simulates biophysical processes, hydrological processes, biogeochemical cycles,
and vegetation dynamics. For each of the component processes, the land model has5

to represent basic system dynamics well (i.e. baseline simulation) and simulate their
responses and feedback to climate change and disturbances (i.e. response simula-
tion). Any benchmark analysis has to be clear on what aspects of the land models are
evaluated. Second, the most critical component of any benchmark analysis is to de-
fine benchmarks. Benchmarks could be composed of direct observations; results from10

manipulative experiments; derived functional relationships and patterns from obser-
vations (e.g. water-use efficiency, phase lags between forcing and predicted ecosys-
tem responses, Bowen ratio), and data model products (i.e. data-based model output).
Third, a scoring system is needed to set criteria for a model to pass the benchmark test
and measure relative performance among models. Fourth, benchmark analysis should15

identify needed model improvements and areas where the model is sufficiently robust
for accurate simulations. It is challenging to identify model deficiencies in structure and
parameters based upon diagnosis of poor performance at various temporal and spatial
scales. The four elements of the benchmarking framework are discussed in detail in
the following sections.20

3 Aspects of land models to be evaluated via benchmarking

Land models typically simulate the surface energy balance, hydrological processes,
biogeochemical cycles, and vegetation dynamics. Although individual studies may
evaluate one aspect of model performance, a comprehensive framework is required
to evaluate all those major components. In addition, unlike models used for weather25

prediction, the type of land models we are discussing are usually designed to predict
longer-term future states of ecosystems and climate. The performance of a model
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should therefore be evaluated for its baseline simulations over broad spatial and tem-
poral scales, and include evaluation of modeled responses and feedbacks of land pro-
cesses to global change and disturbances.

Scientists have to establish some level of confidence in land models’ baseline simu-
lations before they can be used to study ecosystem responses and feedback to climate5

change. Baseline simulations of biogeochemical cycles include simulated global totals,
spatial distributions, and temporal dynamics of gross primary production, net primary
production, vegetation and soil carbon content, ecosystem respiration, litter production,
litter mass, net ecosystem production at some reference climatic conditions, and land
use and cover patterns. The reference climate conditions usually are reanalysis climate10

data of 30–50 yr that are used for model spin-up. The baseline simulations of biophys-
ical processes include global totals, spatial distributions, and temporal dynamics of ra-
diation fluxes (latent and sensible heat fluxes, Bowen ratio), evaporation, transpiration,
and runoff. The baseline simulations of vegetation dynamics include preindustrial vege-
tation pattern or change in vegetation distribution over the last 5000 to 10 000 yr. Most15

baseline simulations are verified against common knowledge and evaluated against
benchmarks, for example, for their representation of diurnal and seasonal variations
(Fig. 2).

To reliably predict future states of ecosystems under a changed environment, land
models have to realistically simulate responses of land processes to disturbances and20

global change. Natural and anthropogenic disturbances can significantly alter biogeo-
chemical processes, biophysical properties, and vegetation dynamics. Several land
models have incorporated algorithms to simulate individual events of fire and land use
changes (Thonicke et al., 2010; Prentice et al. 2011). Natural disturbances occur at
different frequencies with varying severity on diverse spatial scales in different regions25

and thus can be characterized by disturbance regimes. Climate change can regulate
and, in turn, be affected by disturbance regimes. How to simulate and benchmark the
responses and feedback of disturbance regimes to climate change still remains a great
challenge.
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Major global change factors include rising atmospheric CO2 concentration, increas-
ing land use, surface air temperature, altered precipitation amounts and patterns, and
nitrogen (N) deposition. Most land models use the Farquhar leaf photosynthesis model
(Farquhar et al., 1980) and its variants to simulate instantaneous increases in carbon
influx in response to increasing [CO2] but there is much greater variation in the extent5

to which current models account for long-term acclimation of photosynthetic and res-
piratory parameters. Almost all land models simulate ecosystem responses to climate
warming primarily via the kinetic sensitivity of photosynthesis and respiration to tem-
perature and have not fully considered warming-induced changes in phenology and the
length of growing seasons, nutrient availability, ecosystem water dynamics and species10

composition (Luo, 2007). Precipitation changes in its frequency, intensity, amount, and
spatial distributions as predicted by climate models. Each of those changes has dif-
ferent effects on ecosystems (Knapp et al., 2008), which are usually represented by
response functions that are either directly linked to precipitation or indirectly through
soil moisture dynamics in land models. A few global land models have been designed15

to simulate ecosystem responses to nitrogen deposition (Thornton et al., 2007; Wang
et al., 2010; Zaehle et al., 2010), mainly via its simulation of plant growth, but not many
indirect effects of nitrogen on ecosystem structure and function or long-term changes
in nitrogen capital have been in included (Lu et al., 2011b; Yang et al., 2011).

Feedbacks occur among land processes themselves and between ecosystems and20

the atmosphere. For example, soil nitrogen availability influences leaf area expansion,
plant growth, and ecosystem carbon cycle. Carbon sequestration in plant biomass and
soil feeds back not only to short-term mineral nitrogen availability but potentially also
stimulates long-term accumulation of nitrogen capital in ecosystems (Luo et al., 2006).
Nitrogen availability may also influence albedo (Ollinger et al., 2008) and thus land25

surface energy and water balances. The latter feed back to climate change. There
are numerous feedback processes within land models and in their coupling with cli-
mate models. However, it is not straightforward to disentangle these processes and or
therefore to evaluate feedback mechanisms in benchmark analysis.
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4 Benchmarks as defined references

A comprehensive benchmarking framework has a set of defined benchmarks, against
which land models are evaluated (Table 1). Different benchmarks are chosen to evalu-
ate different aspects of land models performance. The subsections below discuss what
are available and of relevance for the various land model processes of interest.5

4.1 Types of benchmarks

The benchmarks could include direct observations or ground-based measurements
(Mittelmann and Preussner, 2006), results from manipulative experiments, data-model
products, and derived functional relationships or patterns from data (Table 1). Direct
observations and experimental results reflect recorded states of ecosystems when the10

measurements were made and are generally accepted to be the most reliable bench-
marks model performance. Direct measurements include atmospheric CO2 concen-
tration, biomass, species composition, streamflow, snow cover and soil water content.
Comparisons with models need to recognize that most direct measurements have had
some levels of processing, up-scaling, allometry, and assumptions to generate the fi-15

nal estimates. For example, biomass data of trees are usually derived from allometric
equations being applied to actual measured diameter at breast height and tree height
(Chave et al., 2005). Values of normalized difference vegetation index (NDVI) are
derived from remotely sensed measurements of light reflectance in the red and near
infrared wavelength regions (Carlson and Ripley, 1997).20

Direct measurements are usually made at specific points of time and space. Eval-
uating land model performance over the globe and hundreds of years needs bench-
marks with extensive spatiotemporal representations of many processes (Sitch et al.,
2008). Data-model products with well-quantified errors, which are generated accord-
ing to some functional relationships to extend data’s spatial and temporal scales via25

interpolation and extrapolation, can become useful for benchmarking. For example,
the estimates of a global dataset of gross primary production and latent heat fluxes
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from eddy flux towers have been used to improve a global land surface model (Bonan
et al., 2011). ET that is derived from remote sensing measurements of various en-
ergy components together with the energy balance equation (Fisher et al., 2008; Mu
et al., 2007; Vinukollu et al., 2011) offers broad spatial and long temporal data sets
benchmark analysis.5

Land models can also be evaluated on their simulated patterns or relationships in-
stead of absolute values of particular variables against benchmarks. This approach
is particularly effective when uncertainties in data due to both random and system-
atic errors are unknown. For example, the south-north increase in the amplitude of
the seasonal cycle in atmospheric CO2 (Prentice et al., 2000) and latitudinal gradients10

in the satellite observed fraction of absorbed radiation (Zaehle et al., 2010) both give
information about the geographic distribution of vegetation production. Similarly, the
spatial relationship between annual net primary production and annual precipitation in
a global network of monitoring stations provides more information about the sensitivity
of NPP to climate than a comparison of these data on the basis of vegetation types15

(Randerson et al., 2009; Fig. 3). Correlations between El Niño related climate anoma-
lies and growth rate of atmospheric CO2 can be used to examine consistency between
the observed and simulated ecosystem responses to climate change (Cadule et al.,
2010; Fig. 4).

Model performance is also sometimes evaluated against standardized simulation re-20

sults of a well-accepted model (Dai et al., 2003), the model ensemble mean (Chen et
al., 1997), or statistically based-model results (Abramowitz, 2005). For example, a sta-
tistically based artificial neural network has been used to compare the performance of
process-based land models (Abramowitz, 2005). Their analysis found that none of the
tested land models performed better than the statistical model to reproduce observed25

carbon fluxes. The statistical model results can be used to define a benchmark level
of performance that land models can be targeted to achieve relative to the information
contained in the meteorological forcing about the surface fluxes.
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4.2 Applying benchmarks in land model evaluation

Benchmarks are used to evaluate biophysical processes, biogeochemical cycles, and
vegetation dynamics of land models. Exchange of water and energy between land
surface and atmosphere exerts major influences on the global and regional climate.
In general, the available net radiation at the land surface is partitioned into ground,5

sensible, and latent heat fluxes, which drive the hydrological cycle via latent heat flux.
Benchmarking energy and water balances and partitioning are requires estimates of
latent heat flux, surface albedo, runoff, surface temperature, and soil moisture. Ex-
amples of global-scale reference data sets are shown in Table 2. Manipulative ex-
periments can also be used to evaluate modeled responses of water and energy to10

global change (Wu et al., 2011). Data sets from over 100 sites on soil and permafrost
data and active layer depths from the Circumpolar Active Layer Monitoring (CALM;
http://nsidc.org/data/ggd313.html) program (Brown et al., 2003) are useful for bench-
marking high-latitude ecosystems.

Data sets that are often used for benchmarking biogeochemical cycles include atmo-15

spheric CO2 records at the seasonal to decadal scale (Dargaville et al., 2002; Heimann
et al., 1998), satellite data at seasonal or longer time scales (Blyth et al., 2010; Maignan
et al., 2011; Randerson et al., 2009). Other available datasets for biogeochemical cycle
benchmarking include global GPP, NPP, soil respiration, ecosystem respiration, plant
biomass, litter pool, litter decomposition rates, and soil carbon data products (Table 3).20

Recently, better estimates of high-latitude soil carbon stocks have been assembled
(Tarnocai et al., 2009). In addition, global change experiments offer the potential to
benchmark biogeochemical cycle responses to elevated CO2, warming, precipitation,
and nitrogen fertilization or deposition (Table 3). Data sets of methane emissions at
various sites have been used to test a methane model (Riley et al., 2011). Prefer-25

ence is always given, where possible, for longer time series data sets, as they offer the
potential to detect how the land surface responds to low frequency modes of climate
variation (e.g. Piao et al., 2011 on NDVI greening and browning in boreal areas). Data
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sets on nutrient cycling and state variable at site, regional, and global scales and can
be used to benchmark global carbon-nitrogen models (Wang et al., 2010; Zaehle et al.,
2010).

Free-air CO2 enrichment (FACE) experiments are a good example of manipulative
experiments that have provided useful benchmarks for land surface models. They5

provided integrative measures of ecosystem response to future concentrations of at-
mospheric CO2 (e.g. NPP, N uptake, stand transpiration) over multiple years, as well
as detailed descriptions of contributory processes (e.g. photosynthesis, fine-root pro-
duction, stomatal conductance) (Norby and Zak, 2011). The LPJ model (Hickler et
al., 2008) matched the NPP response to elevated CO2 observed in four FACE exper-10

iments in temperate forests (Norby et al., 2005), which provided more confidence in
predictions of response in other biomes. The average response of the 11 models in
the C4MIP project (Friedlingstein et al., 2006) was consistent with the FACE results, al-
though individual models varied widely. Furthermore, the general agreement may have
been spurious: the models did not include feedbacks through the N cycle (Friedling-15

stein et al., 2006), and the experiments may not have been run long enough for N
feedbacks to downregulate NPP (Norby et al., 2010).

Vegetation dynamics are usually represented by the combination of 7–17 plant func-
tional types (PFT) in land models. The composition and abundance of PFTs can either
be prescribed as time-invariant fields or can evolve with time as results of vegeta-20

tion dynamics or land use change. Although different land models have their own set
of PFTs, pre-industrial vegetation types are very important for benchmarking model
performance (Table 4). In addition, it is also critical to have datasets of vegetation re-
sponses to disturbance and global change. There are some limited data available for
vegetation response to warming, N deposition, fire, and land use and change (Table 4).25

Although extensive data sets are available for benchmarking land models, equifi-
nality remains a major issue in model evaluation (Tang and Zhuang, 2008; Luo et
al., 2009). That is, the available data streams are insufficient to constrain model pa-
rameterization (Weng and Luo, 2011; Wang et al., 2001; Carvalhais et al., 2010) or
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to distinguish between different modeling structures (Frank et al., 1998). The need to
comprehensively represent processes often leads to increasing model complexity, pos-
ing under-constraint and over-parameterization problems (Oreskes, 2003). Increases
in the number, type, and location of observations used in model calibration and evalua-
tion would ideally mitigate the equifinality issue and better constrain parameterization.5

Therefore, effective benchmarks should draw upon a broad set of independent obser-
vations spanning multiple temporal and spatial scales to identify processes and dy-
namics for system characterization (Randerson et al., 2009; Wang and Barrett, 2003;
Zhou and Luo, 2008).

5 Benchmarking metrics10

When land models are evaluated against benchmark data sets, the choice of which
measure of performance to use, and the spatial and temporal scale at which the mea-
sure applies can significantly affect the nature of results. Defining standard metrics is
a key step in any benchmarking framework. There are many quantitative measures
(e.g. continental scale daily RMSE, global mean annual deviation from observed val-15

ues, and global monthly correlations) of mismatches between modeled and observed
individual variables (Janssen and Heuberger, 1995; Smith and Rose, 1995). To rank
model performance, the measures, or metrics, of model performances for individual
variables may be normalized and combined via a scoring system to provide a synthetic
skill score, often on a scale from zero (least skillful) to one (most skillful),.20

To meet minimal requirements, the research community may decide upon a priori
threshold levels of performance level before a benchmark analysis is conducted. Such
a threshold may be justified according to criteria of why a model below the threshold
is not acceptable. Such thresholds may be viewed as a necessary, but not sufficient
condition for a fully functioning model because complex models may perform well on25

particular metrics due as a result of compensating errors (that is, getting the right
answers for the wrong reasons).
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A comprehensive benchmarking study usually scrutinizes model performance from
multiple perspectives. Thus, a suite of metrics across several variables is needed to
quantitatively measure model performance at the relevant spatial and temporal scales
at which the model operates (Abramowitz et al., 2008; Cadule et al., 2010; Rander-
son et al., 2009; Taylor, 2001). Several strategies have been pursued to localize and5

quantify data-model disagreement in both time and frequency domains and at different
spatial scales (Cadule et al., 2010; Mahecha et al., 2010; Wang et al., 2011). Model-
data disagreements can be evaluated separately for low frequency variations (including
nonlinear trends), the phasing and amplitude of seasonality, and short-term stochas-
tic variability (Mahecha et al., 2010; Wang et al., 2010). Much less has been done10

to measure the model performance against observed ecosystem responses and feed-
backs from global change experiments that manipulate global change factors, such as
elevated CO2, climate warming, altered precipitation, and nitrogen deposition.

The ranking of land models should reflect the different purposes that land models
have been built for. For instance, land surface models operating within mesoscale me-15

teorology or weather forecast models must be particularly robust at simulating energy
and moisture fluxes, while land models coupled to Earth system models must be good
at capturing ecosystem responses to changes in atmospheric composition and climate
over decadal to centennial time scales. Thus metrics that measure disagreements be-
tween simulated and observed energy and water fluxes should be weighed more in a20

mesoscale meteorological study than in a decadal to centennial climate change study.
Data uncertainty is another important factor for developing appropriate metrics to

measure the performance of land models. Different data sets inherently have different
levels of uncertainty, and indeed different levels of ability to quantify uncertainty. For ex-
ample, even at the plot-scale plant biomass estimated from an allometrical relationship25

together with diameter at breast height usually has much smaller observational errors
than measured soil respiration (Luo et al., 2003). With some global scale remotely
sensed products the time and frequency of overpass, atmospheric transparency, as
well as the models used to translate irradiances into, for example, soil moisture content
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(as well as uncertainties in the parameters associated with these models) can make un-
certainty estimation very difficult and temporally variable. When benchmarks of multi-
ple variables are used, individual variables are commonly normalized by their standard
deviations to make them effectively comparable. The C-LAMP system (Randerson et
al., 2009) gave metrics for model performance that depended on a qualitative assess-5

ment of the importance of the process being tested and the uncertainty in the reference
data set. They used those combined metrics to rank the models and cautioned that
the assessments were in some sense subjective. Schwalm et al. (2010) used Tay-
lor skill, bias, and observational uncertainty to measure performance of 22 terrestrial
ecosystem models against observations from 44 FLUXNET sites (Fig. 5)10

There are many techniques that have been explored by the data assimilation re-
search community to combine metrics of measuring mismatches of modeled variables
with multiple observations for different processes with different data uncertainties at
various temporal and spatial issues (Trudinger et al., 2007). Some of these techniques
may be very useful for benchmark analysis. An essential procedure for data assimi-15

lation is to define a metric (e.g. cost function) that describes data-model mismatches
using multiple observations (Table 5). Luo et al. (2003) used standard deviations of
individual observations as weights for model mismatches with data sets whose abso-
lute values differed by several orders of magnitude. That weighing method has been
successfully used in regional data assimilation with spatially distributed data (Zhou20

and Luo, 2008). Other weighting functions used in multiple-variable metrics include
a simple sum of mismatches between modeled and observed variables, the standard
deviation of residuals after a preliminary run of the calculation, the average value of ob-
servations, a linear function of the observation values (Trudinger et al., 2007). Choices
of weights used in multiple-variable metrics significantly alter the outcome of parame-25

ter estimation (Trudinger et al., 2007; Weng and Luo, 2011; Xu et al., 2006) and are
expected to have a similar influence on evaluation of model performance skills in the
benchmark analysis.
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6 The role of benchmarking in model improvement

One of the ultimate goals of a benchmark analysis is to provide clues for diagnos-
ing systematic model errors and thereby aid model improvement, although it need not
be an essential part of benchmarking activities. The clues for model improvement
usually come from identified poor performances of a land model in its simulations of5

processes, functions, and/or structures of ecosystems at different temporal and spatial
scales. Model improvement is usually implemented through changes in model struc-
tures, parameterization, initial values, or input variables.

The average physiological properties of plant functional types are traditionally con-
ceived as model “parameters”. Parameter error may therefore arise when the values10

chosen for model parameters do not correspond to true underlying values. Thus, model
benchmarking against plant trait data sets might be useful in assessing whether model
parameters fall within realistic ranges. Such data sets include the GLOPNET leaf trait
data set (Reich et al., 2007; Wright et al., 2005), and the TRY dataset (Kattge et
al., 2009). For example, the TRY data set provides probability density functions of15

photosynthetic capacity based on 723 data points for observed carboxylation capacity
(Vcmax) and 1966 data points of observed leaf nitrogen. Implementing these new,
higher, values of observationally constrained Vcmax in the CLM4.0 model resulted in
a significant over-estimates of canopy photosynthesis, compared to estimates of pho-
tosynthesis scaled from FLUXNET observations (Bonan et al., 2011). The scale of20

the over-prediction of GPP (∼500 g C m−2 yr−1, between 30◦ and 60◦ latitude) identified
some fundamental issues in the formulation of the canopy model in CLM4.0.

Model structure error arises when key causal dependencies in the system being
modeled are missing or represented incorrectly in the model. Based on biogeochem-
ical principles of carbon-nitrogen coupling, for example, Hungate et al. (2003) con-25

ducted a plausibility analysis to illustrate that carbon sequestration may be consider-
ably overestimated without the inclusion of nitrogen processes (Fig. 6). Without the
carbon-nitrogen feedback, models fail to capture the experimentally observed positive
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responses of NPP to warming in cool climates (Zaehle and Friend, 2010). Generally,
model structure errors are likely to reveal themselves through sufficiently comprehen-
sive benchmarking and usually cannot be resolved by tuning or optimizing parame-
ter values (Abramowitz, 2005; Abramowitz et al., 2006, 2007). Nevertheless, over-
parameterizations of related processes may mask structural model deficiencies. A5

poor representation of the seasonal cycle of heterotrophic respiration in high latitudes
by the Hadley Centre model (Cadule et al., 2010) was caused by soil temperature be-
coming much too low in the winter. Simply improving the seasonal cycle by adjusting
the temperature function of respiration would have given the right answer for the wrong
reason and materially affected the sensitivity to future changes. By understanding the10

processes (too little insulation of soil temperatures by the snow pack) enabled tackling
the error without changing the long-term sensitivity. The C-LAMP benchmark analy-
sis of CLM-CASA’ and CN against atmospheric CO2 measurements, eddy-flux data,
MODIS observations, and TRANSCOM results suggested the need to improve model
representation of seasonal and interannual variability of carbon cycle (Fig. 2).15

7 Discussion and conclusion

This paper proposed a four-component framework for benchmarking land models. The
components are: identification of aspects of models to be evaluated; collation of bench-
marks as standardized references to test models; a scoring system to measure model
performance skills and to evaluate model strengths and deficiencies; and; a collection20

of ways that can utilize the first three components to generate model improvement. We
now consider a few caveats and concerns.

The first issue is on model predictions vs. performance skills. While an increase
in performance gained through benchmark analysis will likely lead to an increase in
predictive ability of a model for short-range predictions, it might not be sufficient to25

guarantee improved long-term projections of ecosystem responses to climate change
for at least three reasons. First, observations on past ecosystem dynamics cannot fully
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constrain model responses to future climate conditions that have never been observed.
Nevertheless, “comparing models and observations over a wide range of conditions in-
creases the chance of capturing important nonlinearities and complex or contingent
responses that may control future behavior” (Luo et al., 2011). Second, future states
of land ecosystems are determined not only by internal processes but also by external5

forces. The latter dominates long-term land dynamics so that predictions are clearly
bounded by scenario-based, what-if analysis. Embedding land models within Earth
system models, however, can help assess feedbacks between internal processes of
land ecosystems and various scenarios of climate and land use changes. Third, land
ecosystems are more at dynamic disequilibrium than equilibrium states under direc-10

tional climate change (Luo and Weng, 2011). Dynamic disequilibrium states of bio-
geochemical cycles can be defined by initial values, changes in element influxes, and
altered residence times (Weng and Luo, 2011). Future disequilibrium states of land
ecosystems can be better predicted if the benchmark analysis is designed to evaluate
key model components that determine their predictive behavior.15

The second issue is about the feasibility of a community-wide benchmarking system.
Land model benchmarking has reached a critical juncture, with several recent parallel
efforts to evaluate different aspects of model performance. One future direction that
may minimize duplication of effort is to develop a community-wide benchmarking sys-
tem supported by multiple modeling and experimental teams. For a community-wide20

system to function well, it will need to be built using open source software and using
only freely available observations with a traceable lineage. The software system that
can be used to diagnose impacts of model development, guide synthesis efforts, iden-
tify gaps in existing observations needed for model validation, and reduce the human
capital costs of making future model-data comparisons (Randerson et al., 2009). This25

is the approach being taken by the International Land Model Benchmarking Project (IL-
AMB) that will initially develop benchmarks for CMIP5 models participating in the IPCC
5th Assessment Report. An expectation of the first ILAMB benchmark is that it will be
modified and expanded for use in future model intercomparison projects. Ultimately,
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a robust benchmarking system, when combined with information on model feedback
strengths, may reduce uncertainties associated with emissions estimates required for
greenhouse gas stabilization over the 21st century or other future climate projections
(Qu and Hall, 2007). Such an open source, community-wide platform for model-data in-
tercomparison also speeds up model development and strengthens ties between mod-5

eling and measurement communities. Important next steps include the design and
analysis of land use change simulations (in both uncoupled and coupled modes), and
the entrainment of additional ecological and Earth system observations.

Thirdly, a comprehensive benchmarking framework needs to stimulate communica-
tion to broader audience. For the broad science community and the public, it provides10

a means to show that the representation of the key biological, chemical, and phys-
ical processes regulating biosphere-atmosphere exchange is improving. Within the
Earth system science community, benchmarking enables model developers from dif-
ferent disciplines to quantitatively diagnose the impacts of new parameterizations and
structures on land model performance. It also has the potential to strengthen ties be-15

tween experimental and modeling communities and allow for more effective syntheses.
Benchmarking would lead to closer scrutiny of key observational data sets, and provide
information about where model uncertainty was high – thus guiding future data collec-
tion efforts. In parallel, synthesis effort such as the IPCC may be able to draw upon
benchmarking analyses to identify whether feedback mechanisms that arise in various20

models are broadly consistent with available contemporary observations.
Lastly, benchmark analysis shares objectives and procedures with data assimilation

in many ways (Table 5). Data assimilation is a formal approach to infuse data into
models for improving parameterization and adjusting model structures (Peng et al.,
2011; Raupach et al., 2005; Wang et al., 2009; Luo et al., 2011). Data assimilation25

projects a misfit between model and observed quantities in the space of parameters,
and quantifies the level of constraints on each parameter with associated uncertainties.
It provides quantitative information, instead of performance criteria that should be met
in comparing model output with data, to decide that a model has a satisfactory behavior
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or not. But data assimilation is computationally very costly and, as a consequence,
cannot be easily implemented to directly improve the comprehensive, global-scale land
models. Combination of benchmarking and data assimilation may facilitate land model
improvement. Benchmarking can be used to pinpoint model deficiencies, which can
become targeted aspects of model to be improved via data assimilation.5
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Table 1. Types of benchmarks to be used for evaluating model performance.

Type Description Example Pros Cons

Direct Data from Temperature, soil Records of Limited spatial
observations instrument respiration systems states and temporal

readings with coverage
some processing

Experimental Data at two or Biomass, soil Effects of climate Step changes in
results more levels of moisture changes treatments, site-

treatments idiosyncrasy

Data-model Interpolation and Global Extended spatial Artifacts induced
products extrapolation of distribution of and temporal by the functions,

data according to GPP calculated coverage with especially outside
some functions from satellite or estimated errors the observation

flux data ranges

Functional Derived or NPP vs. Evaluation of Not absolute
relationships emerged from precipitation, environmental values of the
or patterns data Soil respiration scalars and variables

vs. temperature response
functions

1934

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/1899/2012/bgd-9-1899-2012-print.pdf
http://www.biogeosciences-discuss.net/9/1899/2012/bgd-9-1899-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 1899–1944, 2012

A framework of
benchmarking land

models

Y. Q. Luo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 2. Sample benchmarks to be used to evaluate biophysical processes.

Variable/factor Benchmark Evaluation

Data set Temporal Spatial Reference
frequency coverage

Baseline states and fluxes

Latent heat flux Gridded map 8-day to yearly Global Fisher et al. (2008) Heat flux and ET
(ET) Jung et al. (2010)

Mu et al. (2011)
Surface albedo Gridded map 16-days to yearly Global Moody et al. (2005, 2008) Energy-water

partitioning
Runoff Gridded map Monthly to yearly Global Dai et al. (2009) Water cycle
Surface and soil Gridded map Monthly to yearly Global FLUXNET, CRU, GISS, Energy balance
temperature and NCDC
Soil moisture Gridded map Monthly to yearly Global Owe et al. (2008); Water cycle

Dorigo et al. (2011)
Snow cover Gridded map Monthly to yearly Global AVHRR, MODIS, Energy partitioning

GlobSow
Snow depth/SWE Gridded map Monthly to yearly Regional CMC Water cycle

-NA

Responses of state and rate variables to disturbances and global change

Elevated CO2 Response ratio Weekly-yearly Site Morgan et al. (2004) Water cycle
Warming Response ratio Weekly-yearly Site Bell et al. (2010) Soil water dynamics
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Table 3. Sample benchmarks to be used to evaluate biogeochemical cycles.

Variable/factor Benchmark Evaluation

Data set Temporal Spatial Reference
frequency coverage

Baseline states and fluxes

GPP Gridded map Monthly Global Jung et al. (2011) Carbon influx
to yearly Frankenberg et al. (2011)

NPP Gridded map Yearly Global Prince et al. (2011) Carbon influx
Soil respiration Gridded map Yearly Global Bond-Lamberty and Carbon efflux

Thomson (2010)
Ecosystem respiration Gridded map Yearly Global Jung et al. (2011) Carbon efflux
Plant biomass Gridded map Global Olson et al. (1983); Carbon pool

Rodell et al. (2005);
Saatchi et al. (2007);
Woodhouse (2006)

Litter pool Gridded map Global Matthews (1997) Carbon pool
Litter decay rate Various Boyero et al. (2011) Rate process

sites
Soil carbon Gridded map Global Batjes (2002); Carbon pool

Post et al. (1982);
Zinke et al. (1986);
FAO (2009)

FAPAR Gridded map Monthly Regional Gobron et al. (2004); Carbon influx
to yearly to Global Yuan et al. (2011)

Responses of state and rate variables to disturbances and global change

Elevated CO2 Response ratio Various regions Luo et al. (2006); Responses of carbon and
Norby and Iversen (2006) nitrogen processes

Warming Response ratio Various regions Rustad et al. (2001); Responses of carbon
Wu et al. (2011) processes

N deposition Response ratio Various regions Janssens et al. (2010); Carbon and nitrogen cycles
Liu and Greaver (2010);
Lu et al. (2011a);
Thomas et al. (2010);
Lu et al. (2011b)

Fire Monthly Wan et al. (2001); Carbon cycle
to yearly van der Werf et al. (2004, 2006) Nitrogen cycle

Insect outbreak Yearly Kurz et al. (2008a, b) Carbon cycle
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Table 4. Sample benchmarks to be used to evaluate biogeographical processes (vegetation
dynamics).

Variable/factor Benchmark Evaluation

Data set Temporal Spatial Reference
frequency coverage

Baseline states and fluxes

Pre-industrial Vegetation map Once Global Notaro et al. (2005) Initial values
vegetation types of vegetation
Canopy height Gridded map Once Global Lefsky (2010); Vegetation

Simard et al. (2011) dynamics

Responses of state and rate variables to disturbances and global change

Warming Response ratio Yearly Site Sherry et al. (2007) Phenology
N deposition Response ratio Yearly Various regions Thomas et al. (2010)
Fire Burned area, Seasonal Global Thonicke et al. (2001), Vegetation

vegetation change and Yearly GFED3
Land use and Changes in global Yearly Global Wang et al. (2006) Plant functional
change vegetation cover MODIS PFT fraction type
Wood harvest Biomass removal Annual mean Global Hurtt et al. (2006) Land use change
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Table 5. Comparison of evaluation procedures between benchmark analysis and data
assimilation.

Procedure Benchmark analysis Data assimilation

Targets Model aspects to Parameters to be
be evaluated estimated or model

structures to be chosen

References Benchmarks Multiple data sets

Criteria Scoring systems Cost functions

Outcomes Suggesting model Estimates of parameter
improvement and/or selections of

model structures
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Fig. 1 

 
 
 
 

 

  

Fig. 1. Schematic diagram of the benchmarking framework for evaluating land models. The
framework include four major components: (1) defining model aspects to be evaluated, (2) se-
lecting benchmarks as standardized references to test models, (3) developing a scoring system
to measure model performance skills, and (4) stimulating model improvement.
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Fig. 2 

 

 

 

 

 

Fig. 2. Benchmark analysis of Community Land Model (CLM) CASA’ and CN versions against
the seasonal cycle observations from NOAA. The annual cycle of CO2 is regulated by plant
phenology, photosynthesis, allocation, and decomposition processes. A well functioning model
has to match the observations, but it is possible to get the right answer for the wrong reasons.
Thus, multiple orthogonal constraints and parallel use of functional relationships are needed
for benchmark analysis (adopted from Randerson et al., 2009).
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Fig. 3 

 

  

Fig. 3. Functional relationship between net primary production with precipitation used in a
benchmark analysis for coupled models that account for possible biases in model climate
(adopted from Randerson et al., 2009).
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Figure 4. 

 

Fig. 4. CO2-temperature relationships used in a benchmark analysis to show the positive and
negative anomalies of atmospheric CO2 growth rate as a function of anomalies of Eastern
Tropical Pacific SST (adopted from Cadule et al., 2010).
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Fig. 5  

Fig. 5. Model skill metrics for 22 terrestrial ecosystem models. Skill metrics are Taylor skill
(S), normalized mean absolute error (NMAE), and reduced chi-squared statistic (χ2). χ2 is the
distance between simulated and observed values denominated in multiples of observational
uncertainty. Better model-data agreement corresponds to the upper left corner. Benchmark
represents perfect model-data agreement: S =1, NMAE=0, and χ2 =1. Gray interpolated
surface added and model names jittered to improve readability. Model names are described in
Schwalm et al. (2010).
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Fig. 6 
 

 

 

 

 

 

 

 

Fig. 6. Nitrogen constraints of carbon sequestration. The original analysis by Hungate et
al. (2003) was based on some biogeochemical principles to reveal major deficiencies in global
biogeochemical models. The analysis may not be considered as a typical benchmark analy-
sis but played a role in stimulating global modeling groups to incorporate nitrogen processes
into their models. However, relative performance skills of land models as measured by the
benchmark analysis vary with additional considerations of data sets as illustrated in analysis
on flexibility of C:N ratio by Wang et al. (2009). Moreover, nitrogen capital in terrestrial ecosys-
tem is considerably dynamic in response to rising atmospheric CO2 concentration (Luo et al.,
2006), rendering less limitation of ecosystem carbon sequestration.
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