1 High-resolution Mapping of Forest Carbon Stocks in the Colombian Amazon

2 Supplementary Material

3 (I) Airborne LiDAR

The CAO Alpha LiDAR recorded up to four discrete laser returns per pulse, and was operated at 2000 m above ground level with 1.12-m spot spacing, 30-degree field of view, and 50-kHz pulse repetition frequency, for which the aircraft maintained a ground speed ≤ 95 knots. CAO-Alpha had a beam divergence customized to 0.56 mrad, which with these flying parameters, resulted in continuous laser coverage without gaps between laser spots on the ground. In addition, all flights were planned with 100% repeat coverage (50% overlap of each swath to each adjacent swath) and therefore LiDAR point density averaged 2 points per 1.12-m spot.

11 (II) Field validation

A summary of the allometric equations used, and species encountered is provided in Tables S1and S2, respectively.

14 (III) Model fitting techniques

15 The ACD validation model (eq. 3) and H-D model (Table S1) were fit using non-linear Maximum

16 Likelihood Analysis in R, and by incorporating a third equation parameter in the form of a non-

arithmetic error term (i.e., $y = ax^b + x^k * \varepsilon$) to account for heteroscedasticity common to

18 previously published ACD-MCH and H-D relationships. This fitting technique is analogous to

19 fitting a linear model to log-transformed x and y data, thereby avoiding the need for log-

transformation and back-transformation (Baskerville, 1972;Mascaro et al., 2011).

21 (IV) Additional information about the regional stratification approach

For the final regional stratification, a total of 147 Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) images were processed through CLASlite. This dataset included 72 images for 2010, 31 for 1990, 20 for 2000, and 24 for 2005. Employing a semi-automated approach to masking clouds, smoke, haze and shadows, we constructed cloud-free regional maps at 30 m resolution.

27 Median ACD values determined from LiDAR-scale ACD for each land-cover class are listed in

Table S3. If a class in the final stratification map did not contain sufficient LiDAR coverage (e.g.,

less than the targeted 1% or less than 100 ha), we assigned the median ACD value of a broader

- class on the preceding node of the stratification decision tree (Figure 2c of main text). For
- example, if the high TRI stratum for a particular catchment did not have sufficient coverage, we
- 32 assigned the median ACD value of the same TRI stratum for all catchments.

- 33 For the stratification approach, catchment boundaries were derived from SRTM data
- 34 (Hydrology Toolbox, ArcGIS 10, ESRI Inc., USA), which resulted in additional ACD sub-
- stratification by more than 60 Mg C ha⁻¹ in some cases. This addition supported by a
- 36 stratification approach allowed for capturing discrete geographic changes in carbon stocks
- that may otherwise have been missed in the regional analyses, similar to the localized effects of
- 38 terrain variation as expressed in the TRI.

39 (V) Regression equation used for continuous fields map of ACD

Following the results of the correlation analyses (see Methods of main text), we conducted 40 multiple least squares regression analyses using elevation (ELEV), slope, aspect and a terrain 41 ruggedness index (TRI) derived from NASA Shuttle Radar Topography Mission (SRTM) data, and 42 photosynthetic vegetation coverage fraction (PV) and soil cover fraction derived from CLASlite. 43 44 Through iterations of regression analyses using all of these variables, as well as their interaction terms, we determined that only PV and ELEV influenced the fit of the model at the scale of the 45 46 entire study region. The final least squares regression of these variables yielded the following model: 47

 $ACD = -3611.7799353 - 0.1721757 \times ELEV + 81.2756420 \times PV - 0.4393574 \times PV^{2}$

48 with an adjusted $r^2 = 0.30$ (P < 0.0001) and a standard error of 34.45 Mg C ha⁻¹. Additionally, we

49 performed a 4-fold cross validation analysis on this model which also found a mean residual

50 standard error of 36.07 Mg C ha⁻¹ for the test data. This equation was used estimate ACD at the

- 51 regional level based on a continuous function, for comparison to the map based on the
- 52 stratification approach.

53 (VI) Sources of error in linking LiDAR-based and plot-based estimates of ACD

54 Standard plot protocol in the field (e.g., Condit, 1998) dictates that trees are considered to be 55 inside a plot if more than 50% of their main stem is contained within the plot boundary. 56 However, LiDAR energy is returned by the 3-D components of forest canopies, including tree crowns and branches. Thus a plot within the LiDAR coverage includes portions of crowns that 57 58 overhang the edge of the plot, and excludes portions that extent beyond the plot edge. In effect, this disagreement between LiDAR and field estimated ACD produces a false error in 59 60 typical LiDAR calibrations, including those of the type underlying the universal LiDAR model. 61 Plot size also has a considerable effect, with errors decreasing as plot size increases according 62 to the inverse square root of the plot area.

Figure S1. (a) Relationship between field-estimated basal area and LiDAR-derived mean canopy
 profile height (termed the Stocking Coefficient). (b) Relationship between basal-area-weighted
 wood density and LiDAR derived mean canopy profile height.

73

74

75

- 77 Figure S2. Height to diameter relationship among 367 trees measured in the field plots. All
- trees > 50 cm dbh were measured for height, as well as several trees of smaller diameters. For
- 79 field ACD validation, heights of the remaining smaller trees were estimated using the model as
- 80 shown (model parameters in Table S1).
- 81

Figure S3. Differences in the distribution of forest aboveground carbon density (ACD) at
 different elevations for landscapes with low (0-5) and high (5+) values of the terrain ruggedness

index (TRI; Riley et al., 1999). Median ACD values for each distribution are shown in the lower

88 right of each panel.

89

92 Figure S4. Side-by-side comparison of LiDAR-based ACD (left) and regionally-mapped ACD

93 (right) according to the stratification approach.

- 96 **Table S1.** Allometric models used to estimate aboveground biomass (AGB; kg) or height (H; m).
- 97 Diameters (D, cm) were measured at breast height (1.3 m from the base) or above buttress.
- 98 Wood densities (ρ ; g cm⁻³) were taken from a global wood density database (Chave et al., 2009)
- 99 based on species-, genus-, or family-level identification (see Table S2).

Parameter	Equation	r²	Reference
AGB	0.0776*(D ² *H* $ ho$) ^{0.94}	0.96 ¹	Chave et al. (2005)
Н	5.2497*D ^{0.4258}	0.68	This study
AGB	π*(0.5*D) ² * <i>ρ</i> *H/10	n/a²	Asner et al. (2010)
AGB	$\pi^{*}(0.5^{*}D)^{2*}(1.17^{*} ho-0.21)^{*}H/10^{*}0.5$	n/a²	Asner et al. (2010)

 1 coefficient of determination for ln(y)

² Palm and dead tree biomass was estimated using the formula for volume of a cylinder, corrected for wood density, and in the case of dead trees for trunk taper and decay typical of standing dead Amazonian trees (Chao et al., 2009).

100

102 **Table S2.** Summary of all stems encountered in the field validation plots. Wood densities were

taken from Chave et al. (2009) according to either family or genus-level identification. When a

value was not available from Chave et al. (2009), a default regional value of 0.58 was applied

105 (ter Steege et al., 2006).

Family	Genus	Species	Number of Stems	Wood Density (g cm⁻³)	WD Determination	Reference	
ANACARDIACEAE			2	0.56	Family	Chave	
ANACARDIACEAE	Tapirira	spp.	6	0.37	Genus	Chave	
ANNONACEAE			37	0.56	Family	Chave	
ANNONACEAE	Duguetia	spp.	1	0.73	Genus	Chave	
ANNONACEAE	Xylopia	spp.	36	0.59	Genus	Chave	
APOCYNACEAE			33	0.57	Family	Chave	
APOCYNACEAE	Aspidosperma	spp.	15	0.75	Genus	Chave	
APOCYNACEAE	Couma	macrocarpa	1	0.53	Genus	Chave	
APOCYNACEAE	Couma	spp.	3	0.53	Genus	Chave	
APOCYNACEAE	Hymatanthus	spp.	1	0.55	Genus	Chave	
ARALIACEAE	Schefflera	spp.	2	0.39	Genus	Chave	
ARECACEAE			1	0.56	Family	Chave	
ARECACEAE	Astrocaryum	spp.	1	0.51	Genus	Chave	
ARECACEAE	Euterpe	precatoria	9	0.39	Genus	Chave	
ARECACEAE	Iriartea	spp.	1	0.27	Genus	Chave	
ARECACEAE	Mauritiella	spp.	8	0.58	Region	Default	
ARECACEAE	Oenocarpus	bacaba	1	0.68	Genus	Chave	
ARECACEAE	Oenocarpus	bataua	45	0.68	Genus	Chave	
ARECACEAE	Oenocarpus	spp.	10	0.68	Genus	Chave	
ARECACEAE	Socratea	exhorriza	2	0.23	Genus	Chave	
BIGNONIACEAE	Callychlamys	spp.	1	0.58	Region	Default	
BIXACEAE	Bixa	spp.	2	0.35	Genus	Chave	
BOMBACACEAE			9	0.48	Family	Chave	
BOMBACACEAE	Pachira	spp.	2	0.48	Genus	Chave	
BOMBACACEAE	Scleronema	spp.	9	0.61	Genus	Chave	
BURSERACEAE			21	0.52	Family	Chave	
BURSERACEAE	Dacryodes	spp.	1	0.57	Genus	Chave	
BURSERACEAE	Protium	spp.	8	0.57	Genus	Chave	
CAESALPINIACEAE			36	0.68	Family	Chave	
CAESALPINIACEAE	Hymenaea	spp.	1	0.80	Genus	Chave	
CAESALPINIACEAE	Macrolobium	spp.	19	0.62	Genus	Chave	
CAESALPINIACEAE	Tachigali	spp.	16	0.58	Genus	Chave	
CARYOCARIACEAE			1	0.70	Family	Chave	
CARYOCARIACEAE	Caryocar	spp.	4	0.69	Genus	Chave	
CECROPIACEAE			4	0.34	Family	Chave	

Family	Genus	Species	Number of Stems	Wood Density (g cm ⁻³)	WD Determination	Reference
CECROPIACEAE	Cecropia	spp.	2	0.34	Genus	Chave
CECROPIACEAE	Pourouma	spp.	13	0.39	Genus	Chave
CELASTRACEAE			5	0.66	Family	Chave
CELASTRACEAE	Goupia	glabra	2	0.73	Genus	Chave
CELASTRACEAE	Goupia	spp.	1	0.73	Genus	Chave
CELASTRACEAE	Lagupia	spp.	1	0.58	Region	Default
CHRYSOBALANACEAE			67	0.78	Family	Chave
CHRYSOBALANACEAE	Licania	spp.	4	0.82	Genus	Chave
CLUSIACEAE			8	0.65	Family	Chave
CLUSIACEAE	Caraipa	spp.	4	0.66	Genus	Chave
CLUSIACEAE	Clusia	spp.	3	0.68	Genus	Chave
CLUSIACEAE	Tovomita	spp.	7	0.70	Genus	Chave
CLUSIACEAE	Vismia	spp.	3	0.49	Genus	Chave
COMBRETACEAE			1	0.60	Family	Chave
COMBRETACEAE	Buchenavia	spp.	4	0.75	Genus	Chave
COMBRETACEAE	Conceveiba	spp.	1	0.41	Genus	Chave
EBENACEAE	Dyospiros	spp.	1	0.68	Genus	Chave
ELAEOCARPACEAE			5	0.55	Family	Chave
ELAEOCARPACEAE	Sloanea	spp.	3	0.61	Genus	Chave
EUPHORBIACEAE			10	0.51	Family	Chave
EUPHORBIACEAE	Conceveiba	spp.	7	0.41	Genus	Chave
EUPHORBIACEAE	Неvea	spp.	73	0.48	Genus	Chave
EUPHORBIACEAE	Mabea	spp.	14	0.61	Genus	Chave
EUPHORBIACEAE	Senefeldera	spp.	9	0.78	Genus	Chave
FABACEAE			45	0.68	Family	Chave
FABACEAE	Clatrotropis	macrocarpa	1	0.79	Genus	Chave
FABACEAE	Clatrotropis	spp.	75	0.79	Genus	Chave
FABACEAE	Ormosia	spp.	2	0.58	Genus	Chave
FABACEAE	Swartzia	spp.	1	0.85	Genus	Chave
HUMIRIACEAE			8	0.77	Family	Chave
ICACINACEAE			12	0.58	Family	Chave
LAURACEAE			50	0.56	Family	Chave
LAURACEAE	Ocotea	spp.	5	0.54	Genus	Chave
LECYTHIDACEAE			113	0.70	Family	Chave
LECYTHIDACEAE	Eschweilera	spp.	12	0.83	Genus	Chave
MELASTOMATACEAE			3	0.67	Family	Chave
MELASTOMATACEAE	Miconia	spp.	1	0.63	Genus	Chave
MIMOSACEAE			5	0.68	Family	Chave
MIMOSACEAE	Inga	spp.	13	0.58	Genus	Chave
MIMOSACEAE	Parkia	spp.	17	0.46	Genus	Chave

Family	Genus	Species	Number Wood Density of Stems (g cm ⁻³) I		WD Determination	Reference
MIMOSACEAE	Zygia	spp.	16	0.82	Genus	Chave
MORACEAE			65	0.54	Family	Chave
MORACEAE	Ficus	spp.	1	0.41	Genus	Chave
MORACEAE	Pseudolmedia	spp.	2	0.67	Genus	Chave
MYRISTICACEAE			33	0.51	Family	Chave
MYRISTICACEAE	Iryanthera	spp.	30	0.59	Genus	Chave
MYRISTICACEAE	Virola	spp.	34	0.48	Genus	Chave
MYRTACEAE			33	0.77	Family	Chave
NYCTAGINACEAE			2	0.52	Family	Chave
OLACACEAE			3	0.76	Family	Chave
OLACACEAE	Minquartia	spp.	4	0.79	Genus	Chave
POLYGONACEAE	Coccoloba	spp.	2	0.69	Genus	Chave
RUBIACEAE			56	0.64	Family	Chave
SAPINDACEAE			6	0.69	Family	Chave
SAPINDACEAE	Allophyllus	spp.	4	0.52	Genus	Chave
SAPINDACEAE	Cupania	spp.	2	0.61	Genus	Chave
SAPOTACEAE			151	0.70	Family	Chave
SAPOTACEAE	Manilkara	spp.	3	0.89	Genus	Chave
SAPOTACEAE	Micropholis	spp.	20	0.66	Genus	Chave
SAPOTACEAE	Pouteria	spp.	6	0.69	Genus	Chave
STERCULIACEAE			5	0.48	Family	Chave
STERCULIACEAE	Sterculia	spp.	5	0.40	Genus	Chave
STERCULIACEAE	Theobroma	spp.	4	0.53	Genus	Chave
TILIACEAE			14	0.48	Family	Chave
TILIACEAE	Apeiba	spp.	24	0.25	Genus	Chave
TILIACEAE	Mollia	spp.	12	0.49	Genus	Chave
VERBENACEAE	Vitex	spp.	1	0.57	Genus	Chave
VIOLACEAE			4	0.65	Family	Chave
VIOLACEAE	Rinorea	spp.	1	0.68	Genus	Chave
VOCHYSIACEAE			19	0.55	Family	Chave
VOCHYSIACEAE	Erisma	spp.	42	0.57	Genus	Chave
VOCHYSIACEAE	Qualea	spp.	3	0.65	Genus	Chave
VOCHYSIACEAE	Vochysia	spp.	2	0.49	Genus	Chave
Unknown			499	0.58	Region	Default
Total stems			2068			
Unweighted mean WD				0.59		
% Family determinatio	n				41.92	
% Genus determinatio				33.46		
% Region determinatio	n				24.61	

Table S3. Summary of vegetation classes used in final regional stratification. Elevation (m) a.s.l.

107 (ELEV), fractional cover (%) of photosynthetic vegetation (PV), terrain ruggedness index (TRI),

and catchment (CM) are shown. Mean, median, and standard deviation of LiDAR-based

aboveground carbon density (ACD) are given in Mg C ha⁻¹. Total extent of LiDAR coverage (ha)

- and total extent of each class in the regional ACD map (ha) are provided, as well as the relative
- 111 coverage of LiDAR (%) within each class. An asterisk (*) indicates that ACD statistics were
- 112 calculated from a broader class due to insufficient LiDAR coverage (see methods).

CLASS NUMBER		ELEV	PV	TRI	СМ	Mean ACD	Median ACD	St. Dev. ACD	LiDAR (ha)	Map (ha)	Cover (%)
Non-forest											
1			(0,20]			3.7	0.9	7.1	459	24188	1.90
2			(20,40]			5.1	1.7	9.8	4026	186898	2.15
3			(40,60]			5.7	2.3	9.5	21526	820605	2.62
4			(60,80]			16.4	9.3	20.9	39356	1361584	2.89
5			(80,100]			33.7	29.7	25.1	3574	181242	1.97
Deforestat	ion regrowt	h									
6	5 Years					30.1	22.0	29.3	582	22980	2.53
7	10 Years					30.8	23.2	26.9	2230	61282	3.64
Disturbanc	e regrowth										
8	All ages					53.7	47.1	39.1	1022	33775	3.03
Forest											
9*		< 100	[80,84)			100.0	102.5	18.3	24	4759	0.50
10*		< 100	≥ 97			100.0	102.5	18.3	11	2884	0.38
11		[100,125)	[80,84)			60.6	55.5	29.7	105	5622	1.87
12		[100,125)	≥ 97			57.1	61.4	27.1	51	1855	2.75
13		[125,150)	[80,84)			80.5	80.6	27.6	696	5840	11.92
14		[125,150)	≥ 97			83.8	79.3	32.0	40	1403	2.85
15		[150,175)	[80,84)			75.9	84.0	33.7	402	6383	6.30
16		[150,175)	≥ 97			96.2	105.7	34.7	17	884	1.92
17		[175,200)	[80,84)			41.4	35.2	27.6	1189	18794	6.33
18		[175,200)	≥ 97			69.4	65.6	28.4	141	2408	5.86
19		[200,225)	[80,84)			30.4	25.1	23.4	1951	44712	4.36
20*		[200,225)	≥ 97			100.9	112.0	36.0	44	10656	0.41
21		[225,250)	[80,84)			33.2	29.1	23.2	1952	50351	3.88
22		[225,250)	≥ 97			80.6	80.8	15.6	513	21967	2.34
23		[250,275)	[80,84)			32.3	27.3	22.4	971	48426	2.01
24		[250,275)	≥ 97			84.1	85.8	20.8	156	22024	0.71
25		[275,300)	[80,84)			32.7	24.4	26.3	591	29354	2.01
26		[275,300)	≥ 97			89.0	88.8	12.5	514	11693	4.40
27		[300,325)	[80,84)			28.0	20.1	26.6	448	16571	2.70
28		[300,325)	≥ 97			86.3	85.3	14.7	856	15786	5.42

29	[325,350)	[80,84)			23.4	17.0	23.5	560	11912	4.70
30	[325,350)	≥ 97			91.5	94.4	23.2	212	16718	1.27
31	[350,375)	[80,84)			27.5	22.6	20.4	269	7653	3.51
32	[350,375)	≥ 97			77.6	77.6	28.5	125	14596	0.86
33	[375,400)	[80,84)			31.5	25.7	21.0	301	5416	5.56
34	[375,400)	≥ 97			88.1	90.2	15.3	307	10573	2.90
35	[400,500)	[80,84)			33.1	22.8	27.6	769	11165	6.89
36	[400,500)	≥ 97			67.9	67.9	21.8	287	19798	1.45
37	≥ 500	[80,84)			32.4	18.1	28.5	627	38165	1.64
38*	≥ 500	≥ 97			54.6	45.3	34.8	33	133813	0.02
39	< 100	[84,97)	[0,5)		96.0	97.3	21.2	505	29022	1.74
40*	< 100	[84,97)	≥5	F	101.3	103.3	16.9	0	50393	0.00
41	< 100	[84,97)	≥5	н	101.3	103.3	16.9	1916	87390	2.19
42	[100, 125)	[84,97)	[0,5)		56.9	32.8	49.7	865	42769	2.02
43	[100, 125)	[84,97)	≥5	F	121.0	122.5	16.4	908	288315	0.31
44	[100, 125)	[84,97)	≥5	н	113.9	122.6	34.5	7587	469893	1.61
45	[125, 150)	[84,97)	[0,5)		96.0	102.2	31.8	2733	29077	9.40
46	[125, 150)	[84,97)	≥5	F	136.8	140.1	21.7	11836	487705	2.43
47	[125, 150)	[84,97)	≥5	Н	127.7	130.2	21.5	34298	893720	3.84
48*	[125, 150)	[84,97)	≥5	Т	130.0	132.5	21.9	0	1040	0.00
49	[150, 175)	[84,97)	[0,5)		90.0	95.6	22.9	3153	79808	3.95
50*	[150, 175)	[84,97)	≥5	С	126.1	126.5	21.9	0	195	0.00
51	[150, 175)	[84,97)	≥5	D	66.8	70.9	14.3	212	615	34.47
52	[150, 175)	[84,97)	≥5	F	119.9	119.8	26.5	7886	503140	1.57
53*	[150, 175)	[84,97)	≥5	G	126.1	126.5	21.9	0	50545	0.00
54	[150, 175)	[84,97)	≥ 5	Н	129.0	128.3	18.5	21229	565088	3.76
55*	[150, 175)	[84,97)	≥5	Т	126.1	126.5	21.9	0	3615	0.00
56	[175, 200)	[84,97)	[0,5)		77.1	79.9	29.0	2276	43818	5.19
57	[175, 200)	[84,97)	≥5	С	55.4	56.7	22.1	5766	50453	11.43
58	[175, 200)	[84,97)	≥5	D	84.4	86.2	21.7	6027	66423	9.07
59	[175, 200)	[84,97)	≥5	F	113.7	117.2	25.3	19106	796953	2.40
60	[175, 200)	[84 <i>,</i> 97)	≥5	G	87.7	92.1	24.5	1079	338113	0.32
61	[175, 200)	[84 <i>,</i> 97)	≥5	Н	121.0	123.1	20.0	15372	780440	1.97
62*	[175, 200)	[84 <i>,</i> 97)	≥5	Т	104.7	111.2	31.5	0	2615	0.00
63	[200, 225)	[84 <i>,</i> 97)	[0,5)		54.1	56.5	38.2	2478	143358	1.73
64	[200, 225)	[84 <i>,</i> 97)	≥5	С	45.0	42.7	24.6	3472	115491	3.01
65	[200, 225)	[84 <i>,</i> 97)	≥5	D	70.6	69.2	26.0	4018	203821	1.97
66	[200, 225)	[84 <i>,</i> 97)	≥5	Е	72.4	72.4	24.2	1926	43440	4.43
67	[200, 225)	[84,97)	≥5	F	116.3	119.3	25.0	22591	759155	2.98
68	[200, 225)	[84,97)	≥ 5	G	104.1	109.4	22.4	3174	399138	0.80
69	[200, 225)	[84,97)	≥ 5	Н	115.9	120.5	20.0	17743	771989	2.30
70*	[200, 225)	[84,97)	≥ 5	Ι	105.7	114.3	31.7	0	676	0.00
71	[225, 250)	[84,97)	[0,5)		79.9	80.5	33.6	1020	53239	1.92

72	[225, 250)	[84,97)	≥ 5	С	52.6	53.3	20.2	6341	297150	2.13
73	[225, 250)	[84,97)	≥5	D	55.6	54.3	22.4	1089	98325	1.11
74	[225, 250)	[84,97)	≥5	Е	107.8	109.7	16.4	15302	267680	5.72
75	[225, 250)	[84,97)	≥5	F	111.5	116.3	23.0	18936	671336	2.82
76	[225, 250)	[84,97)	≥5	G	105.9	112.6	26.6	2258	214117	1.05
77	[225, 250)	[84,97)	≥5	Н	111.0	116.3	22.9	20684	927456	2.23
78	[250, 275)	[84,97)	[0,5)		82.6	86.0	20.3	1867	71720	2.60
79	[250, 275)	[84,97)	≥5	С	62.7	63.8	22.1	5368	290147	1.85
80	[250, 275)	[84,97)	≥5	D	72.9	73.5	41.0	170	21313	0.80
81	[250, 275)	[84,97)	≥5	Е	103.6	103.9	12.9	2745	126151	2.18
82	[250, 275)	[84,97)	≥5	F	100.3	101.8	21.1	12701	473416	2.68
83*	[250, 275)	[84,97)	≥5	G	93.8	98.7	28.0	6	125587	0.00
84	[250, 275)	[84,97)	≥5	Н	102.7	111.5	30.0	6794	338896	2.00
85	[275, 300)	[84,97)	[0,5)		82.7	83.1	12.6	1434	15541	9.23
86	[275, 300)	[84,97)	≥5	С	77.0	81.3	20.4	4865	147392	3.30
87*	[275, 300)	[84,97)	≥5	D	87.7	91.3	24.2	52	5851	0.89
88	[275, 300)	[84,97)	≥5	Е	102.1	101.1	11.2	974	16727	5.82
89	[275, 300)	[84,97)	≥5	F	91.0	94.3	22.4	12201	342788	3.56
90*	[275, 300)	[84,97)	≥5	G	87.7	91.3	24.2	0	44648	0.00
91	[275, 300)	[84,97)	≥5	Н	86.0	90.4	37.2	1568	70587	2.22
92	[300, 325)	[84,97)	[0,5)		93.1	100.9	23.5	252	4481	5.62
93	[300, 325)	[84,97)	≥5	С	80.7	84.2	21.1	2291	93607	2.45
94	[300, 325)	[84,97)	≥5	D	57.2	39.3	53.4	76	2065	3.68
95	[300, 325)	[84,97)	≥5	Е	105.8	106.2	10.6	2497	21913	11.40
96	[300, 325)	[84,97)	≥5	F	85.6	93.4	36.4	5625	120422	4.67
97*	[300, 325)	[84,97)	≥5	G	87.4	94.5	31.7	0	11814	0.00
98	[300, 325)	[84,97)	≥5	Н	67.7	66.7	34.7	895	26251	3.41
99	[325, 350)	[84,97)	[0,5)		68.3	71.6	33.3	37	1587	2.33
100	[325, 350)	[84,97)	≥5	С	59.4	53.9	31.1	464	59208	0.78
101	[325, 350)	[84,97)	≥5	D	52.5	43.5	34.4	114	934	12.21
102	[325, 350)	[84,97)	≥5	Е	102.1	101.7	9.2	657	14663	4.48
103	[325, 350)	[84,97)	≥5	F	76.6	76.7	39.5	3908	40409	9.67
104*	[325, 350)	[84,97)	≥5	G	77.3	81.0	37.9	0	6399	0.00
105	[325, 350)	[84,97)	≥5	Н	73.6	70.4	38.9	549	17635	3.11
106	[350, 375)	[84,97)	[0,5)		62.5	62.6	22.4	111	618	17.96
107	[350, 375)	[84,97)	≥5	С	67.1	69.7	24.8	1507	43200	3.49
108	[350, 375)	[84,97)	≥5	D	46.5	42.3	21.5	161	674	23.89
109*	[350, 375)	[84,97)	≥5	Е	70.8	68.8	33.1	0	6391	0.00
110	[350, 375)	[84,97)	≥5	F	74.9	69.1	37.5	1939	20144	9.63
111*	[350, 375)	[84,97)	≥5	G	70.8	68.8	33.1	0	3541	0.00
112	[350, 375)	[84 <i>,</i> 97)	≥5	Н	74.2	72.9	35.5	512	16813	3.05
113	[375, 400)	[84,97)	[0,5)		75.0	81.6	22.6	33	515	6.41
114	[375, 400)	[84,97)	≥5	С	66.5	68.0	23.4	1965	29316	6.70

115	[375, 400)	[84,97)	≥ 5	D	48.1	46.5	16.5	162	640	25.31
116*	[375, 400)	[84,97)	≥5	Е	73.1	71.7	31.4	0	84	0.00
117	[375, 400)	[84,97)	≥ 5	F	81.6	82.1	34.9	1036	11946	8.67
118*	[375, 400)	[84,97)	≥ 5	G	73.1	71.7	31.4	0	1497	0.00
119	[375, 400)	[84,97)	≥5	н	86.2	92.1	39.6	647	17295	3.74
120*	[400, 500)	[84,97)	[0,5)		71.2	67.5	34.4	9	2366	0.38
121	[400, 500)	[84,97)	≥5	С	62.1	62.4	22.9	1779	78065	2.28
122	[400, 500)	[84,97)	≥5	D	49.7	49.8	16.1	599	1347	44.47
123*	[400, 500)	[84,97)	≥5	Е	71.2	67.5	34.4	0	31	0.00
124	[400, 500)	[84,97)	≥5	F	73.2	71.8	35.0	3741	23961	15.61
125*	[400, 500)	[84,97)	≥5	G	71.2	67.5	34.4	0	4624	0.00
126	[400, 500)	[84,97)	≥5	н	81.1	87.6	40.0	2199	33910	6.48
127*	≥ 500	[84,97)	[0,5)		58.6	52.7	34.3	0	534	0.00
128*	≥ 500	[84 <i>,</i> 97)	≥5	А	58.6	52.7	34.3	0	2048	0.00
129*	≥ 500	[84 <i>,</i> 97)	≥5	В	58.6	52.7	34.3	0	509	0.00
130*	≥ 500	[84,97)	≥ 5	С	58.6	52.7	34.3	0	474621	0.00
131*	≥ 500	[84,97)	≥5	D	58.6	52.7	34.3	0	5	0.00
132*	≥ 500	[84,97)	≥5	Е	58.6	52.7	34.3	0	29	0.00
133	≥ 500	[84,97)	≥5	F	44.2	34.3	29.5	1635	25730	6.35
134*	≥ 500	[84,97)	≥5	G	58.6	52.7	34.3	0	155346	0.00
135	≥ 500	[84,97)	≥ 5	н	72.0	79.9	33.1	1754	7851	22.34

116 Supplemental References

Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J., Kennedy-Bowdoin, T.,
 Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M., and Hughes, R. F.: High-resolution
 forest carbon stocks and emissions in the amazon, Proceedings of the National Academy of Sciences,

120 107, 16738-16742, 2010.

- Baskerville, G.: Use of logarithmic regression in the estimation of plant biomass, Canadian Journal of
 Forest Research-Revue Canadienne De Recherche Forestiere, 2, 49-53, 1972.
- 123 Chao, K.-J., Phillips, O. L., Baker, T. R., Peacock, J., Lopez-Gonzalez, G., Vásquez Martínez, R.,
- 124 Monteagudo, A., and Torres-Lezama, A.: After trees die: Quantities and determinants of necromass 125 across amazonia, Biogeosciences, 6, 1615-1626, 2009.
- Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F.,
 Higuchi, N., Puig, H., Riéra, B., and Yamakura, T.: Tree allometry and improved estimation of carbon
 stocks and balance in tropical forests, Oecologia, 145, 87-99, DOI 10.1007/s00442-005-0100-x, 2005.
- 129 Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne, A. E.: Towards a worldwide 130 wood economics spectrum, Ecology Letters, 12, 351-366, 2009.
- Condit, R.: Tropical forest census plots, Springer-Verlag and R. G. Landes Company, Berlin, Germany and
 Georgetown, Texas, USA, 1998.
- Mascaro, J., Litton, C. M., Hughes, F. R., Uowolo, A., and Schnitzer, S. A.: Minimizing bias in biomass
 allometry: Model selection and log-transformation of data, Biotropica, 43, 649-653, 2011.
- Riley, S. J., DeGloria, S. D., and Elliot, R.: A terrain ruggedness index that quantifies topographic
 heterogeneity, Intermountain Journal of Science, 5, 23-27, 1999.
- 137 ter Steege, H., Pitman, N. C. A., Phillips, O. L., Chave, J., Sabatier, D., Duque, A., Molino, J. F., Prevost, M.
- 138 F., Spichiger, R., Castellanos, H., von Hildebrand, P., and Vasquez, R.: Continental-scale patterns of
- canopy tree composition and function across amazonia, Nature, 443, 444-447,
- 140 10.1038/nature05134, 2006.
- 141
- 142