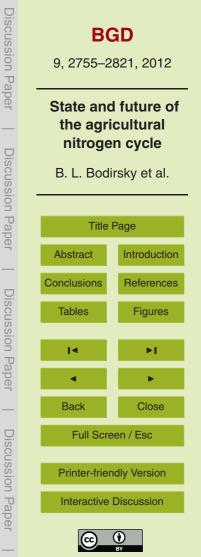
Biogeosciences Discuss., 9, 2755–2821, 2012 www.biogeosciences-discuss.net/9/2755/2012/ doi:10.5194/bgd-9-2755-2012 © Author(s) 2012. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Current state and future scenarios of the global agricultural nitrogen cycle


B. L. Bodirsky, A. Popp, I. Weindl, J. P. Dietrich, S. Rolinski, L. Scheiffele, C. Schmitz, and H. Lotze-Campen

Potsdam Institute for Climate Impact Research (PIK), P.O. Box 60 12 03, 14412 Potsdam, Germany

Received: 6 February 2012 - Accepted: 27 February 2012 - Published: 13 March 2012

Correspondence to: B. L. Bodirsky (bodirsky@pik-potsdam.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Reactive nitrogen (N_r) is not only an important nutrient for plant growth, thereby safeguarding human alimentation, but it also heavily disturbs natural systems. To mitigate air, land, aquatic, and atmospheric pollution caused by the excessive availability of N_r ,

- it is crucial to understand the long term development of the global agricultural N_r cycle. For our analysis, we combine a material flow model with a land-use-optimization model. In a first step we estimate the state of the N_r cycle in 1995. In a second step we create four scenarios for the 21st century in line with the SRES storylines.
- Our results indicate that in 1995 only half of the N_r applied to croplands was incor-¹⁰ porated into cropland biomass. Moreover, less than 10 per cent of all N_r in cropland biomass and grazed pasture was consumed by humans. In our scenarios a strong surge of the N_r cycle occurs in the first half of the 21st century, even in the environmentally oriented scenarios. Nitrous oxide (N₂O) emissions rise from 3 Tg N₂O-N in 1995 to 7–9 in 2045 and 5–15 Tg in 2095. Reinforced N_r pollution mitigation efforts are ¹⁵ therefore required.

1 Introduction

20

25

More than half of the reactive nitrogen (N_r) fixed every year is driven by human activity (Boyer et al., 2004). The main driver of the nitrogen cycle remains agricultural production, whose ongoing growth will require ever larger amounts of N_r to provide sufficient nutrients for plant and livestock production in the future.

The industrial fixation of the once scarce nutrient allowed for an unrivaled green revolution of production in the second half of the 20th century. Yet, only 35 to 65% of the N_r applied to global croplands is taken up by plants (Smil, 1999). The remaining share threatens natural systems: the affluent availability of N_r leads to biodiversity losses and to the destruction of balanced ecosystems (Vitousek et al., 1997). In the form of ni-

Discussion Paper **BGD** 9, 2755-2821, 2012 State and future of the agricultural nitrogen cycle **Discussion** Paper B. L. Bodirsky et al. **Title Page** Introduction Abstract Conclusions References **Discussion** Paper **Tables Figures** 14 Back Close **Discussion** Paper Full Screen / Esc **Printer-friendly Version** Interactive Discussion

trous oxide (N_2O), N_r contributes to global warming (Forster et al., 2007) and is the

single most important ozone depleting substance (Ravishankara et al., 2009). Finally, it contributes to soil (Velthof et al., 2011), water (Grizzetti et al., 2011), and air pollution (Moldanova et al., 2011). Brink et al. (2011) estimate that the damage caused by nitrogen pollution adds up to 70–320 billion Euro in Europe alone, equivalent to 1–4% of total income.

Therefore, much effort has been dedicated to improving our knowledge about the global agricultural N_r cycle. Smil (1999) pioneered the creation of the first comprehensive global N_r budget, and determined the key N_r flows in agriculture, most importantly fertilizer application, biological nitrogen fixation, manure application, crop residue management, leaching, and volatilisation. Sheldrick et al. (2002) extended this to phosphorus and potash, Galloway et al. (2004) included natural terrestrial and aquatic systems into the N_r cycle. Liu et al. (2010a) broke up the global agricultural nutrient flows to a spatially explicit level. Bouwman et al. (2005, 2009, 2011) were the first and so far the only, who have simulated the future development of the N_r cycle with detailed regional NL flows

¹⁵ N_r flows.

10

20

However, the description of the current state of the N_r cycle was often incomprehensive. Above all, most studies do not consider fodder crops and belowground residues as major N_r withdrawals from cropland soils. Furthermore, no bottom-up estimate for N_r release by the loss of soil organic matter exists so far. Regarding future projections, substitution effects between different N_r inputs are usually not considered.

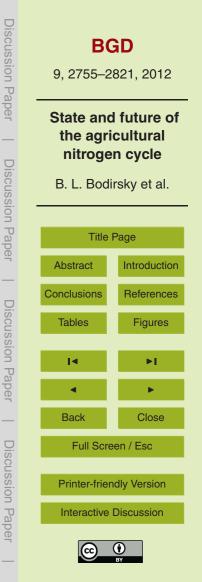
In this paper, we create new estimates for the state of the agricultural N_r cycle in 1995 and four future scenarios until 2095 based on the SRES storylines. Our study presents a comprehensive description of the N_r cycle and covers N_r flows that have not been regarded by other studies so far. We create detailed cropland N_r budgets, but also track N_r flows upstream towards the processing sector, the livestock system and final

²⁵ track N_r flows upstream towards the processing sector, the livestock system and final consumption. This unmasks the low N_r efficiency in agricultural production. We use an independent parametrisation of the relevant N_r flows, concerning for example N_r in crop residues or biological N_r fixation. This allows for the identification of uncertainties in current estimates. For future projections we use a closed budget approach that allows

for substitution between cropland N_r inputs (like fertilizer, manure or crop residues) and for an endogenous calculation of livestock N_r excretion. The budget approach is also used to estimate total N_r losses from fertilization and manure management (the sum of N₂, NO_x, NH_y and N₂O volatilisation as well as N_r leaching). As N₂O emissions play a crucial role in a global context, our model estimates them explicitly. For this purpose, our study pioneers integrating the emission parameters of the recent 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Eggleston et al., 2006) into the model.

The paper is set up as follows: in the methods section, we first describe the Model
 of Agricultural Production and its Impact on the Environment (MAgPIE) that delivers the framework for our analysis. Then we give an overview on the implementation of crop residues, conversion byproducts and manure into the model. The description of all major N_r flows is followed by a summary of the scenario designs. In the results section, we present our simulation outputs for the state of the N_r cycle in 1995 and
 our projections for inorganic fertilizer consumption, N₂O emissions and other important N_r flows. In the discussion section, we compare our estimates to other studies and integrate the findings to a comprehensive cropland N_r budget for 1995, highlighting

the largest uncertainties. We also compare our scenarios for the rise of the N_r cycle in the 21st century to estimates of other studies. As it is a key driver of the N_r cycle, we examine the livestock sector in more detail. Finally, the implications of our findings on the threat of N_r pollution are followed by our conclusions and an outlook on the

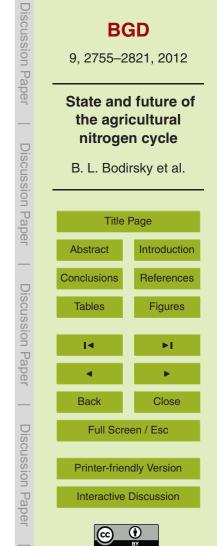

2 Materials and methods

opportunities for mitigation.

5

2.1 General model description

²⁵ MAgPIE (Lotze-Campen et al., 2008; Popp et al., 2010, 2012; Schmitz et al., 2012) is a model well suited to performing assessments of agriculture on a global scale and



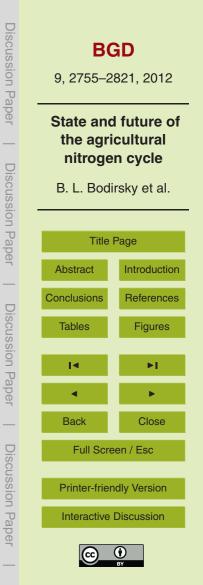
to simulating long-term scenarios. It is comprehensive concerning the spatial dimension and covers all major crop and livestock sectors. Moreover, it features the major dynamics of the agricultural sector like trade, technological progress or land allocation according to the scarcity of suitable soil, water and financial resources. As it treats agricultural production not only as economic value but also as physical good, it can easily perform analysis of material flows.

MAgPIE optimizes global land-use patterns to settle a global food demand at minimal production costs. Food demand is exogenous to the model and differentiated into 18 crop groups and 5 livestock production types. The demand for feed depends on the livesteely production guestity with individual feed beside for each livesteely acted

- ¹⁰ livestock production quantity with individual feed baskets for each livestock category (Weindl et al., 2010). The demand for material consumption and the production waste is assumed to grow in proportion to food demand, while the production for seed is a fixed share of crop production. All demand categories are estimated separately for 10 world regions (Fig. 1) and have to be met by the world crop production. Additionally,
- the regions have to produce a certain share of their demand domestically to account for trade barriers (Schmitz et al., 2012). The production of crops requires financial resources as well as land and irrigation water. Production costs per area are derived from GTAP cost-of-firm data (Schmitz et al., 2010). Land requirements depend on the yield-level of the region, which are calibrated to meet 1995 FAO data. Higher produc-
- tion can either be reached by land-expansion or by the purchase of yield-increasing technological change (Dietrich, 2011; Popp et al., 2011). Water availability and water requirements per crop are derived from the LPJmL model (Bondeau et al., 2007; Gerten et al., 2004). MAgPIE is solved for each 10-yr timestep between 1995 and 2095, whereby the cropland area and the level of technological change are passed on from one timestep as input data to the consecutive timestep.

The existing model (as described in the Supplement) must be extended by a number of features in order to describe the dynamics of the N_r cycle. Crop residues and conversion byproducts from crop processing have so far not been covered by the model, yet they make up a major share of total biomass and should therefore be considered by a

material-flow model (Sect. 2.2). Moreover, all dry matter flows have to be transformed into N_r flows. N_r flows in manure management, cropland fertilization and the transformation of N_r losses into emissions need to be included (Sect. 2.3). Finally, the scenario setup is described in Sect. 2.4. A detailed documentation as well as a mathematical description of all model-extensions can be found in Appendix A.


2.2 Crop residues and conversion byproducts

5

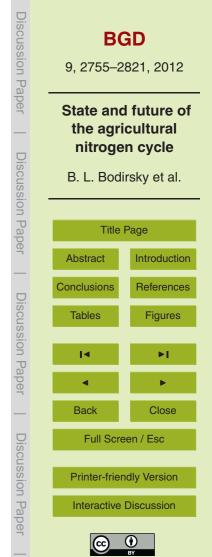
As official global statistics exist only for crop production and not for crop residue production, we obtain the biomass of residues by using crop-type specific plant growth functions based on crop production and area harvested. Crop biomass is divided into three components: the harvested organ as listed in FAO, the aboveground (AG) and the belowground (BG) residues. For AG residues of cereals, leguminous crops, potatoes and grasses we use linear growth functions (Eggleston et al., 2006) with a positive intercept which accounts for the decreasing harvest index with increasing yield. For crops without a good matching to the categories of Eggleston et al. (2006), we use constant harvest indices (Wirsenius, 2000; Lal, 2005; Feller et al., 2007).

Based on Smil (1999), we assume that 15% of AG crop residues in developed and 25% in developing countries are burned in the field. Furthermore, developing countries use 10% of the residues to settle their demand for building materials and household fuel. The demand for crop residues for feed is calculated based on crop residues in re-

- gional livestock specific feed baskets from Weindl et al. (2010). The remaining residues are assumed to be left on the field. We estimate BG residue production by multiplying total AG biomass (harvest + residue) with a crop-specific AG-to-BG ratio (Eggleston et al., 2006; Khalid et al., 2000; Mauney et al., 1994). All BG crop residues are assumed to be left on the field.
- ²⁵ Conversion byproducts like brans, molasses or oil cakes occur during the processing of crops into refined food. We link the production of conversion byproducts to the domestic supply of the associated crops, using a fixed regional conversion ratio. Feed demand for conversion byproducts is based on feed baskets from Weindl et al. (2010)

and rises with livestock production in the region. All values are calibrated to meet the production and demand for conversion byproducts of FAO in 1995 (FAOSTAT, 2011). In case the future demand for feed residues or crop byproducts exceeds the production, they can be replaced by feedstock crops of the same nutritional value.

$_{\rm 5}$ 2.3 N_r flows


20

2.3.1 $\,N_r$ content of plant biomass, conversion by products and food

The biomass flows of the MAgPIE model are transformed into N_r flows, using product-specific N_r contents. We compile the values for harvested crops, conversion byproducts, AG and BG residues from Wirsenius (2000); Fritsch (2007); FAO (2004); Roy
et al. (2006); Eggleston et al. (2006) and Khalid et al. (2000). The N_r in vegetal food supply is estimated by subtracting the N_r in conversion byproducts from N_r in harvest dedicated for food. N_r in livestock food supply is calculated by multiplying the regional protein supply from each commodity group of FAOSTAT (2011) with protein to N_r ratios of Sosulski and Imafidon (1990) and Heidelbaugh et al. (1975). As food supply does
not account for waste on the household-level, we use regional intake to supply shares from Wirsenius (2000).

2.3.2 Manure management

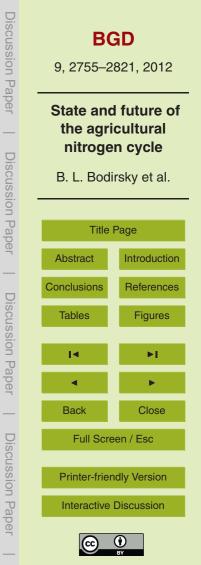
The quantity of N_r in livestock excreta is calculated endogenously from N_r in feed intake (consisting of feedstock crops, conversion byproducts, crop residues and pasture) and livestock productivity. The N_r in feed minus the amount of N_r in the slaughtered animals, milk and eggs equals the amount of N_r in manure. To estimate the mass of slaughtered animals, we multiply the FAO meat production with livestock-specific carcass to whole body weight ratios from Wirsenius (2000). N_r contents of slaughtered animals, milk and eggs are obtained from Poulsen and Kristensen (1998).

Manure from grazing animals on pasture is assumed to be returned to pasture soils except a fraction of manure being collected for household fuel in some developing countries (Eggleston et al., 2006). Manure from feedstock crops and conversion byproducts are assumed to be excreted in animal houses. We estimate that one quar-

⁵ ter of the N_r in crop residues used as feed in developing countries stems from stubble grazing on croplands, while the rest is also assigned to animal houses. Finally, we distribute all manure in animal houses between 9 different animal waste management systems according to regional and livestock-type specific shares in Eggleston et al. (2006).

10 2.3.3 Cropland Nr inputs

25


In our model, cropland N_r inputs include manure, crop residues left in the field, biological N_r fixation, soil organic matter loss, atmospheric deposition, seed and inorganic fertilizer.

For the manure managed in animal houses, recycling shares for each animal waste ⁵ management system are adopted from Eggleston et al. (2006). The manure collected for recycling in developing countries is assigned fully to cropland soils, while it is split between cropland and pasture soils in developed countries. Additionally, all N_r excreted during stubble grazing is returned to cropland soils.

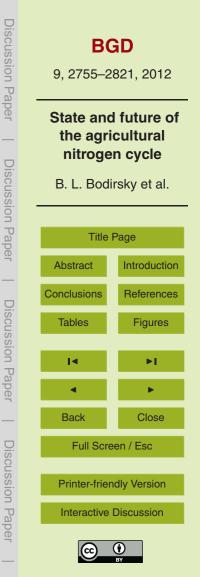
For crop residues left in the field, we assume that all N_r is recycled to the soils, while 80–90% of the residues burned in the field are lost in combustion (Eggleston et al., 2006).

 N_r fixation by free living bacteria in cropland soils and rice paddies is taken into account by assuming fixation rates of 5 kg per ha for non-legumes and 33 kg per ha for rice (Smil, 1999). The N_r fixed by leguminous crops and sugar cane is estimated by multiplying N_r in total plant biomass (harvested organ, AG and BG residue) with plant specific percentages of plant N_r derived from N_2 fixation (Herridge et al., 2008).

 $N_{\rm r}$ release by the loss of soil organic matter after the conversion of pasture land or natural vegetation to cropland is estimated based on the methodology of Eggleston

et al. (2006). Our estimates for 1995 use a dataset of soil carbon under natural vegetation from the LPJmL model (Sitch et al., 2003; Gerten et al., 2004; Bondeau et al., 2007) and historical land-expansion from the HYDE-database (Klein Goldewijk et al., 2011).

⁵ The amount of atmospheric deposition is taken from Dentener (2006) and depends on the physical cropland area.


The amount of harvest used for seed is obtained from FAOSTAT (2011). We multiply the seed with the N_r share of the harvested organ to estimate N_r in seed returned to the field.

- ¹⁰ Inorganic fertilizer consumption in 1995 is obtained from IFADATA (2011). For the projections, we use a closed budget approach. The cropland soil nitrogen use efficiency, defined as the ratio between N_r soil inputs (fertilizer, manure, residues, atmospheric deposition, soil organic matter loss and free-living N_r fixers) and soil withdrawals (harvest and crop residues minus seed and biological fixation by legumes and events and crop residues for 1005 and becomes an events and events and crop residues minus seed and biological fixation by legumes and events and crop residues minus seed and biological fixation by legumes and events and crop residues minus seed and biological fixation by legumes and events and crop residues minus seed and biological fixation by legumes and events are events.
- ¹⁵ sugarcane), has been calculated for 1995 and becomes an exogenous scenario parameter for future projections. To balance out the budget at fixed N_r use efficiency, the model can purchase as much nitrogen fertilizer as it requires.

2.3.4 Emissions

Emission calculations are in line with the 2006 IPCC Guidelines of National Green-

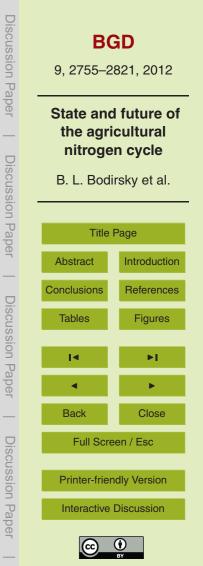
- ²⁰ house Gas Emissions (Eggleston et al., 2006), accounting for NO_x, NH_y as well as direct and indirect N₂O emissions from managed soils, grazed soils and animal waste. Our estimates neither cover agricultural N₂O emissions from savannah fires, agricultural waste burning or cultivation of histosoils, nor emissions from waste disposal, forestry or fertilizer production. Emission factors are connected directly to the corre-²⁵ sponding N_r flows of inorganic fertilizer application, as well as residue burning and
- ²⁵ sponding N_r flows of inorganic fertilizer application, as well as residue burning and decay on field, manure management, manure application, direct excretion during grazing, and soil organic matter loss.

2.4 Future scenarios

For future projections, we analyse four scenarios based on the SRES storylines (Nakicenovic et al., 2000), varying in two dimensions: economy versus ecology and globalisation versus heterogeneous development of the world regions. The parametrisation

of these scenarios differs in several aspects, which try to cover the largest uncertainties for the future development of the N_r cycle (Table 1). In the following, the scenario settings are shortly described, while a detailed description and an explanation of the model implementation is provided in Appendix A4.

Food demand projections and the share of calories from livestock products are calcu lated based on regressions between income and per-capita calorie demand, as well as regressions between income and the share of livestock calories in total demand. The regressions are based on a panel dataset (5889 data points) from FAOSTAT (2011); WORLDBANK (2011) for 162 countries from 1961 to 2007. In the environmentally oriented scenarios, we used different functional forms for the regressions that result in lower values for plant and livestock demand. The future projections are driven by pop-


¹⁵ lower values for plant and livestock demand. The future projections are driven by population and GDP scenarios from the SRES marker scenarios (CIESIN, 2002a,b).

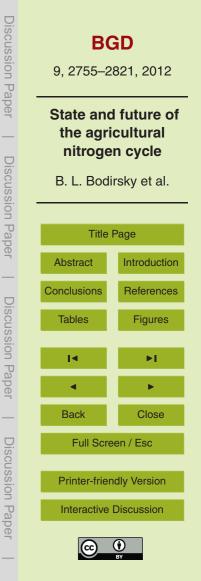
Trade in MAgPIE is oriented along historical trade patterns, fixing the share of products a region has imported or exported in the year 1995. To account for trade liberalisation, an increasing share of products can be traded according to comparative ad-

vantages in production costs instead of historical patterns. We use two different trade scenarios based on Schmitz et al. (2012), assuming faster trade liberalisation in the globalised scenarios.

The livestock production systems in the 10 MAgPIE regions differ in 1995 both regarding their productivity and the animal feed baskets. To account for the increasing

industrialization of livestock production, we assume an increasing convergence of the livestock systems from the current mix towards the industrialised European system. This high productive system has a large proportion of feedstock crops and conversion

2765


byproducts in the feed baskets. In the globalised scenarios, convergence is assumed to be faster than in the regionalised scenarios.

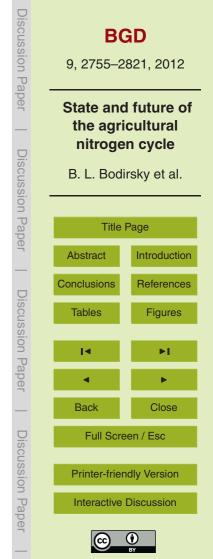
Currently, animal waste management systems are highly diverse between regions and their future development is highly uncertain. We assume two major future trends.

Firstly, that due to the scarcity of fossil fuels and the transformation of the energy system towards renewables, the use of animal manure as fuel for bioenergy will become increasingly important. Secondly, in the environmental scenarios, we also assume that an increasing share of manure is spread to soils in a timely manner. We therefore shift the current mix of animal waste management systems gradually towards anaerobic
 digesters and daily spread.

Improvements in the soil N_r uptake efficiency may occur in the future due to increasing environmental awareness or to save input costs. The regional efficiencies have been calculated for 1995, and we assume that they gradually increase in all scenarios, with the environmental scenarios reaching the highest efficiencies.

- ¹⁵ Finally, we do not allow the model to expand agricultural area into intact and frontier forest in the environmental oriented scenarios, as described in Popp et al. (2012). Similarly, we assume that conversion of natural vegetation and pasture into cropland, leading to soil organic matter loss, will come to rest for the environmentally oriented scenarios, whilst remaining constant in the economic oriented scenarios.
- The scenarios start in the calibration year 1995 and continue until 2095. The base year 1995 facilitates the comparison with other studies (Smil, 1999; Sheldrick et al., 2002; Liu et al., 2010a) and allows for a consistency check and benchmarking between the scenarios and the real development since 1995.

3 Results


3.1 Global nitrogen cycle

3.1.1 State in 1995

According to our calculations for the year 1995, 183 Tg N_r are applied to or fixed on
 global cropland, of which 113 is taken up by total plant biomass. Thereof, 46 Tg are fed to animals in the form of feedstock crops, crop residues, or conversion byproducts, plus additional 70 Tg from grazed pasture, to produce animal products which contain 7 Tg N_r. In total, plant and animal food at whole market level contains 23 Tg N_r, of which finally only 16 Tg N_r are consumed. Figure 2 shows an in-depth analysis of N_r flows in 1995 on a global level.

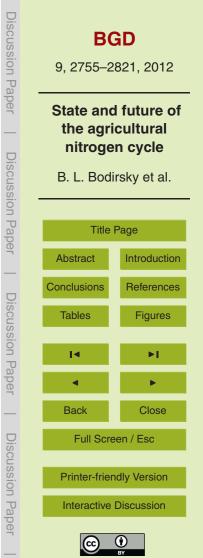
3.1.2 Scenarios

In our four scenarios, the throughput of the N_r cycle rises considerably within the 21st century. Total N_r in cropland biomass reaches 271 (B2)–365 (A1) Tg N_r in 2045 and 243 (B1)–562 (A2) Tg N_r in 2095. Also the range of soil inputs increases throughout the century, starting with 184 Tg in 1995 to 330 (B2)–461 (A1) Tg N_r in 2045 and 264 (B1)–724 (A2) Tg N_r in 2095. In the case of inorganic fertilizer consumption, the trends between scenarios are contradictory (Fig. 3). The A1, B1 and B2 scenarios show a modest increase to 118 (B1)–133 (A1) Tg N_r until 2045 and a stagnating or even declining consumption thereafter, while the A2 scenario exhibits a much stronger and continuous increase to 167 Tg N_r in 2045 and 288 Tg N_r in 2095. Despite these wide ranges, the differences of N₂O emissions between the scenarios is in the first half of the century rather narrow, rising from 3.2 Tg N₂O-N in 1995 to 7.0 (B1)–9.2 (A2) in 2045 and widening towards the end of the century to 4.6 (B1)–14.7 (A2) Tg N₂O-N (Fig. 2).

3.2 Regional budgets

While the surge of the N_r cycle can be observed in all regions, the speed and characteristics are very different between regions (Table 2). Sub-Saharan Africa (AFR) and South Asia (SAS) show the strongest relative increases in harvested N_r , while in

- ⁵ developed regions like Europe (EUR) or North America (NAM) the increase is more modest. The increase in production in AFR is not sufficient to settle domestic demand, such that large amounts of N_r have to be imported from other regions. Also the Middle East and Northern Africa (MEA) have to import large amounts of N_r due to the unsuitable production conditions. At the same time, these regions require only low amounts
- of inorganic fertilizer, as the domestic livestock production fed with imported N_r provides sufficient nutrients for production. Latin America (LAM) is the largest exporter in all scenarios, and is able to settle a large fraction of its fertilization requirements with biological fixation. Despite its large increase in consumption, SAS does not require large imports, as it can also settle its N_r requirements with a balanced mix of biological
- ¹⁵ fixation, manure, crop residues and inorganic fertilizer. In comparison with this, China (CPA) has a much stronger focus on fertilization with inorganic fertilizers.


In the globalised scenarios, these characteristics tend to be more pronounced than in the regionalised scenarios, as each region specialises in its relative advantages. The structural differences between the economical and ecological oriented scenarios are less distinct, yet it can be observed that the reduced livestock consumption in

developed countries leads to a lower importance of manure and a generally lower harvest of N_r in these regions.

4 Discussion

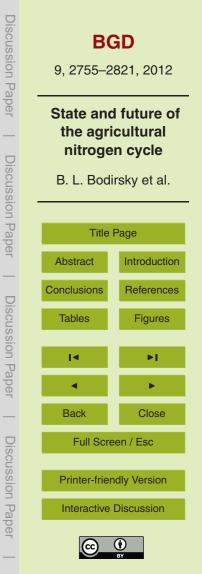
20

This study aims to create new estimates for the state and the future development of the agricultural N_r cycle. For this purpose, we adapted the landuse model MAgPIE to calculate major agricultural N_r flows. The simulation of the widely used SRES scenarios

facilitates the comparison with other studies like Bouwman et al. (2009) and allows for the integration of our results into other assessments.

As will be discussed in the following, the current size of the N_r cycle is much higher than previously estimated. Moreover, we expect the future rise of the N_r cycle to be ⁵ higher than suggested by other studies. Thereby, the livestock sector dominates both the current state and future developments. The surge of the N_r cycle will most likely be accompanied by higher N_r pollution.

4.1 The current state of the agricultural N_r cycle


20

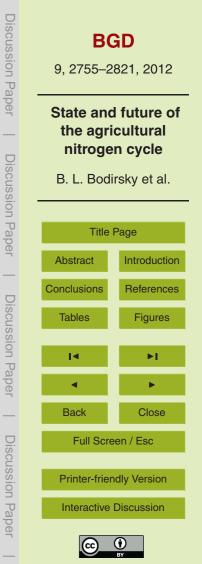
Data availability for N_r flows is poor. Beside the consumption of inorganic fertilizer, no N_r flow occurs in official statistics. Even the underlying material flows, like production and use of crop residues or animal manure are usually not recorded in international statistics. Therefore, independent model-assessments are required, using different methodologies and parametrisation to identify major uncertainties. In the following we compare our results with estimates of Smil (1999); Sheldrick et al. (2002) and Liu et al. (2010a), as summarised in Table 3.

The estimates for N_r withdrawals by crops and aboveground residues are relatively certain. They have now been estimated by several studies using different parametrisation. The scope between the studies is still large with 49–63 Tg N_r and 25–38, whereby the estimate of Sheldrick et al. (2002) may be too high due to the missing correction for dry matter when estimating nitrogen contents (Liu et al., 2010b).

Large uncertainties can be attributed to the cultivation of fodder and cover crops. They represent a substantial share of total agricultural biomass production, they are rich in N_r and often N_r fixers. Yet, the production area, the species composition and the production quantity are highly uncertain, and no reliable global statistics exist. The esti-

mate from FAOSTAT (2005) used by our study has been withdrawn without replacement in newer FAOSTAT releases. It counts 2900 Tg fresh matter fodder production on 190 million ha (Mha). Smil (1999) appraises the statistical yearbooks of 20 large countries and provides a lower estimate of only 2500 Tg that are produced on 100–120 Mha.

Estimates for N_r in animal excreta diverge largely in the literature. Using bottom-up approaches based on typical excretion rates and N_r content of manure, Mosier et al. (1998) and Bouwman et al. (2011) calculate total excretion to be above 100 Tg N_r . Smil (1999) assumes total excretion to be significantly lower with only 75 Tg N_r . Our


- top-down approach has the advantages that it can build on comparably reliable feed data of the FAOstat database, and that changing feed baskets in future scenarios also lead to altered excretion rates. Our results for 1995 can support the higher estimates of Mosier et al. (1998) and Bouwman et al. (2011), with an estimate of 109 Tg N_r. A similar total of 111 Tg N_r can be obtained bottom-up if one multiplies typical animal excretion
- rates taken from Eggleston et al. (2006) with the number of living animals (FAOSTAT, 2011). Yet, regional excretion rates diverge significantly: the top-down approach leads to considerable higher rates in Africa and the Middle East and lower rates in South and Pacific Asia.

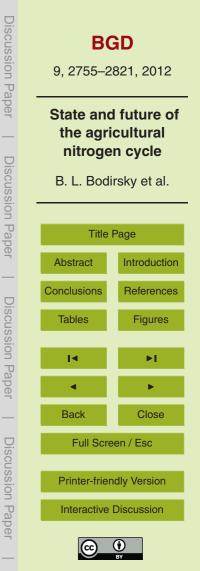
Biological N_r fixation is another flow of high uncertainty and most studies still use
 the per ha fixation rates of Smil (1999). While we also use these expert-guesses on N_r fixation by free-living bacteria, we are able to use a diverging methodology for estimating legume and sugarcane fixation. Our methodology uses the percentage of plant N_r derived from fixation. This, in combination with total above-and belowground N_r content of a plant, can predict N_r fixation more accurately. Despite the same fixation rates, we come to substantially lower estimates of N_r fixation than Herridge et al. (2008). This is caused by a different base year along with different estimates for the underlying plant

growth functions and N_r contents.

 N_r accumulation in soils has so far been neglected for future projections, assuming that soil organic matter is stable and all excessive N_r will volatilize or leach (Bouwman

et al., 2009, 2011). However, the assumption of a steady state for soil organic matter should not be valid for land conversion and cultivation of histosoils. Our rough bottomup calculations estimate that the transformation of natural vegetation or pasture to cropland has released 28 Tg N_r in 1995. The cultivation of histosoils and the drainage

of wetlands may release another 10 Tg N_r per year (Vitousek et al., 1997), although it is unclear how much thereof enters agricultural systems.


The total size of the cropland N_r budget is larger than estimated by previous studies. This can be attributed less to a correction of previous estimates than to the fact that past studies did not cover all relevant flows. In Table 3 we summarise cropland 5 input and withdrawals mentioned by previous studies. The sum of all withdrawals (Total OUT) ranges between 81 and 113 Tq Nr. However, if the unconsidered flows are filled with estimates from other studies, the corrected withdrawals (Total OUT*) shifts to 106- 135 Tg N_{r} . The same applies to inputs, where the range shifts and narrows down from 137–204 Tg Nr total inputs (Total IN) to 211–231 Tg Nr total inputs when all data gaps 10 are filled (Total IN*). The fraction of IN* which is incorporated into OUT* remains within the plausible global range of 0.35-0.65 defined by Smil (1999) for all studies. In our study, this holds even for every MAqPIE world region. At the same time, the corrected estimates for total losses is with 83–115 Tq Nr significantly higher than previously estimated. 15

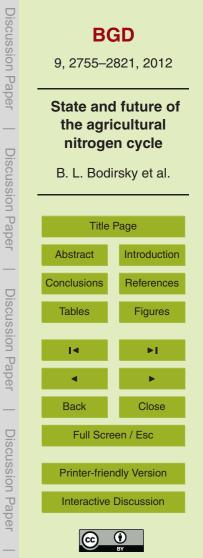
4.2 The future expansion of the N

4.2 The future expansion of the N_r cycle

The size of the agricultural N_r cycle has increased tremendously since the industrial revolution. While in 1860, agriculture fixed only 15 Tg N_r (Galloway et al., 2004), in 1995 the Haber-Bosch-synthesis, biological fixation and soil organic matter loss injected 133 Tg new N_r into the N_r cycle. Our scenarios suggest that this surge will persist into the future, and will not stop before the middle of this century. The development is driven by a growing population and a rising demand for food with increasing incomes, along with a higher share of livestock products within the diet. The N_r in harvested crops may more than triple. Fixation by inorganic fertilizers and legumes as well as recycling in the form of crop residues and manure may also increase by factor 2–3.

Our top-down estimates of future animal excreta are higher than the bottom-up estimates by Bouwman et al. (2011). In our scenarios, N_r excretion rises from 109 Tg N_r in 1995 to 243 Tg N_r (B1)–291 Tg N_r (A1) in 2045. Bouwman et al. (2011) estimate that

 N_r excretion increases from 102 Tg N_r in 2000 to 154 Tg N_r in 2050. These differences are caused by diverging assumptions. Firstly, while Bouwman et al. (2011) assume an increase of global meat demand by 115 % within 50 yr, our study estimates an increase by 136 % (A2)–200 % (A1). Secondly, Bouwman et al. (2011) assume rising N_r excretion rates per animal for the past, but constant rates for the future, such that weight


tion rates per animal for the past, but constant rates for the future, such that weight gains of animals are not connected to higher excretion rates. Ensuring the consistency between feed mix, livestock productivity and excretion rates, our top-down approach results in increasing excretion rates per animal in developing countries.

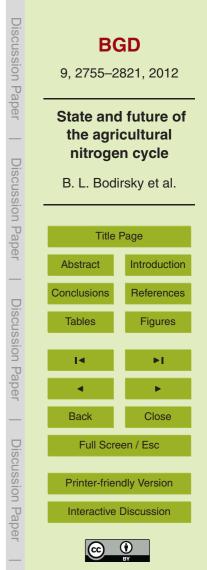
Our inorganic fertilizer projections are also higher than previous estimates, with annual growth rates of 0.9% (B1) to 1.8% (A2) until 2045. Estimates from Daberkow et al. (2000) have growth rates of only 0.6 to 1.4% for the next decades. According to Bouwman et al. (2009, 2011), N_r fertilizer consumption might even shrink with -0.4(B2) to 0.8% (A1) annual change until 2050. The differences can be partly attributed to our higher livestock and thus feed demand, and partly to the different methodol-

- ogy. Our results are based on a top-down approach, compared to the bottom-up approach of Bouwman et al. (2009, 2011) and Daberkow et al. (2000). Data availability for bottom-up estimates of fertilizer application is currently poor, and may be biased by crop-rotations and different manure application rates. While our top-down approach has to rely on an exogenous path for the development of N_r uptake efficiency, it can
- ²⁰ consistently simulate substitution effects between different N_r sources or a change in crop composition. This is of special importance if one simulates large structural shifts in the agricultural system like an increasing importance of the livestock sector.

Observed fertilizer consumption between 1995 and 2005 (IFADATA, 2011) is significantly higher than model projections by Bouwman et al. (2009, 2011) and Daberkow

et al. (2000), and exceeds with a growth rate of 2.1 % even our estimates. Our results meet the trend of actual consumption on a regional level. Only in South and East Asia, we tend to underestimate the real developments, while we overestimate inorganic fertilizer consumption in Europe. The latter may be attributed to the ambitious environmental regulation introduced in the recent past (Jensen et al., 2011).

The range of our scenario outcomes is large for all N_r flows, and continues to become larger over time. It can be observed that the assumptions on which the globalised and environmentally oriented scenarios are based lead to a substantially lower turnover of the N_r cycle than the regional fragmented and economically oriented scenarios.

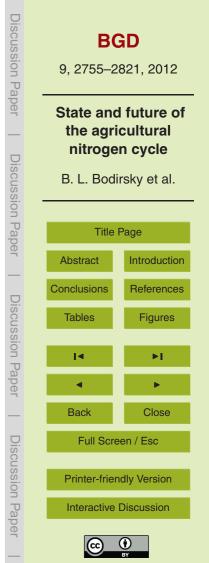

5 4.3 The importance of the livestock sector

10

The agricultural N_r cycle is dominated by the livestock sector. According to our calculations, livestock feeding appropriates 40 % (25 Tg) of N_r in global crop harvests and almost 25 % (8 Tg) of N_r in aboveground crop residues. Conversion byproducts add another 13 Tg N_r to the global feed mix. Moreover, 70 Tg N_r may be grazed by ruminants on pasture land, even though this estimate is very uncertain due to poor data availability on grazed biomass and N_r content of grazed pasture. The feed intake of 116 Tg results in solely 7 Tg N_r in livestock products.

In developed countries, the relative share of animal calories in total consumption already has already declined in the last decades. However, developing and transition ⁵ countries still feature a massive increase in livestock consumption (FAOSTAT, 2011). According to our food demand projections, the rising global demand for livestock products will not end before the middle of the century. In the second half of the century, both an upward and a downward trend is possible.

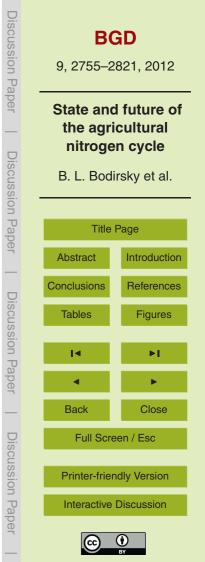
More efficient livestock feeding will not necessarily relieve the pressure from the N_r cycle. Although the trend towards energy efficient industrial livestock feeding may reduce the demand for feed, this also implies a shift from pasture grazing, crop residues and conversion byproducts towards feedstock crops. Pasture grazing and crop residues do not have the required nutrient-density for highly productive livestock systems (Wirsenius, 2000). According to our calculations, conversion byproducts today provide one fourth of the proteins fed to animals in developed countries. Latin America exports twice as much N_r in conversion byproducts as in crops. At the same time, Europe cannot settle its conversion byproduct demand domestically. Conversion byproducts


by other regions. The feedstock crops required to substitute conversion byproducts, pasture and crop residues will put additional pressure on the cropland N_r flows. The pressure on pasture however will most likely be only modest.

4.4 The future expansion of N_r pollution

- ⁵ All N_r, that is not recycled within the agricultural sector, is a potential environmental threat. Bouwman et al. (2009) estimate that over the next 50 yr, only 40–60% of the lost N_r will be directly denitrified. The remaining N_r will either volatilise in the form of N₂O, NO_x and NH_y or leach to water bodies. With the surge of the N_r cycle, air, water and atmospheric pollution will severely increase.
- ¹⁰ Air pollution is caused directly by N₂O and indirectly by the formation of ground-level ozone and secondary particulate matter. The impacts include respiratory diseases, damages to vegetation and odeur (Moldanova et al., 2011). Our results show that pollution will increase particularly in densely populated and intensively managed regions like China and India, which are today already heavily exposed. Air pollution by NO_x
- and NH_y may become a new problem in the intensively managed parts of Africa, Pacific Asia or the Middle East. Emissions rise only modestly in developed regions like Europe and North America, where current pollution is already high.

Leaching of N_r into water bodies may pollute drinking water which increases the risk of colon cancer. N_r leaching may also lead to abrupt and non-linear changes in lakes,


- estuaries, and marine ecosystems with sufficient phosphorus. This causes a restraint of their ecosystem services and a loss of biodiversity (Vitousek et al., 1997; Grizzetti et al., 2011). Again, our results indicate that emerging economies are subject to the highest increase in N_r pollution. Leaching in developed regions with a high level of current contamination also continues to rise.
- Along with local and regional impacts, it is still under debate whether a continuous accumulation of N_r could destabilize the earth system as a whole (Rockström et al., 2009b; ?). While there is little evidence supporting abrupt changes on a global level, N_r pollution contributes gradually to global phenomena such as biodiversity loss, ozone

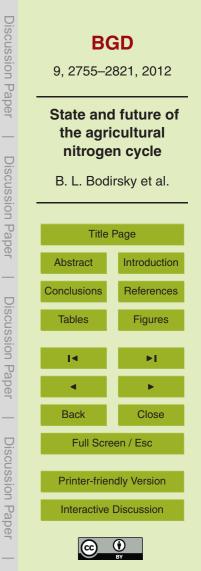
depletion and global warming. For the latter two, N_2O emissions play a crucial role. N₂O has an extraordinarily long atmospheric lifetime and absorbs infrared radiation in spectral windows not covered by other greenhouse gases (Vitousek et al., 1997). In addition, N_2O , is currently the major ozone depleting substance, as it catalyses the destruction of stratospheric ozone (Ravishankara et al., 2009). In 1995, N₂O emissions 5 from managed soils and manure contributed 3.3 Tg N₂O-N, or approximately half of total anthropogenic N₂O emissions. As a result of the corrected emission factors of Eggleston et al. (2006) compared to IPCC (1996) (see Appendix A3.5), our estimates are approximately one-third lower than estimated by the SRES marker scenarios. Our results also indicate that emissions will increase with substantially higher growth rates 10 in the first half of the century, offsetting the lower starting level. Especially in the case of the A1 and B2 scenarios, we come to 70% (A1) and 40% (B2) higher cumulative emissions over the century. In scenarios A2 and B1, our estimates are 10% lower (A2) or equal (B1) to the cumulative emissions in the marker scenarios, despite occuring later in the century (Fig. 4). Fortunately, the greenhouse effect of N₂O might be offset 15 by NO_x and NH_y emissions. By reducing the atmospheric lifetime of CH4, scattering light and increasing biospheric carbon sinks, these emissions have a cooling effect (Butterbach-Bahl et al., 2011).

5 Conclusions

The current state of the global agricultural N_r cycle is highly inefficient. Only around half of the N_r applied to cropland soils is taken up by plants. Furthermore, only one tenth of the N_r in produced cropland biomass and grazed pasture is actually consumed by humans. If the N_r cycle expand as expected to double or triple its size during the 21st century, the losses to natural systems will also continuously increase. This has negative consequences on both human health and local ecosystems. Moreover, it threatens the earth system as a whole by contributing to climate change, ozone depletion and loss of

biodiversity. $N_{\rm r}$ mitigation is therefore one of the key global environmental challenges of this century.

Current scientific examination of Nr mitigation options is concentrated mainly on the farm level. However, a comprehensive analysis of the whole agricultural system, as demonstrated in this study, suggests that mitigation could take place at several lev-5 els: (a) already at the household level, the consumer has the choice to lower his Nr. footprint by replacing animal with plant calories and reducing household waste (Popp et al., 2010; Leach et al., 2012); (b) substantial wastage during storage and processing could be avoided (Gustavsson et al., 2011); (c) information and price signal on the environmental footprint are lost within trade and retailing, such that sustainable prod-10 ucts do not necessarily have a market advantage (Schmitz et al., 2012); (d) livestock products have potential to be produced more efficiently, both concerning the amount of N, required for one ton of output and the composition of feed with different N, footprints; (e) higher shares of animal manure and human sewage could be returned to farmlands (Wolf and Snyder, 2003); (f) nutrient uptake efficiency of plants could be im-15 proved by better fertilizer selection, timing and placing, as well as enhanced inoculation


of legumes (Herridge et al., 2008; Roberts, 2007); (g) finally, unavoidable losses to natural systems could be directed or retained to protect vulnerable ecosystems (Jansson et al., 1994).

20 Appendix A

Extended methodology

A1 Model of agriculture and its impact on the environment (MAgPIE): general description

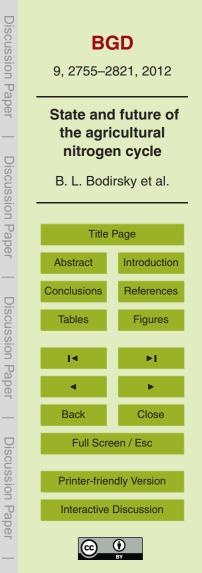
MAgPIE is a global land use allocation model which is linked with a grid-based dynamic vegetation model (LPJmL) (Bondeau et al., 2007; Sitch et al., 2003; Gerten et al., 2004;

Waha et al., 2012). It takes into account regional economic conditions as well as spatially explicit data on potential crop yields and land and water constraints, and derives specific land-use patterns, yields and total costs of agricultural production for each grid cell. The following will provide only a brief overview of MAgPIE, as its implementation and validation is presented in detail elsewhere (Lotze-Campen et al., 2008; Popp et al., 2010, 2012; Schmitz et al., 2012).

The MAgPIE model works on three different levels of disaggregation: global, regional, and cluster cells. For the model-runs of this paper, the lowest disaggregation level contains 300 cluster cells, which are aggregated from 0.5 grid cells based on an hierarchical cluster algorithm (Dietrich, 2011). Each cell has individual attributes concerning the available agricultural area and the potential yields for 18 different cropping activities derived from the LPJmL-model. The geographic grid cells are grouped into ten economic world regions (Fig. 1). Each economic region has specific costs of production for the different farming activities derived from the GTAP model (Schmitz et al.,

¹⁵ 2010).

10

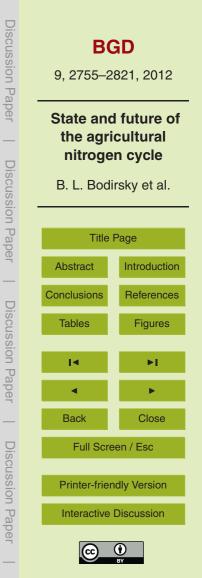

Food demand is inelastic and exogenous to the model, as described in further detail in the Sect. A4. Demand distinguishes between livestock and plant demand. Each calory demand can be satisfied by a basket of crop or livestock products with fixed shares based on the historic consumption patterns. There is no substitution elasticity between the consumption of different crop products.

The demand for livestock calories requires the cultivation of feed crops. Weindl et al. (2010) uses a top-down approach to estimate feed baskets from the energy requirements of livestock, dividing the feed use from FAOSTAT (2011) between the five MAg-PIE livestock categories.

25

20

Two virtual trading pools are implemented in MAgPIE which allocate the demand to the different supply regions. The first pool reflects the situation of no further trade liberalisation in the future and minimum self-sufficiency ratios derived from FAOSTAT (2011) are used for the allocation. Self-sufficiency ratios describe how much of the regional agricultural demand quantity is produced within a region. The second pool allocates the


demand according to comparative advantage criteria to the supply regions. Assuming full liberalisation, the regions with the lowest production costs per ton will be preferred. More on the methodology can be found in Schmitz et al. (2012).

- The non-linear objective function of the land-use model is to minimise the global costs of production for the given amount of agricultural demand. For this purpose, the optimization process can choose endogenously the share of each cell to be assigned to a mix of agricultural activities, the share of arable land left out of production, the share of non-arable land converted into cropland at exogenous land conversion costs and the regional distribution of livestock production. Furthermore, it can endogenously acquire yield-increasing technological change at additional costs (Dietrich, 2011). For
- future projections, the model works in time steps of 10 yr in a recursive dynamic mode, whereby the technology level of crop production and the cropland area is handed over to the next time step.
- The calculations in this paper are created with the nutrient branch of MAgPIE, model-¹⁵ revision 3606. While a mathematical description of the core model can be found in the Supplement, the following Sects. A2, A3 and A4 explain the model extensions which are implemented for this study. The interface between the core model and the nutrient module consists of cropland area ($X_{t,j,v,w}^{area}$), crop and livestock dry-matter production ($P(x_t)_{t,i,k}^{prod}$) and its use ($P(x_t)_{t,i,k,u}^{ds}$). All parameters are described in Table A2. The su-²⁰ perscripts are no exponents, but part of the parameter name. The arguments in the subscripts of the parameters include most importantly time (*t*), regions (*i*), crop types (*v*) and livestock types (*l*) (Table A1).

A2 Crop residues and conversion byproducts

A2.1 Crop Residues

²⁵ Eggleston et al. (2006) offer one of the few consistent datasets to estimate both aboveground (AG) and belowground (BG) residues. Also, by providing crop-growth functions

(CGF) instead of fixed harvest indices, it can well describe current international differences of harvest indices and also their development into the future. The methodology is thus well eligible for global long-term modelling. Eggleston et al. (2006) provide linear CGFs with positive intercept for cereals, leguminous crops, potatoes and grasses. As no values are available for the oilcrops rapeseed, sunflower, oilpalms as well as sugar crops, tropical roots, cotton and others, we use fixed harvest-indices for these crops based on (Wirsenius, 2000; Lal, 2005; Feller et al., 2007). If different CGFs are available for crops within a crop group, we build a weighted average based on the production in 1995. The resulting parameters $r_v^{\text{cgf.i}}$, $r_v^{\text{cgf.s}}$ and $r_v^{\text{cgf.r}}$ are displayed in Table A3. The AG crop residue production $P(x_t)_{t,i,v}^{\text{prod.ag}}$ is calculated as a function of harvested production $P(x_t)_{t,i,v}^{\text{prod}}$ and the physical area $X_{t,j,v,w}^{\text{area}}$, BG crop production as a function of total aboveground biomass.

15

While it is assumed, that all BG crop residues remain on the field, the AG residues are assigned to four different categories: feed, on-field burning, recycling and other uses. Residues fed to livestock $(P(x_t)_{t,i,v,\text{feed}}^{ds_ag})$ are calculated based on livestock production and livestock and regional specific residue feed baskets $r_{t,i,l,v}^{\text{fb}_ag}$ from Weindl et al. (2010). The demand rises with the increase in livestock production $P(x_t)_{t,i,l}^{\text{prod}}$ and can be settled either by residues $P(x_t)_{t,i,v,\text{feed}}^{ds_ag}$ or by additional feedstock crops $P(x_t)_{t,i,l,v,\text{sag}}^{ds}$.

BGD 9, 2755-2821, 2012 State and future of the agricultural nitrogen cycle B. L. Bodirsky et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

The latter prevents that crops are produced just for their residues.

$$\sum_{v} \mathsf{P}(x_t)_{t,i,v,\text{feed}}^{\text{ds}_ag} = \sum_{l,v} (\mathsf{P}(x_t)_{t,i,l}^{\text{prod}} \cdot r_{t,i,l,v}^{\text{fb}_ag} -\mathsf{P}(x_t)_{t,i,l,v,\text{sag}}^{\text{ds}})$$

Residue burning $(P(x_t)_{t,i,v,\text{burn}}^{\text{ds}_ag})$ is fixed to 15% of total AG crop residue dry matter in developed and 25% in developing countries for each crop. Other removals $(P(x_t)_{t,i,l,v,\text{other}}^{\text{ds}_ag})$ are assumed to be only in developing countries of major importance and is set in these regions to 10% of total residue dry matter production (Smil, 1999). All residues not assigned to feed, food, burning or other removals are assumed to remain in the field $(P(x_t)_{t,i,v,\text{rec}}^{\text{ds}_ag})$. Trade of residues between regions is not considered.

10
$$\mathsf{P}(x_t)_{t,i,v}^{\mathsf{prod}_\mathsf{ag}} = \sum_{r} \mathsf{P}(x_t)_{t,i,v,v}^{\mathsf{ds}_\mathsf{ag}}$$

A2.2 Conversion byproducts

Conversion byproducts are generated in the manufacturing of harvested crops into processed food. Of major importance are press cakes from oil production, molasses and bagasses from sugar refinement and brans from cereal milling. While they are also
¹⁵ consumed as food, used for bioenergy production or as fertiliser, their most important usage lies currently in livestock feeding. So far, they have not been accounted for in most global material flow analysis, an exception being Wirsenius (2000) and Weindl et al. (2010). Until recently, they were also not reported in FAOSTAT. As the feed baskets used by MAgPIE from Weindl et al. (2010) are not in line with the then unpublished
²⁰ but probably more accurate statistics of FAOSTAT (2011), we decided to use the latter estimates on production and use (for food or other purposes). We distributed the

ter estimates on production and use (for feed or other purposes). We distributed the byproducts between the different livestock production types proportional to their energy

(A3)

(A4)

in the feed baskets from Weindl et al. (2010) to create livestock-specific feed baskets for conversion byproducts $r_{t,i,l,v}^{\text{fb},\text{by}}$.

In the model, the production of 8 different conversion byproducts $P(x_t)_{t,i,v}^{prod_by}$ (brans, molasses and 6 types of oilcakes) is linked to the total domestic supply $\sum_{u} P(x_t)_{t,i,v,u}^{ds}$

⁵ of their belonging crop groups (Table A) by a factor $r_{i,v}^{by_conv}$ fixed to the ratio of conversion byproduct production to their belonging crop domestic supply in 1995 (FAOSTAT, 2011). If the demand for byproducts is higher than the production, byproducts from other regions can be imported or the model can also feed feedstock crops $P(x_t)_{t \ i \ v \ shv}^{ds}$.

$$\mathsf{P}(x_t)_{t,i,v}^{\mathsf{prod}\,\mathsf{by}} := \sum_{u} \mathsf{P}(x_t)_{t,i,v,u}^{\mathsf{ds}} \cdot r_{i,v}^{\mathsf{by}\,\mathsf{conv}}$$
(A5)

$$P(x_t)$$

$$P(x_t)_{t,i,v,\text{feed}}^{\text{ds_by}} = \sum_{l} (P(x_t)_{t,i,l}^{\text{prod}} \cdot r_{t,i,l,v}^{\text{fb_by}})$$
$$-P(x_t)_{t,i,l,v,sby}^{\text{ds}})$$
$$\sum P(x_t)_{t,i,v}^{\text{prod_by}} = \sum P(x_t)_{t,i,v,b}^{\text{ds_by}}$$

$$\Pr_{t,i,v}^{\text{prod}_\text{by}} = \sum_{i,b} \mathsf{P}(x_t)_{t,i,v,b}^{\text{ds}_\text{by}}$$

N_r flows **A**3

Attributes of plant biomass, conversion byproducts and food A3.1

The parametrisation of the goods represented in the model is a core task in a material 15 flow model. From the literature, we derived Nr content of dry matter of harvested organs $r_{\nu}^{\text{Nharvest}}$ (Wirsenius, 2000; Fritsch, 2007; FAO, 2004; Roy et al., 2006), aboveground crop residues r_v^{Nag} (Wirsenius, 2000; Fritsch, 2007; FAO, 2004; Eggleston et al., 2006; Chan and Lim, 1980), belowground crop residues r_{ν}^{Nbg} (Eggleston et al., 2006; Fritsch, 2007; Wirsenius, 2000; Khalid et al., 2000) and conversion byproducts r_{ν}^{Nby} (Wirsenius,

(A6)

(A7)

2000; Roy et al., 2006) (Table A). For the aggregation to MAgPIE crop groups, we weighted the parameters of each crop group with its global dry matter biomass in 1995. In the case of missing values for a specific FAO crop, we adopted the parametrisation of a selected representative crop of its crop group (e.g. we assign the value of wheat, being the representative crop of *temperate cereals*, to the FAO item *mixed grain*). The N, in crop and residue production and its subsequent use is thus obtained as follows:

$$N(x_t)_{t,i,v}^{\text{prod}} := P(x_t)_{t,i,v}^{\text{prod}} \cdot r_v^{\text{Nharvest}}$$
(A8)

$$N(x_t)_{t,i,v}^{\text{prod}_ag} := P(x_t)_{t,i,v}^{\text{prod}_ag} \cdot r_v^{\text{Nag}}$$
(A9)

$$N(x_t)_{t,i,v}^{\text{prod}_bg} := P(x_t)_{t,i,v}^{\text{prod}_bg} \cdot r_v^{\text{Nbg}}$$
(A10)

$$N(x_t)_{t,i,v,u}^{\text{ds}} := P(x_t)_{t,i,v,u}^{\text{ds}} \cdot r_v^{\text{Nharvest}}$$
(A11)

$$N(x_t)_{t,i,v,u}^{\text{ds}_ag} := P(x_t)_{t,i,v,u}^{\text{ds}_ag} \cdot r_v^{\text{Nag}}$$
(A12)

$$\mathsf{N}(x_t)_{t,i,v,r}^{\mathsf{ds}_\mathsf{ag}} := \mathsf{P}(x_t)_{t,i,v,r}^{\mathsf{ds}_\mathsf{ag}} \cdot r_v^{\mathsf{Nag}}$$

5

10

Manure management A3.2

Feed N_r is assigned to three feeding systems (f): pasture grazing (grazp), cropland arazing (arazc) and animal houses (house). The Nr related to the pasture grazing system is calculated on the basis of regional livestock specific feed baskets $r_{t,i}^{\text{fb_past}}$ from Weindl et al. (2010). Nr in feedstock crops and conversion byproducts is fully assigned to house. Crop residues in developed countries are fully assigned to house, while in developing countries we assume that 25 % of the N_r in residues are consumed directly

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

on croplands during stubble grazing (r_{ti}^{grazC}) .

$$\begin{split} \mathsf{N}(x_{t})_{t,i,l,\text{grazp}}^{\text{feed}} &\coloneqq r_{t,i,l}^{\text{fb}\text{-past}} \cdot \mathsf{P}(x_{t})_{t,i,l}^{\text{prod}} \cdot r_{\text{past}}^{\text{Npast}} \\ \mathsf{N}(x_{t})_{t,i,l,\text{grazc}}^{\text{feed}} &\coloneqq \sum_{v} r_{t,i,l,v}^{\text{fb}\text{-ag}} \cdot \mathsf{P}(x_{t})_{t,i,l}^{\text{prod}} \cdot r_{v}^{\text{Nag}} \cdot r_{t,i}^{\text{grazC}} \\ \mathsf{N}(x_{t})_{t,i,l,\text{house}}^{\text{feed}} &\coloneqq \sum_{v} \left(r_{t,i,l,v}^{\text{fb}\text{-by}} \cdot \mathsf{P}(x_{t})_{t,i,l}^{\text{prod}} \cdot r_{v}^{\text{Nby}} \\ + r_{v}^{\text{Nharvest}} \cdot (r_{t,i,l,v}^{\text{fb}\text{-conc}} \cdot \mathsf{P}(x_{t})_{t,i,l}^{\text{prod}} \\ + \mathsf{P}(x_{t})_{t,i,l,v,\text{sby}}^{\text{ds}} + \mathsf{P}(x_{t})_{t,i,l,v,\text{sag}}^{\text{ds}}) \\ + r_{t,i,l,v}^{\text{fb}\text{-ag}} \cdot \mathsf{P}(x_{t})_{t,i,l}^{\text{prod}} \cdot r_{v}^{\text{Nag}} \cdot (1 - r_{t,i}^{\text{grazC}}) \end{split}$$

In a second step, we use a top-down approach to estimate regional livestock specific annual average N_r excretion rates, rooted in the Tier 2 methodology of Eggleston et al. (2006). From the feed in all feeding systems (*f*) we subtract the amount of N_r which is integrated into animal biomass $N(x_t)_{t,i,l}^{sl}$ and assume that the remaining N_r is excreted as manure. For meat products, we calculate the N_r in the whole animal body $N(x_t)_{t,i,l}^{sl}$ using livestock product to whole body ratios r_l^{sl} from Wirsenius (2000), and whole body N_r content r_l^{NI} based on Poulsen and Kristensen (1998) (Table A5). For milk and eggs, we calculate $N(x_t)_{t,i,l}^{sl}$ by the N_r content in milk and eggs (Poulsen and Kristensen, 1998) (Table A5). $N(x_t)_{t,i,l}^{sl}$ is assigned to one of the three feeding systems by the parameter $r_{t,i,l,f}^{fs}$, which is based on Eggleston et al. (2006).

$$N(x_{t})_{t,i,l}^{sl} := P(x_{t})_{t,i,l}^{prod} \frac{r_{l}^{Nl}}{r_{l}^{sl}}$$
(A16)
$$N(x_{t})_{t,i,l,f}^{ex} := N(x_{t})_{t,i,l,f}^{feed} - r_{t,i,l,f}^{fs} \cdot N(x_{t})_{t,i,l}^{sl}$$
(A17)
2782

Discussion Paper BGD 9, 2755-2821, 2012 State and future of the agricultural nitrogen cycle **Discussion** Paper B. L. Bodirsky et al. **Title Page** Introduction Abstract Discussion Paper Conclusions References **Tables Figures** Back Close **Discussion Paper** Full Screen / Esc **Printer-friendly Version** Interactive Discussion

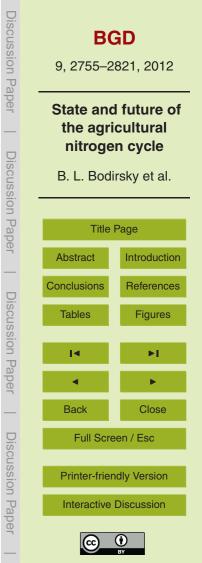
(A13)

(A14)

(A15)

In a third step, the N_r excreted in animal houses is divided between 9 animal waste management systems (*c*) using the parameter $r_{t,i,l,c}^{cs}$. When available, we used the regional and livestock specific shares from Eggleston et al. (2006); for chicken, sheep, goats and other animals, we used the default parameters of IPCC (1996). The category *others* for chicken is assumed to be *poultry with litter*.

5


25

to pasture soils.

Not all the manure excreted in animal houses is recycled within the agricultural system, but large fractions are lost to volatilisation and leaching or is simply not brought out to the farmland. We use animal waste management system specific shares of the total amount of managed manure $r_{l,c}^{\text{loss}_awms}$ not being recycled, including a fraction $r_{l,c}^{\text{gas}_awms}$ that is lost in the form of volatilization in the form of NO_x and NH_y. Because default

- parameters for $r_{l,c}^{\text{gas_awms}}$ and $r_{l,c}^{\text{loss_awms}}$ are not available for all animal waste management systems, we made the following assumptions: for *pit storage < 1 month* of swine manure we used the lower value of the proposed range (0.15), and the upper value (0.3) for *pit storage > 1 month*. If no estimates are available, *drylots* and *solid storage*
- ¹⁵ received the same emission factor, as was done in the old methodology (IPCC, 1996). Based on Marchaim (1992), we assumed that losses for manure managed in *anaerobic digesters* is neglectable. In the absence of default parameters for $r_{t,i,l,c}^{cs}$ for chicken, sheep, goats and other animals, we used the default parameters of Eggleston et al. (2006). *Others* is assumed to be *deep bedding* for pigs, cattle and others. All remaining goaps in the lass factors are filled with the values for cattle of the respective animal
- ²⁰ ing gaps in the loss factors are filled with the values for cattle of the respective animal waste management system.

While all remaining manure in animal houses is fully applied to cropland soils in developing countries, we assume that in NAM and EUR only a fraction $r_{t,i}^{\text{msplit}}$ of 87 % and 66 % is returned on cropland soils (Liu et al., 2010b), while the rest is applied to pasture soils. Furthermore, in developing countries, a certain share of manure excreted on pasture is dedicated for household fuel and does not return to pasture soils (Eggleston et al., 2006). Because the N_r in fuel is leaving the agricultural sector, it is not further considered in this study, while the N_r from *pasture grazing* is assumed to be returned

Losses of N_r in animal houses and waste handling $(N(x_t)_{t,i}^{closs})$, recycled manure $(N(x_t)_{t,i}^m)$ and manure arriving on cropland soils $(N(x_t)_{t,i}^{m_cs})$ and pasture soils $(N(x_t)_{t,i}^{m_ps})$ are calculated as follows:

$$N(x_t)_{t,i}^{closs} := \sum_{c} N(x_t)_{t,i,l,house}^{ex}$$
(A18)

$$\cdot r_{t,i,l,c}^{cs} \cdot r_{l,c}^{loss_awms}$$

$$N(x_t)_{t,i}^{m} := \sum_{c} N(x_t)_{t,i,l,\text{house}}^{ex} \cdot r_{t,i,l,c}^{cs}$$
$$\cdot (1 - r^{\text{loss}_awms})$$

$$N(x_t)_{t,i}^{m_cs} := N(x_t)_{t,i}^{m} \cdot r_{t,i}^{m\text{split}} + \sum_{t} N(x_t)_{t,i,l,\text{graze}}^{ex}$$

$$N(x_t)_{t,i}^{\text{m.ps}} := N(x_t)_{t,i}^{\text{m}} \cdot (1 - r_{t,i}^{\text{msplit}}) + \sum_{t} N(x_t)_{t,i/,\text{grazp}}^{\text{ex}} \cdot (1 - r_{t,i,t}^{\text{fuel}})$$

10

15

20

5

A3.3 Cropland N_r inputs

Inorganic fertiliser is the only N_r flow appearing in international statistics. We aggregate the values of IFADATA (2011) for all N_r-fertiliser products to the 10 MAgPIE regions to determine N(x_t)^{fert}_{t,i} in 1995. For the scenario analysis, inorganic fertiliser consumption is determined endogenously as described in Sect. A4.

The amount of crop residues left in the field is estimated as described in Sect. A2 as the remainder of the produced residues which are not used for feed, construction, fuel or burned in the field. While the nutrients of these residues are fully returned to cropland soils, the largest part of the N_r in the crop residues burned in the field (r_v^{CF}) is combusted; only a fraction of 10% for temperate cereal residues and 20% for all other

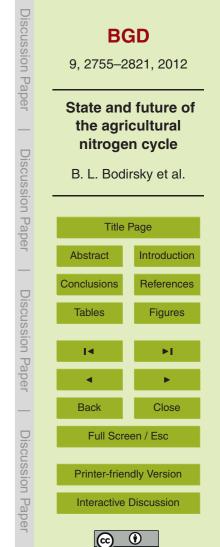
Discussion Paper BGD 9, 2755-2821, 2012 State and future of the agricultural nitrogen cycle Discussion Paper B. L. Bodirsky et al. **Title Page** Introduction Abstract Conclusions References **Discussion** Paper **Tables Figures** Back Close Full Screen / Esc **Discussion** Paper **Printer-friendly Version** Interactive Discussion

(A19)

(A20)

(A21)

residues (Eggleston et al., 2006) remains uncombusted and returns to cropland soils.

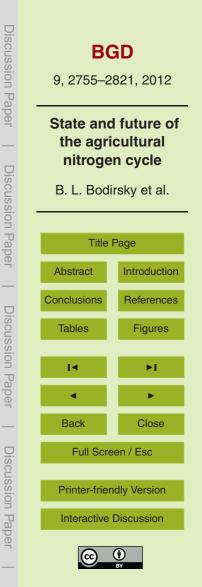

$$N(x_t)_{t,i}^{\text{res}} := \sum_{v} \left(N(x_t)_{t,i,v}^{\text{prod}_bg} + N(x_t)_{t,i,v,\text{rec}}^{\text{ds}_ag} + N(x_t)_{t,i,v,\text{burn}}^{\text{ds}_ag} \cdot (1 - r_v^{\text{CF}}) \right)$$

A major part of the N_r lost from field in the form of NO_x and NH_y as well as other N_r ⁵ compounds from the combustion of fossil fuels are lateron deposited from the atmosphere on cropland area. Based on spatial datasets for atmospheric deposition rates (Dentener, 2006) and cropland area (Klein Goldewijk et al., 2011), we derive average deposition rates per area for each region ($r_{t,i}^{dep}$). As the dataset of Dentener (2006) only exists for the years 2000 and 2050, we interpolated the other timesteps linearly and left the values constant at 2050 level thereafter.

$$N(x_t)_{t,i}^{dep} := \sum_{j \in I_i, v, w} X_{t, j, v, w}^{area} \cdot r_{t, i}^{dep}$$

While plants are unable to fix nitrogen from N₂ in the atmosphere, some microorganisms are able to do this. These microorganisms either live free in soils, or in symbiosis with certain crops or cover-crops. The symbiosis is typical mainly for leguminous crops
(beans, groundnuts, soybean, pulses, chickpeas, alfalfa), which possess special root nodules in which the microorganisms live. Management practices like inoculation of root nodules can increase the rates of N_r fixation. Also, sugar cane can fix N_r in symbiosis with endophytic bacteria, and some trees like the alder tree are also able to fix N_r. In the case of rice paddies, free-living cyanobacteria and cyanobacteria living N_r fixation by leguminous plants has be well investigated, estimates for N_r fixation by sugar cane and free-living bacteria is much more uncertain or even speculative.

For legumes and sugar cane, where N_r fixation is the direct product of a symbiosis of the microorganisms with the crop, we assumed that fixation rates are proportional


(A22)

(A23)

to the N_r in the plant biomass. The percentage of fixation-derived N_r is taken from Herridge et al. (2008) for legumes and sugar cane and from Galloway et al. (2004) for pasture. N_r fixation by free-living bacteria in cropland soils and rice paddies does not necessarily depend on the biomass production of the harvested crop, so we used fixation rates per area r_v^{Nfix} . In the case of the MAgPIE crop types fodder-crops and pulses which contain crop species with different rates of N_r fixation, a weighted mean is calculated based on the relative share of biomass production in 1995 for r_v^{ndfa} or on the relative share of harvested area in 1995 for r_v^{Nfix} (Table A6).

$$N(x_t)_{t,i}^{FixFree} := \sum_{j \in I_i, v, w} X_{t, j, v, w}^{area} \cdot r_v^{Nfix})$$
(A24)

- When pastureland or natural vegetation is transformed to cropland, soil organic mat-10 ter is lost, which also releases Nr for agricultural production. To calculate the Nr inputs from soil organic matter loss $N_{t,i}^{som}$, we first estimate the area converted from natural vegetation or pasture to cropland. For this purpose, we use the HYDE database with a 5' resolution (Klein Goldewijk et al., 2011). The increase of cropland area in a grid-cell is considered as expansion into natural vegetation, if the cropland area exceeds the 15 maximum historical cropland area. In the case that cropland area first shrinks and then increases again, it is assumed that the same cropland area is taken into management that was abandoned before, so that no new soil organic matter loss takes place. For our estimates, the cropland expansion in the period 1980-1990 is multiplied with the soil and litter carbon in the cell. Assuming full tillage practices, cropland management 20 releases 20-52% of the original carbon, depending on the climatic region (Eggleston et al., 2006). Nr losses are estimated using a fixed C:N ratio of 15 for the conversion of forest or grassland to cropland. The results are ggregated to the regional level of the 10 MAgPIE regions. Its future development is fixed exogenously according to the
- ²⁵ scenario assumptions.

A certain share of the N_r in a plant is already incorporated in the seed. The amount of seed required for production $P(x_t)_{t,t,v,\text{seed}}^{ds}$ is estimated crop and region specific using seed shares from FAOSTAT (2011)

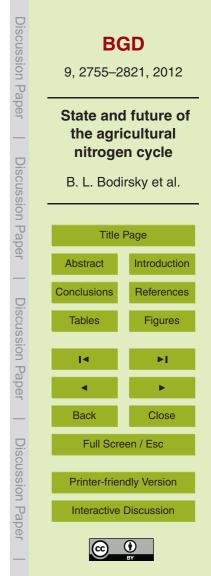
Losses and inorganic fertiliser A3.4

In the timestep 1995, the model uses historical data on regional fertiliser consumption 5 based on (IFADATA, 2011) to calculate regional NR efficiencies $r_{t,i}^{\text{Neff}}$. If biofixation takes place within the plant, we assume that no losses from the internally fixed Nr occurs, while the N_r fixed by free-living bacteria or in symbiosis with algae in rice paddies is assumed to underly the same proportion of losses as the other Nr inputs.

$$N(x_{t})_{t,i}^{\text{withd}} = N(x_{t})_{t,i}^{\text{inp}} \cdot r_{t,i}^{\text{Neff}}$$

$$N(x_{t})_{t,i}^{\text{withd}} := \sum_{v} \left((1 - r_{v}^{\text{ndfa}}) \cdot (N(x_{t})_{t,i,v}^{\text{prod}} + N(x_{t})_{t,i,v}^{\text{prod}_bg}) - N(x_{t})_{t,i,v}^{\text{prod}_ag} + N(x_{t})_{t,i,v}^{\text{prod}_bg} \right)$$

$$N(x_{t})_{t,i}^{\text{inp}} := N(x_{t})_{t,i}^{\text{fert}} + N(x_{t})_{t,i}^{\text{res}} + N(x_{t})_{t,i}^{\text{m.cs}} + N(x_{t})_{t,i}^{\text{m.rs}}$$


$$N(x_{t})_{t,i}^{\text{inp}} := N(x_{t})_{t,i}^{\text{fert}} + N(x_{t})_{t,i}^{\text{res}} + N(x_{t})_{t,i}^{\text{fisFree}}$$

$$N(x_{t})_{t,i}^{\text{som}} + N(x_{t})_{t,i}^{\text{dep}} + N(x_{t})_{t,i}^{\text{FisFree}}$$

1

In the following timesteps, $r_{t,i}^{\text{Neff}}$ is fixed on an exogenous level (see Sect. A4), while fertiliser consumption becomes endogenous. The loss of N, from cropland soils $N(x_t)_{t i}^{loss}$ is defined as:

$$N(x_t)_{t,i}^{loss} := N(x_t)_{t,i}^{inp} - \sum_{v} N(x_t)_{t,i}^{withd}$$
(A28)

A3.5 Emissions

5

20

We distinguish into emissions from inorganic fertiliser $(N_2O(x_t)_{t,i}^{tert})$, crop residues $(N_2O(x_t)_{t,i}^{res})$, animal manure excreted or applied on cropland $(N_2O(x_t)_{t,i}^m)$, manure excreted on pasture range and paddock $(N_2O(x_t)_{t,i}^{\text{past}})$, animal waste management $(N_2O(x_t)_{t,i}^{\text{house}})$ and soil organic matter loss $(N_2O(x_t)_{t,i}^{\text{som}})$. Each emission category has direct N2O emissions plus eventually indirect emissions from volatilisation and leaching.

Direct N₂O emissions from soils are calculated as a fraction r^{dir} of the inputs from manure, fertiliser, crop residues and soil organic matter loss. According to Eggleston et al. (2006), paddy rice has lower direct emissions ($r^{\text{dir}_{rice}}$ instead of r^{dir}) from fertilization with inorganic fertilisers. As our methodology is unable to estimate the amount of inorganic fertiliser which is used specifically for rice production, we use EF_{1FR} for all N_r inputs of rice. The direct emission factor for emissions from Nr excreted during pasture range and paddock $r_{i}^{\text{dir},\text{graz}}$ diverges between different animal types. For our livestock categories "ruminant meat" and "ruminant milk", containing animals of different types, 15 we used weighted averages according to net excretion rates in 1995.

N₂O emissions from volatilisation occur, when inorganic fertiliser or manure is applied to fields. The fraction volatilizing in the form of NO_x or NH_v is different between the excretion or application of manure (r^{gas_m}) , the application of inorganic fertiliser $(r^{\text{gas}_\text{fert}})$ and the management of animal waste $(r_{l,c}^{\text{gas}_\text{awms}})$. A fraction $r^{\text{indir}_\text{gas}}$ of these NO_x and NH_y gases transforms lateron into N_2O .

Leaching is relevant for inorganic fertiliser application, residue management as well as the excretion or application of animal manure to agricultural soils. We assume, that a fraction r^{leach} of the applied N_r leaches into water bodies. According to Eggleston et al. (2006), r^{leach} is only relevant on croplands where runoff exceeds water holding 25 capacity or where irrigation is employed, while for this model we made the simplification that leaching occurs everywhere. This assumption is also used in IPCC (1996). Of all

iscussion Paper BGD 9, 2755-2821, 2012 State and future of the agricultural nitrogen cycle B. L. Bodirsky et al. **Title Page** Introduction Abstract Conclusions References **Discussion** Paper Tables **Figures** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Discussion Paper

Discussion Paper

 N_r leaching into water bodies, a fraction r^{indir_leach} is assumed to transform lateron into N_2O .

The following equations sum up the calculations according to the emission sources:

$$N_{2}O(x_{t})_{t,i}^{\text{fert}} := N(x_{t})_{t,i}^{\text{fert}} \cdot (r^{\text{dir}} + r^{\text{gas_fert}} \cdot r^{\text{indir_gas}}$$
(A29)

$$N_2 O(x_t)_{t,i}^{\text{res}} := N(x_t)_{t,i}^{\text{res}} \cdot (r^{\text{dir}} + r^{\text{leach}} \cdot r^{\text{indir_leach}})$$

+N(x_t)^{ex}_{t.i,l,grazc})

$$N_2 O(x_t)_{t,i}^{m} := N(x_t)_{t,i}^{m} \cdot (r^{dir} + r^{gas_m} \cdot r^{indir_gas} + r^{leach} \cdot r^{indir_leach})$$

$$N_2O(x_t)_{t,i}^{\text{past}} := \sum_{t} (N(x_t)_{t,i,l,\text{grazp}}^{\text{ex}})$$
 (A32)

10

5

$$\cdot (r_{l}^{\text{dir}_\text{graz}} + r^{\text{gas}_\text{m}} \cdot r^{\text{indir}_\text{gas}} + r^{\text{leach}} \cdot r^{\text{indir}_\text{leach}}))$$

$$N_{2}O(x_{t})_{t,i}^{\text{house}} \coloneqq \sum_{l,c} \left(N(x_{t})_{t,i,l,\text{house}}^{\text{ex}} \cdot r_{t,i,l,c}^{\text{cs}} \\ \cdot (r_{l,c}^{\text{gas}_\text{awms}} \cdot r^{\text{indir}_\text{gas}} + r_{c}^{\text{dir}_\text{house}})) \right)$$

$$N_{2}O(x_{t})_{t,i}^{\text{som}} \coloneqq N_{t,i}^{\text{som}} \cdot (r^{\text{dir}} + r^{\text{leach}} \cdot r^{\text{indir}_\text{leach}})$$

15

20

The 2006 guidelines differ from the widely used 1996 guidelines (IPCC, 1996) most importantly in three aspects. Firstly, the N_r fixed by legumes and other N_r-fixing plants is not considered to have significant N₂O emissions. Only their comparably N_r-rich crop residues contribute to the N₂O emissions if they are left on the field. Secondly, the emission factor for direct emissions from managed soils (EF₁, in our case r^{dir}) was

Discussion Paper **BGD** 9, 2755-2821, 2012 State and future of the agricultural nitrogen cycle Discussion Paper B. L. Bodirsky et al. **Title Page** Introduction Abstract Conclusions References **Discussion** Paper **Tables Figures** Back Close **Discussion** Paper Full Screen / Esc **Printer-friendly Version** Interactive Discussion

(A30)

(A31)

(A33)

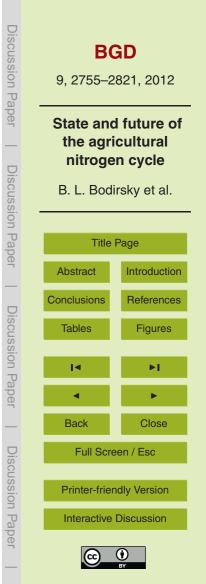
(A34)

lowered considerably from 1.25 to 1 % of N_r inputs, with indications that an even lower value of 0.9 % would be appropriate. Thirdly, the emission factor from leached N_r (EF₅, in our case $r^{\text{indir}_\text{leach}}$) was lowered considerably from 2.5 % to 0.75 %.

A3.6 Food supply and intake

- ⁵ N_r in food supply is not equal to the N_r in harvested crops and slaughtered animals assigned for food, because the food products are processed. For food supply of crop products $N(x_t)_{t,i,v}^{fs}$, we therefore subtracted the N_r in conversion byproducts from the N_r in harvest assigned for food. Also in the case of livestock products, the amount of N_r in the final products is not equal to the amount of N_r in the slaughtered animals, as only certain parts of the slaughtered animal are marketed, while the *fifth quarter* (often including head, feet, intestines or blood) is not used for food. Therefore we calculated protein content per food product r_l^{PR} based on (FAOSTAT, 2011) and multiplied them with product specific protein-N_r ratios r_l^{NtoPR} from (Sosulski and Imafidon, 1990; Heidelbaugh et al., 1975) to estimate the amount of N_r in livestock food supply (N(x_t)_{t,i,l}^{fs}).
- ¹⁵ Finally, the food supply is significantly higher than actual intake $N(x_t)_{t,i,k}^{int}$, because of significant waste rates on household level or in catering. We used regional intake to supply shares $r_{t,i,k}^{int}$ of Wirsenius (2000). As these shares will change with rising income, we estimated actual intake only for the year 1995.

$$N(x_t)_{t,i,v}^{fs} := N(x_t)_{t,i,v,\text{food}}^{ds} - N(x_t)_{t,i,v}^{\text{prod}.by}$$

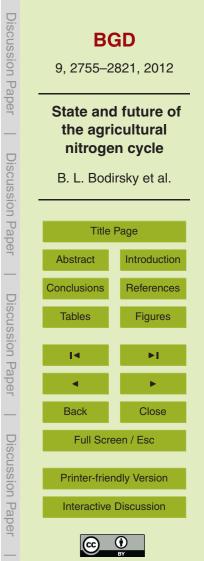

$$N(x_t)_{t,i,l}^{fs} := N(x_t)_{t,i,l}^{\text{prod}} \cdot r_l^{\text{PR}} \cdot r_l^{\text{NtOPR}}$$

$$N(x_t)_{t,i,k}^{\text{int}} := N(x_t)_{t,i,k}^{fs} \cdot r_{t,i,k}^{\text{int}}$$
(A35)
(A36)
(A37)

A4 Scenarios

20

For future projections, we created scenarios based on the SRES storylines (Nakicenovic et al., 2000). Quantitative interpretations of these storylines have been done by


various integrated assessment models, whereof marker scenarios were selected. We use downscaled projections of population and per capita income of these marker scenarios as main drivers of the MAgPIE model (CIESIN, 2002a,b).

Rolinski et al. (2012) create food demand scenarios for plant and livestock products based on the SRES population and GDP marker scenarios. To account for materialistic and non-materialistic lifestyles, they use different regressional forms for the A and B scenarios. In the A scenarios, they apply a log-log regression with a positive time-trend

- for total caloric intake, and a multiple linear regression model for the livestock demand share. For the sustainable B scenarios, they use a time-invariant log-log regression for
 total caloric intake, and an inverted u-shape regression model for livestock demand. In the latter, the share of animal products is increasing for low and medium incomes, but decreases for high incomes. The functional forms of the B scenarios tend to result in lower demand than the regression in the A scenarios. Yet, all four regressions are consistent with past observations (Table A7). The calculations are carried out on coun-
- try level and are subsequently aggregated to the 10 MAgPIE regions. The scenarios are calibrated to meet the food demand in 1995 (FAOSTAT, 2011), the initial year of the MAgPIE model. Afterwards, they converge linearly towards the regression values throughout the 21st century to account for a globalization of diets.

In all scenarios, the global food demand more than doubles from 1990 to 2070 (Fig. A2), while towards the end of the 21st century, the globalised scenarios A1 and B1 have a slightly declining food demand. Demand for livestock products (Fig. A3), is rising disproportionally strong, yet declines in all but the A2 scenario towards the end of the century.

A parameter which is subject to large uncertainty is the development of future trade liberalization policies. For 1995, we fix the share of domestic demand settled by imported products at their actual level in 1995. For the subsequent timesteps, we assume that an increasing share can be traded according to comparative advantages in production costs. The share of products traded according to historical trade patterns decreases in turn by 10\$ per decade in the two globalised scenarios A1 and B1. These

scenarios are equivalent to the policy scenario of Schmitz et al. (2012), extended to 2095. For the regionalised scenarios, we assume a slower rate of market integration with a reduction of only 2.5% per decade.

The efficiency of nutrient uptake on croplands is a parameter which has strong impact on the results of the model. While we estimate this parameter for the baseyear 1995, its development into the future is rather uncertain. Policies like the nitrate directive in Europe seemed to have a large impact in the past (Oenema et al., 2011), so the environmental awareness seems to be a key driver of the nitrogen use efficiency. To differentiate the economically orientated from the environmentally orientated scenarios, we adjust the cropland nutrient uptake efficiency $r_{t,i}^{\text{Neff}}$ for future scenarios. The starting points for $r_{t=1,i}^{\text{Neff}}$ are calculated endogenously in the model, and converge linearly over *n* timesteps to their scenario values $r_{n,i}^{\text{Neff}}$ (Table 1).

$$r_{t,i}^{\text{Neff}} := (1 - \frac{t}{n}) \cdot r_{t=1,i}^{\text{Neff}} + \frac{t}{n} \cdot r_{n,i}^{\text{Neff}}$$
(A38)

We chose to have high efficiency values in the B scenario due to high awareness for environmental damages. In the A1 scenario, $r_{t,i}^{\text{Neff}}$ also increases due to widespread use of efficient technologies (like e.g. precision farming), which saves costs but also resources. Yet, no improvements beyond cost efficiency are made, thus $r_{t,i}^{\text{Neff}}$ stays behind the B scenarios towards the end of the century. Finally, the A1 scenario stagnates around the current mean, and only improves towards the end of the century. The most efficient agricultural systems currently absorb around 70 % of applied N (Smil, 1999), so we used this value for high efficient scenarios.

A further scenario parameter is the development of livestock production systems. Feed baskets and livestock productivity diverge significantly in different world regions, with some systems being more industrialised and consuming mainly feedstock crops,

others being pastural or mixed systems. While the development of the livestock system is highly uncertain, a trend towards industrialised systems can be observed (Delgado, 1999). For future scenarios, we converge the feed baskets and livestock productivity

linearly towards the European livestock system, a system with rather low share of pastoral and traditional systems and a high share of industrialised livestock production. We assume a fast convergence in the globalised systems A1 and B1, while the regional

scenarios keep more of their current regional feed mixes (Table 1). To implement this into the model, we converged the parameters $r_{t,i,l,v}^{\text{fb}_\text{conc}}$, $r_{t,i,l}^{\text{fb}_\text{past}}$, $r_{t,i,l,v}^{\text{fb}_\text{past}}$, $r_{t,i,l,v}^{\text{fb}_\text{past$ 5 similar to Eq. (A38) to the European values in 1995. To account for an increasing modernization of the agricultural sector, the same type of convergence is applied to $r_{t,i}^{\text{msplit}}$

and $r_{t,i,l}^{\text{fuel}}$ and the fractions of byproducts and crop residues burned or used for other purposes.

- Even more uncertain is the development of the animal waste management. Even 10 for the present, few information exists on the differences of animal waste management around the world, and there is no clear pattern which of the systems is dominating with increasing modernization. Similarly, we assumed that manure management for housed animals is changing over time. For the economically orientated scenarios and
- the B1 scenario, we assumed that bioenergy plants using anaerobic digesters increase in importance, while the B scenarios also have an increasing share of manure being directly brought back on fields as daily spread. The convergence towards these systems is higher in globalised scenarios, while the current regional animal waste management mix partly prevails in the A2 and B2 scenarios. In the model, we implemented the convergence for the parameter $r_{t,i/c}^{cs}$ similar to Eq. (A38).
- 20

Supplementary material related to this article is available online at: http://www.biogeosciences-discuss.net/9/2755/2012/ bgd-9-2755-2012-supplement.pdf.

Acknowledgements. We gratefully acknowledge financial support by the German BMBF Project "GLUES – Global Assessment of Land Use Dynamics on Greenhouse Gas Emissions 25 and Ecosystem Services".

	BC 9, 2755–2	
ner Diecuesia	State and the agri nitroge B. L. Bodi	n cycle
	Title	Page
D	Abstract	Introduction
_	Conclusions	References
	Tables	Figures
0	14	►I.
and a	•	•
-	Back	Close
	Full Scre	
	Printer-frien	dly Version
Dun	Interactive	Discussion
D		•

References

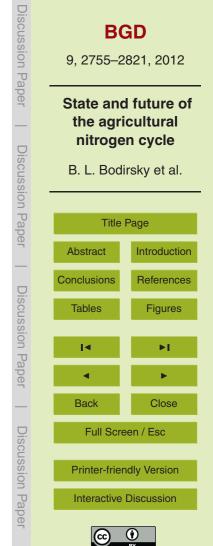
- Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679–706, 2007. 2759, 2763, 2775
- Bouwman, A. F., Van Drecht, G., and Van der Hoek, K. W.: Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030, Pedosphere, 15, 137–155, 2005. 2757
- Bouwman, A. F., Beusen, A., and Billen, G.: Human alteration of the global nitrogen and phos-
- ¹⁰ phorus soil balances for the period 1970–2050, Global Biogeochem. Cy., 23, 1–15 2009. 2757, 2768, 2769, 2771, 2773
 - Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H. W., Van Vuuren, D. P., Willems, J., Rufino, M. C., and Stehfest, E.: Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period,
- Livestock and Global Change Special Feature of P. Natl. Acad. Sci., 1–6, 2011. 2757, 2769, 2770, 2771
 - Boyer, E. W., Howarth, J., Dentener, F. J., Cleveland, C., Asner, G. P., Green, P., and Vörösmarty, C.: Current nitrogen inputs to world regions, in: Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment, 221–230. Island Bross, Washington, DC, 2004, 2756.
- ²⁰ 230, Island Press, Washington, DC, 2004. 2756
 - Brink, C., van Grinsven, H., Jacobsen, B. H., Rabl, A., Gren, I., Holland, M., Zbigniew, K., Hicks, K., Brouwer, R., Dickens, R., Willems, J., Termansen, M., Velthof, G., Alkemade, R., van Oorschot, M., and Webb, J.: Costs and benefits of nitrogen in the environment, in: The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, Cambridge University Press, 2011, 2757
- ²⁵ versity Press, 2011. 2757
- Butterbach-Bahl, K., Nemitz, E., Zaehle, S., Billen, G., Boeckx, P., Erisman, J. W., Garnier, J., Upstill-Goddard, R., Kreuzer, M., Oenema, O., Reis, S., Schaap, M., Simpson, D., de Vries, W., Winiwarter, W., and Sutton, M. A.: Nitrogen as threat to European greenhouse balance, in: The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, Cambridge Lange 10, 2021
- ³⁰ bridge University Press, 2011. 2774
 - Chan, K. and Lim, K.: Use of the Oil Palm Waste Material for Increased Production, Soil Science and Agricultural Development in Malaysia, 1980. 2780, 2811

- B2 Marker Scenarios, 1990–2100, http://www.ciesin.columbia.edu/datasets/downscaled, 2002b. 2764, 2791
- Daberkow, S., Poulisse, J., and Vroomen, H.: Fertilizer requirements in 2015 and 2030, Tech. rep., Food and Agriculture Organization of the United Nations (FAO), Rome, 2000. 2771

CIESIN: Country-level Population and Downscaled Projections based on the B2 Scenario, 1990–2100, http://www.ciesin.columbia.edu/datasets/downscaled, 2002a. 2764, 2791

CIESIN: Country-level GDP and Downscaled Projections based on the A1, A2, B1, and

- Delgado, C.: Livestock to 2020: The next food revolution, vol. 28, Intl Food Policy Res Inst, 1999. 2792
- ¹⁰ Dentener, F.: Global Maps of Atmpshperic Nitrogen Deposition, 1860, 1993 and 2050., http: //daac.ornl.gov/, 2006. 2763, 2785


Dietrich, J. P.: Efficient treatment of cross-scale interactions in a land-use model, Dissertation, Humboldt-University, Berlin, 2011. 2759, 2776, 2777

EC-JRC/PBL: Emission Database for Global Atmospheric Research (EDGAR), release version 4.2. available at: http://edgar.irc.ec.europa.eu, 2011, 2818

- Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., and Hayama, K. (Eds.): 2006 Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Institute for Global Environmental Strategies, Kanagawa, Japan, 2006. 2758, 2760, 2761, 2762, 2763, 2769, 2774, 2777, 2778, 2780, 2782, 2783, 2785, 2786, 2789, 2805, 2811
- 20 2785, 2786, 2788, 2805, 2811

5

- FAO: Scaling soil nutrient balances, 2004. 2761, 2780, 2811
- FAOSTAT: Database collection of the Food and Agriculture Organization of the United Nations [CD-ROM], 2005. 2768
- FAOSTAT: Database collection of the Food and Agriculture Organization of the United Nations,
 www.faostat.fao.org, 2011. 2761, 2763, 2764, 2769, 2772, 2776, 2779, 2780, 2787, 2790, 2791
 - Feller, C., Fink, M., Laber, H., Maync, A., Paschold, P., Scharpf, H., Sclaghecken, J., Strohmeyer, K., Weier, U., and Ziegler, J.: Düngung im Freilandgemüsebau, Schriftenreihe des Leibniz-Instituts für Gemüse- und Zierpflanzenbau (IGZ), 4, 2007. 2760, 2778
- Forster, P., Ramaswamy, V., et al.: Chapter 2: Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Solomon, S., D. Qin, M. M., Chen, Z., Marquis, M., Averyt, K., Tignor,

M., and Miller, H., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. 2756

- Fritsch, F.: Nährstoffgehalte in Düngemitteln und im Erntegut; für die Düngeplanung; für Nährstoffvergleiche, Tech. rep., Dienstleistungszentrum Ländlicher Raum Rheinhessen Nahe-Hunsrück, Bad Kreuznach, 2007. 2761, 2780, 2811
- Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vöosmarty, C. J.: Nitrogen Cycles: Past, Present, and Future, Biogeochemistry, 70, 153–226, 2004. 2757, 2770, 2786
- Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: Terrestrial vegetation and water balance. Hydrological evaluation of a dynamic global vegetation model, J. Hydrol., 286, 249–270, 2004. 2759, 2763, 2775

Grizzetti, B., Bouraoui, F., Billen, G., van Grinsven, H., Cardoso, A. C., Thieu, V., Garnier, J., Curtis, C., Howarth, R., and Johnes, P.: Nitrogen as threat to European water quality, in:

- ¹⁵ The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, Cambridge University Press, 2011. 2757, 2773
 - Gustavsson, J., Cedersberg, C., and Sonesson, U.: Global Food Losses and Food Waste, Tech. rep., FAO, Düsseldorf, 2011. 2775

Heidelbaugh, N. D., Huber, C. S., Bednarczyk, J. F., Smith, M. C., Rambaut, P. C., and Wheeler,

 H. O.: Comparison of three methods for calculating protein content of foods, J. Agr. Food Chem., 23, 611–613, 1975. 2761, 2790

 Herridge, D. F., Peoples, M. B., and Boddey, R. M.: Global inputs of biological nitrogen fixation in agricultural systems, Plant and Soil, 311, 1–18, 2008. 2762, 2769, 2775, 2786, 2813
 IFADATA: Statistical database of the International Fertilizer Association (IFA), www.fertilizer.org/

ifa/ifadata/, 2011. 2763, 2771, 2784, 2787, 2817

IPCC: Volume 2: Workboook, Chapter 4: Agriculture, in: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Institute for Global Environmental Strategies (IGES), 1996. 2774, 2783, 2788, 2789

Jansson, M., Andersson, R., Berggren, H., and Leonardson, L.: Wetlands and Lakes as Nitrogen Traps, Ambio, 23, 320–325, 1994. 2775

30

Jensen, L. S., Schjoerring, J. K., Van Der Hoek, K. W., Poulsen, H. D., Zevenbergen, J. F., Palliere, C., Lammel, J., Brentrup, F., Jongbloed, A. W., Willems, J., and van Grinsven, H.: Benefits of nitrogen for food, fibre and industrial production, in: The European Nitrogen Assess-

Discussion

Paper

Discussion

Paper

Discussion Paper

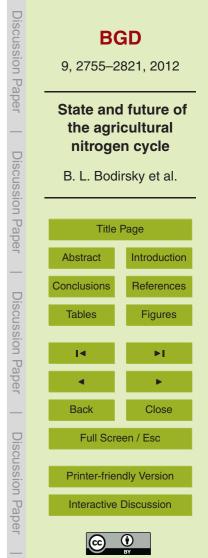
ment: Sources, Effects and Policy Perspectives, Cambridge University Press, 2011. 2771 Khalid, H., Zin, Z., and Anderson, J. M.: Nutrient cycling in an oil palm plantation: the effects of residue management practices during replanting on dry matter and nutrient uptake of young palms, Journal of Oil Palm Research, 12, 29–37, 2000. 2760, 2761, 2780, 2811

Klein Goldewijk, K., Beusen, A., van Drecht, G., and de Vos, M.: The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years, Glob. Ecol. Biogeogr., 20, 73–86, 2011. 2763, 2785, 2786

Lal, R.: World crop residues production and implications of its use as a biofuel, Environment International, 31, 575–584, 2005. 2760, 2778

Leach, A. M., Galloway, J. N., Bleeker, A., Erisman, J. W., Kohn, R. A., and Kitzes, J.: A nitrogen footprint model to help consumers understand their role in nitrogen losses and environment, Environmental Development, 1, 40–66, 2012. 2775

Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A. J. B., and Yang, H.: A high-resolution assessment on global nitrogen flows in cropland, P. Natl. Acad. Sci., 107, 8035–8040, 2010a, 2757, 2765, 2768


8035–8040, 2010a. 2757, 2765, 2768
 Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A. J. B., and Yang, H.: Supporting information: A high-resolution assessment on global nitrogen flows in cropland, P.

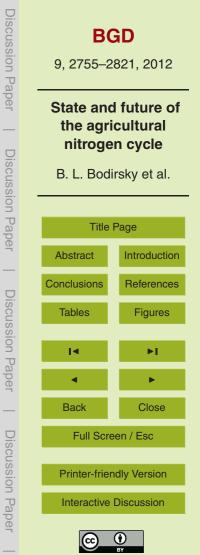
Natl. Acad. Sci., 107, 8035–8040, 2010b. 2768, 2783

Lotze-Campen, H., Müller, C., Bondeau, A., Rost, S., Popp, A., and Lucht, W.: Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach, Agricultural Economics, 39, 325–338, 2008. 2758, 2776

Marchaim, U.: Biogas processes for sustainable development, Tech. rep., Food and Agriculture Organization of the United Nations (FAO), 1992. 2783

- Mauney, J. R., Kimball, B. A., Pinter Jr, P. J., LaMorte, R. L., Lewin, K. F., Nagy, J., and Hendrey, G. R.: Growth and yield of cotton in response to a free-air carbon dioxide enrichment (FACE) environment, Agr. Forest Meteorol., 70, 49–67, 1994. 2760
 - Moldanova, J., Grennfelt, P., Jonsson, A., Simpson, D., Spranger, T., Aas, W., Munthe, J., and Rabl, A.: Nitrogen as a threat to European air quality, in: The European Nitrogen Assessment:
- Sources, Effects and Policy Perspectives, Cambridge University Press, 2011. 2757, 2773
 Mosier, A., Duxbury, J., Freney, J., Heinemeyer, O., and Minami, K.: Assessing and Mitigating N₂O Emissions from Agricultural Soils, Climatic Change, 40, 7–38, 1998. 2769

- Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H. M., Price, L., Riahi, K., Roehrl, A., Rogner, H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S. J., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z.: Special Report on Emissions Scenarios : a special report of Working Group III of the Intergovernmental Panel
- Emissions Scenarios : a special report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, NY (US), 2000. 2764, 2790, 2818
 - Oenema, O., Bleeker, A., Braathen, N. A., Budnakova, M., Bull, K., Cermak, P., Geupel, M., Hicks, K., Hoft, R., Kozlova, N., Leip, A., Spranger, T., Valli, L., Velthof, G., and Winiwarter,
- ¹⁰ W.: Nitrogen in current European policies, in: The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, 62–81, Cambridge University Press, 2011. 2792
 - Popp, A., Lotze-Campen, H., and Bodirsky, B.: Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production, Global Environmental Change, 10, 451–462, 2010. 2758, 2775, 2776
- Popp, A., Dietrich, J., Lotze-Campen, H., Klein, D., Bauer, N., Krause, M., Beringer, T., Gerten, D., and Edenhofer, O.: The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system, Environ. Res. Lett., 6, 1–9, 2011. 2759


Popp, A., Krause, M., Dietrich, J. P., Lotze-Campen, H., Leimbach, M., Beringer, T., and Bauer,

- N.: Additional CO2 emissions from land use change forest conservation as a precondition for sustainable production of second generation bioenergy, Ecological Economics, 74, 64– 70, 2012. 2758, 2765, 2776
 - Poulsen, H. D. and Kristensen, V. F.: Standard Values for Farm Manure. A Revaluation of the Danish Standard Values concerning the Nitrogen, Phosphorus and Potassium Content of Manure, DIAS report, 7, 1998. 2761, 2782, 2812
 - Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326, 123–125, 2009. 2757, 2774

25

Roberts, T. L.: Right Product, right rate, right time and right place (The foundation of best

³⁰ management practices for fertilizer), in: Fertilizer Best Management Practices. General Principles, strategy for their adoption and Voluntary Initiatives vs. Regulations, 29–32, Bruxelles, Belgium, 2007. 2775

- Rockström, J., Steffen, W., Noone, K., Persson, A, Chapin, F. S, Lambin, E. F, Lenton, T. M, Scheffer, M., Folke, C., Schellnhuber, H. J, Nykvist, B., de Wit, C. A., Hughes, T., Van Der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Constanza, R., Svedin, U., Falkenmark, M, Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Livermann, D., Richardson,
- 5 K., Crutzen, P. J., and Foley, J.: A safe operating space for humanity, Nature, 461, 472–475, 2009a. 2773
 - Rockström, J., Steffen, W., Noone, K., Persson, A, Chapin, F. S, Lambin, E. F, Lenton, T. M, Scheffer, M., Folke, C., Schellnhuber, H. J, Nykvist, B., de Wit, C. A., Hughes, T., Van Der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Constanza, R., Svedin, U., Falkenmark, M,
- Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Livermann, D., Richardson, K., Crutzen, P. J., and Foley, J.: Planetary boundaries: exploring the safe operating space for humanity, Ecol. Soc., 14, 1–32, 2009 2773

Rolinski, S., Bodirsky, B., Popp, A., and Lotze-Campen, H.: Global food demand projections for the 21st century, in preparation, 2012. 2791, 2820, 2821

Roy, R., Finck, A., Blair, G., and Tandon, H.: Plant nutrition for food security, Ferilizer and plant nutrition bulletin 16, Food and Agriculture Organization of the United Nations (FAO), 2006. 2761, 2780, 2781, 2811

Schmitz, C., Dietrich, J. P., Lotze-Campen, H., Müller, C., and Popp, A.: Implementing endogenous technological change in a global land-use model., in: GTAP 13. Annual Conference in

- Penang, Malysia, 9–11 June, Penang (Malaysia), www.gtap.agecon.purdue.edu/resources/ download/5584.pdf, 2010. 2759, 2776
 - Schmitz, C., Biewald, A., Lotze-Campen, H., Popp, A., Dietrich, J. P., Bodirsky, B., Krause, M., and Weindl, I.: Trading more food: Implications for land use, greenhouse gas emissions, and the food system, Glob. Environ. Change, 22, 189–209, 2012. 2758, 2759, 2764, 2775, 2776, 2777, 2792
 - Sheldrick, W. F., Syers, J. K., and Lingard, J.: A conceptual model for conducting nutrient audits at national, regional, and global scales, Nutrient Cycling in Agroecosystems, 62, 61–72, 2002. 2757, 2765, 2768, 2803

25

Sitch, S., Smith, B., Prentice, I., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J., Levis, S.,

Lucht, W., Sykes, M., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob. Change Biol., 9, 161–185, 2003. 2763, 2775

B	BGD						
9, 2755–2	9, 2755–2821, 2012						
the agri	State and future of the agricultural nitrogen cycle						
B. L. Bod	irsky et al.						
Title	Page						
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
14	۶I						
•	•						
Back	Close						
Full Scre	Full Screen / Esc						
Printer-frier	ndly Version						
Interactive	Discussion						

Discussion Paper

Discussion Paper

Discussion Paper

- Smil, V.: Nitrogen in crop production: An account of global flows, Global Biochem. Cy., 13, 647-662, 1999. 2756, 2757, 2760, 2762, 2765, 2768, 2769, 2770, 2779, 2792, 2803
- Smil, V.: Nitrogen and food production: proteins for human diets, Ambio, 31, 126–131, 2002. 2812
- 5 Sosulski, F. W. and Imafidon, G. I.: Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods, J. Agr. Food Chem., 38, 1351–1356, 1990. 2761, 2790 Velthof, G., Barot, S., Bloem, J., Butterbach-Bahl, K., de Vries, W., Kros, J., Lavelle, P., Olesen, J. E., and Oenema, O.: Nitrogen as a threat to European soil guality, in: The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, Cambridge University Press, 2011. 2757

10

15

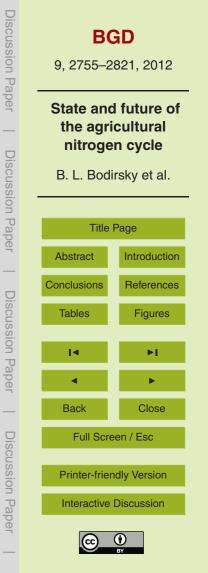
25

- Vitousek, P. M, Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schndler, D. W., Schlesinger, W. H., and Tilman, D. G.: Human Alterations of the Global Nitrogen Cycle: Sources and Consequences, Ecol. Appl., 7, 737–750, 1997. 2756, 2770, 2773, 2774
- Waha, K., van Bussel, L. G. J., Müller, C., and Bondeau, A.: Climate-driven simulation of global crop sowing dates, Global Ecol. Biogeogr., 21, 247-259, 2012. 2776
- Weindl, I., Lotze-Campen, H., Popp, A., Bodirsky, B., and Rolinski, S.: Impact of livestock feeding technologies on global greenhouse gas emissions, in: IATRC Public Trade Policy Research and Analysis Symposium, Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, Stuttgart, Germany, 2010. 2759, 2760, 2776, 2778, 2779, 2780, 2781 20
 - Wirsenius, S.: Human Use of Land and Organic Materials, Ph.D. thesis, Chalmers University of Technology and Gäteborg University, Göteborg, Sweden, 2000. 2760, 2761, 2772, 2778, 2779, 2780, 2782, 2790, 2811, 2812
 - Wolf, B. and Snyder, G. H.: Sustainable Soils: The place of organic matter in sustaining soils and their productivity, The Haworth Press Inc, New York, 1 edn., 352 pp., 2003. 2775
 - WORLDBANK: World Development Indicators, http://data.worldbank.org/data-catalog/ world-development-indicators, 2011. 2764

BC	BGD						
9, 2755–2	9, 2755–2821, 2012						
State and future of the agricultural nitrogen cycle B. L. Bodirsky et al.							
Title	Page						
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
14	►I						
•	•						
Back	Close						
Full Scre	een / Esc						
Printer-frier	ndly Version						
Interactive	Discussion						

Discussion Paper

Discussion Paper


Discussion Paper

	1995		2045				2095			
		A1	A2	B1	B2	A1	A2	B1	B2	
GDP (10 ¹² US\$)	33	223	107	173	135	675	315	454	320	
Population (10 ⁹ heads)	5.6	8.6	10.8	8.6	9.1	7.4	14.8	7.4	10.3	
Food demand (10 ¹⁸ J)	23	46	51	40	42	48	81	38	50	
- thereof livestock products	16%	24 %	17 %	22 %	21 %	22 %	17%	13%	17%	
Trade patterns										
 Historical 	100 %	59 %	88 %	59 %	88 %	35 %	77%	35 %	77%	
 Comparative advantage 	0%	41 %	12 %	41 %	12%	65 %	23%	65 %	23 %	
Livestock systems										
 Current mix 	100 %	20 %	50 %	20 %	50 %	0%	20 %	0%	20 %	
 Industrialised 	0%	80 %	50 %	80 %	50 %	100 %	80 %	100 %	80 %	
Animal waste ¹										
 Current mix 	100 %	30 %	80 %	40 %	80 %	0%	50 %	20%	50 %	
 Daily spread 	0%	0%	0%	30 %	20 %	0%	0%	40 %	50 %	
 Anaerobic digester 	0%	70 %	20 %	30 %	0%	100 %	50 %	40 %	0%	
N _r uptake efficiency	53 % ²	60 %	55 %	65 %	65 %	60 %	60 %	70%	70 %	
Intact and frontier forest pro- tection		no	no	yes	yes	no	no	yes	yes	

Table 1. Scenario definitions, based on the IPCC SRES scenarios.

¹ Only for waste in animal houses,

² global average.

Discussion Paper

Table 2. Regional estimates of N_r flows for the state in 1995 and for the four scenarios $\frac{A1|B1}{A2|B2}$ in Tg N_r per year. Losses consist of losses from cropland soils and animal waste management.

N _r flow	Year	Wo	rld											ions									
				AF		C			JR	FS			м	ME		NA		PA	-	P/	-	-	AS
Harvest	1995	6	3	3	3	1	2	1	0	5	5		5	2	2	1	3	2		:	3	7	7
	2045	226 184	188 164	20 17	17 17	36 33	31 30	21 19	21 18	17 11	15 10	36 32	27 28	77	6 5	27 28	23 21	3 3	2 2	12 8	7 7	48 26	40 27
	2095	267 348	153 215	30 43	22 39	30 52	18 30	29 26	21 21	19 22	8 12	26 67	13 31	12 15	6 8	50 50	14 26	4 5	1 2	14 19	6 7	53 50	44 39
Residues	1995	3	4	2	2	6	6	4	5	3	3	:	3	1	l	6	5	1		2	2	5	5
	2045	87 78	73 69	9 8	7 8	16 15	14 14	9 8	8 8	6 5	6 4	11 11	<mark>8</mark> 9	4 3	3 2	10 11	9 8	1	1	4 4	3 3	15 12	13 12
	2095	89 133	59 82	11 17	9 15	9 23	11 15	11 11	9 8	6 8	3 5	8 21	4 9	8 7	3 4	17 17	5 9	1 2	0 1	5 7	2 3	13 18	11 14
Fertilizer	1995	7	8	1	1	2	4	1	3	2	2	4	1	3	3	1	3	1		4	l I	1	3
	2045	138 194	121 133	0 12	0 10	40 50	36 33	29 31	27 25	9 7	10 7	15 27	13 18	0 4	0 1	24 33	25 22	0 3	1 2	0 4	0 2	21 23	9 13
	2095	161 288	85 131	0 25	0 11	16 73	21 33	39 40	27 26	14 16	<mark>6</mark> 9	6 46	7 17	0 0	0 0	69 49	14 23	0 2	1	4 6	0 0	17 29	10 10
Manure	1995	10)9	1	2	1	2	1	3	7	7	2	1	3	3	1	0	4		4	L	2	2
	2045	291 268	243 261	53 48	51 50	38 33	30 43	19 17	10 10	16 13	12 11	39 42	26 35	27 21	23 15	17 17	9 8	9 8	4 4	24 16	17 16	49 53	62 68
	2095	299 411	148 261	78 80	55 89	18 37	9 24	16 21	2 5	16 18	4 5	26 61	9 20	41 60	17 28	21 25	4 4	10 12	1	29 35	13 18	44 63	34 68
Biol. N _r	1995	2	2	1	1	:	3	:	2	2	2	:	3	0)	4	ŀ	1		1	1	4	1
fixation	2045	83 59	68 55	7 6	7 6	5 5	4 6	3	4 3	7	7	19 16	14 14	1	1	10 10	8 8	1	0	5 3	3 2	25 10	21 10
	2095	89 116	55 76	5	6 13	12	3	6	4	7	2	14 33	7	2	1	8 19	5 11	0	0	4	2	30 22	25 17
Trade	1995	()	()	-	1	-	2	-	1		2		2	4	L	' -1		-	1	(2
	2045	0	0 0	-22 -11	-22 -11	-5 -1	-1 -9	9 7	12 11	4 0	5 1	38 26	29 24	-23 -17	- 19 -12	11 12	14 12	-5 -3	-2 -1	-14 -9	-11 -9	8 -4	-5 -7
	2095	0	0 0	- 48 -18	- <mark>31</mark> -29	5 -1	5 1	17 11	16 15	6 5	3 7	42 56	19 31	-41 -53	-20 -23	31 26	<mark>8</mark> 21	-6 -5	-1 0	- 18 -19	-9 -12	10 -2	10 -11
Losses	1995	10)4	4	ļ.	2	6	1	4	9)		7		3	1	7	3			7	1	4
	2045	209 247	162 167	22 26	20 21	41 49	31 37	23 26	18 17	15 14	12 9	24 33	17 20	12 13	10 8	23 32	17 16	4 6	2 3	13 14	9 10	32 33	27 27
	2095	201 347	<mark>99</mark> 169	27 49	21 40	20 60	14 26	27 30	13 14	15 19	5 7	14 50	6 16	14 27	6 12	43 40	8 12	3 7	1	12 23	6 10	26 42	19 30
N ₂ O	1995	3.	2	0.	.2	0.	.7	0	.5	0.	.3	0	.3	0.	1		5	0. [.]	1	. 0.	2	0.	.4
	2045	8.5 9.2	7.0 7.5	1.1	1.0 1.1	1.6 1.7	1.2 1.5	0.8 0.9	0.7 0.7	0.6 0.5	0.5 0.4	1.0 1.3	<mark>0.8</mark> 1.0	0.7 0.7	0.6 0.5	0.8 1.0	0.6 0.6	0.2 0.2	0.1 0.1	0.6 0.5	0.4 0.4	1.2 1.2	1.2 1.2
	2095	8.0 14.7	4.6 8.0	1.3 2.2	1.1 2.0	0.7 2.4	0.6	1.0	0.6 0.6	0.5	0.2	0.6 1.9	0.3	0.7	0.3 0.7	1.5 1.4	0.3 0.5	0.2	0.0	0.6	0.3 0.5	1.0 1.8	0.8

BGD 9, 2755-2821, 2012 State and future of the agricultural nitrogen cycle B. L. Bodirsky et al. **Title Page** Introduction Abstract Conclusions References Tables Figures 14 4 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Discussion Paper

Discussion Paper

Discussion Paper

Table 3. Comparison of global cropland soil balances.

	This study	Smil (1999b)	Sheldrick (1996)	Liu (2010)
baseyear	1995	1995	1996	2000
OUT				
Crops	50	50	63	52
Crop residues	30	25	38	29
Fodder	13	10	-	-
Fodder residues	5	-	-	-
BG residues	16	-	-	-
IN				
Residues	14	14	23	11
Fodder residues	5	-	_	_
BG residues	16	-	-	_
Legume fixation	7	10	8) 22
Other fixation	10	11	-	}~~~
Fixation fodder	8	12	-	´-
Atm. deposition	13	20	22	14
Manure on field	24	18	25	17
Seed	2	2	-	-
Irrigation water	-	4	-	3
Sewage	-	-	3	-
Soil organic	28	-	-	-
matter loss	70	70	70	00
Fertilizer	78	78	78	68
Histosoils	-	_	_	_
BALANCE				
Total OUT	113	85	101	81
Total OUT*	113	106	135	115
Total IN	204	169	159	137
Total IN*	211	221	231	198
Losses	91	80	75	67
Losses*	98	115	96	83
OUT/IN	0.55	0.50	0.64	0.59
OUT*/IN*	0.54	0.48	0.58	0.58

BGD 9, 2755-2821, 2012 State and future of the agricultural nitrogen cycle B. L. Bodirsky et al. **Title Page** Introduction Abstract Conclusions References Tables Figures 14 4 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

* Data gaps are filled with estimates from other studies. We use estimates by this study if available; for irrigation we use Smil (1999), for sewage Sheldrick et al. (2002), for histosoils no estimate exists.

Discussion Paper **BGD** 9, 2755–2821, 2012 State and future of the agricultural nitrogen cycle **Discussion** Paper B. L. Bodirsky et al. Title Page Abstract Introduction Conclusions References **Discussion** Paper Figures Tables 14 s r ◀ è Back Close Full Screen / Esc **Discussion** Paper **Printer-friendly Version** Interactive Discussion

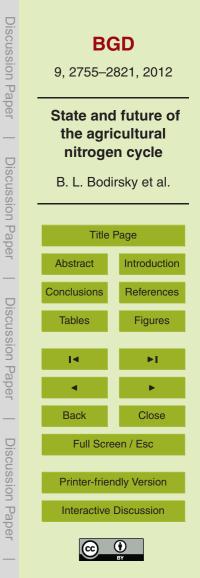
Table A1. Attributes.

Set	Description	Elements
t	timesteps	y1995 (1), y2005 (2) y2095 (11)
i	economic world regions	AFR, CPA, EUR, FSU, LAM, MEA, NAM, PAO, PAS, SAS (Fig. 1)
j	cells, each assigned to a re- gion <i>i</i> ($I_{AFR} = \{130\},$)	1:300
W	irrigation	irrigated, rainfed
V	crops	temperate cereals, maize, tropical cereals, rice, soybeans, rapeseed, groundnut, sunflower, oilpalm, pulses, potatoes, tropical roots, sugar cane, sugar beet, fodder crops, fibres, others
1	livestock	ruminant livestock, non-ruminant livestock, poultry, eggs, milk
k	products	<i>v</i> ∪ /
f	feeding systems	grazing on cropland (grazc), grazing on pasture (grazp), animal houses (house)
С	animal waste management systems	anaerobic lagoons, liquid/slurry, solid storage, daily spread, anaerobic di- gester, chicken layers, pit storage < 1 month, pit storage > 1 month, others
и	product use	food (food), feed (feed), seed (seed), other use (other), substitution for byproducts (sby), substitution for aboveground crop residues (sag)
r	AG residue use	feed (feed), recycling to soils (rec), burning in the field (burn), other use (other)
b	conversion byproduct use	feed (feed), other use (other)

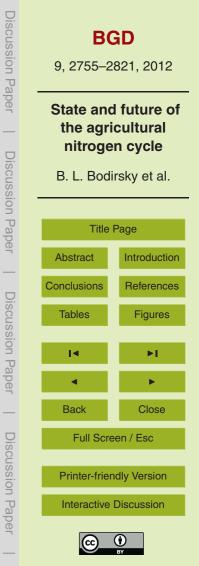
Table A2. Parameters, descriptions and units (all units per year). The name of the equivalent parameter in Eggleston et al. (2006) is indicated in brakets.

Parameter	Description	Unit
Production		
$X_{t,j,v,w}^{\text{area}}$	Cropland area under cultiva- tion	Mha
$\frac{P(x_t)_{t,i,k}^{prod}}{N(x_t)_{t,i,k}^{prod}}$	Crop production	TgDM TgN _r
$ \begin{array}{l} P(x_t)_{t,i,v}^{prod_ag} \\ N(x_t)_{t,i,v}^{prod_ag} \end{array} $	AG residue production	TgDM TgN _r
$ P(x_t)_{t,i,v}^{\text{prod}_bg} \\ N(x_t)_{t,i,v}^{\text{prod}_bg} $	BG residue production	TgDM TgN _r
$ P(x_t)_{t,i,v}^{prod_by} \\ N(x_t)_{t,i,v}^{prod_by} $	Conversion byproduct production	TgDM TgN _r
Domestic su	pply and its use	
$ P(x_t)_{t,i,v,u}^{ds} \\ N(x_t)_{t,i,v,u}^{ds} $	Crop use	TgDM TgN _r
$ \begin{array}{l} P(x_t)_{t,i,v,r}^{\mathrm{ds_ag}} \\ N(x_t)_{t,i,v,r}^{\mathrm{ds_ag}} \end{array} $	AG residues use	TgDM TgN _r
$ P(x_t)_{t,i,v,b}^{\text{ds_by}} \\ N(x_t)_{t,i,v,b}^{\text{ds_by}} $	Conversion byproduct use	TgDM TgN _r
$N(x_t)_{t,i,k}^{fs}$	Food supply	TgN _r
$r_{t,i,k}^{\text{int}}$	Intake share of food supply	TgN _r TgDM
$N(x_t)_{t,i,k}^{int}$	Intake	TgN _r
$P_t^{\rm tb}$	Trade Balance reduction	1

Discussion Paper **BGD** 9, 2755-2821, 2012 State and future of the agricultural nitrogen cycle **Discussion** Paper B. L. Bodirsky et al. **Title Page** Introduction Abstract Conclusions References **Discussion** Paper Tables Figures 14 < Back Close Full Screen / Esc **Discussion** Paper **Printer-friendly Version** Interactive Discussion

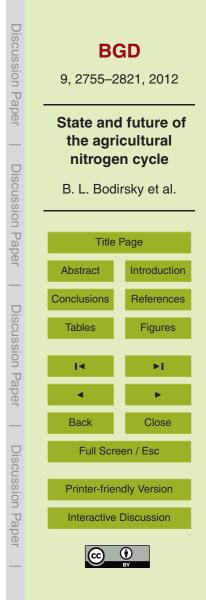

Parameter	Description	Unit
Crop growth	functions, processing rates and	d biological fixation
r _v ^{cgf_i}	AG residues intercept	TgDM Mha
$r_v^{\text{cgf}_s}$	AG residues slope	TgDM TgDM
$r_v^{\mathrm{cgf}_r}$	AG to BG biomass ratio	TgDM TgDM
r ^{by} -conv r _{i,v}	Conversion byproducts gen- erated per unit of crop pro- duction	TgDM TgDM
r_v^{ndfa}	Plant N _r derived from atmo- spheric fixation	TgN _r TgN _r
r _v ^{Nfix}	Fixation of free-living bacte- ria	TgN <u>r</u> TgMha
Products		
r_v^{Nharvest}	N _r content of harvested crops	TgN _r TgDM
r _v Nag	N _r content of AG residues	TgN _r TgDM
r _v ^{Nbg}	N _r content of BG residues	TgN _r TgDM
r ^{Npast} past	$\rm N_r$ content of grazed pasture	TgN _r TgDM
$r_v^{\rm Nby}$	N _r content of conversion byproducts	TgN _r TgDM
r ^{PR}	Protein content of livestock products	TgPr TgDM
r _/ ^{NtoPR}	Protein to N_r content ratios	TgN _r TgPr

Discussion Paper	BC 9, 2755–2	
per Discussion Paper	State and the agric nitroge B. L. Bodi	n cycle
n Paper	Title I Abstract	Page Introduction
Discussi	Conclusions Tables	References Figures
Discussion Paper	I⊲ ◄ Back	►I ► Close
Discussion Paper	Full Scre	en / Esc
n Paper		Discussion


Parameter	Description	Unit
Livestock		
$r_{t,i,l,v}^{\text{fb_conc}}$	Feedstock crops in feed bas- ket	TgDM TgDM
$r_{t,i,l,v}^{\text{fb_ag}}$	AG residues in feed basket	TgDM TgDM
$r_{t,i,l}^{\text{fb_past}}$	Grazed pasture in feed bas- ket	TgDM TgDM
$r_{t,i,l,v}^{\text{fb_by}}$	Byproducts in feed basket	TgDM TgDM
Γ ^{grazC} Γ ^{t,i}	Fraction of feed residues consumed during stubble grazing	TgDM TgDM
$N(x_t)_{t,i,l,f}^{feed}$	Feed $N_{\rm r}$ distributed to livestock types in feeding systems	<u>TgNr</u> TgNr
r ^{sl}	ratio between marketable product and whole body weight	TgDM TgDM
$r_l^{\rm NI}$	whole body N _r content	TgN _r TgDM
$N(x_t)_{t,i,l}^{sl}$	N_{r} in whole animal bodies	TgN _r
$r_{t,i,l,f}^{fs}$	Fraction of manure in feeding system (based on $\ensuremath{MS_{(T,S)}}\xspace)$	<u>TgNr</u> TgNr
r ^{cs} t,i,l,c	Fraction of manure managed in animal waste management systems (based on ${\rm MS}_{({\rm T},{\rm S})})$	<u>TgN_r TgN_r</u>
$N(x_t)_{t,i,l,f}^{ex}$	N_r in excretion (Nex _(T))	TgN _r
$r_{t,i,l}^{\text{fuel}}$	Fraction of manure collected for fuel	TgN _r TgN _r
$N(x_t)_{t,i}^{closs}$	Manure N _r lost in animal houses and waste management	TgN _r

Discussion Paper **BGD** 9, 2755–2821, 2012 State and future of the agricultural nitrogen cycle **Discussion** Paper B. L. Bodirsky et al. **Title Page** Abstract Introduction Conclusions References **Discussion** Paper Figures Tables 14 < Back Close Full Screen / Esc **Discussion Paper Printer-friendly Version** Interactive Discussion $(\mathbf{\hat{n}})$ (cc)

Parameter	Description	Unit
Soil Inputs		
$N(x_t)_{t,i}^{dep}$	Atmospheric deposition of N_r	TgN _r
$r_{t,i}^{dep}$	Atmospheric deposition rates	TgN _r Mha
$N_{t,i}^{som}$	Soil organic matter loss (F _{SOM})	TgN _r
$N(x_t)_{t,i}^{fert}$	Inorganic N_r fertiliser (F_{SN})	TgN _r
$N(x_t)_{t,i}^{res}$	N_r in crop residues (F_{CR})	TgN _r
$N(x_t)_{t,i}^{FixFree}$	N_r fixed by free-living microorganisms (F_{CR})	TgN _r
$N(x_t)_{t,i}^m$	$\rm N_r$ in manure excreted in animal houses and applied to agricultural soils ($\rm F_{AM})$	TgN _r
$r_{t,i}^{\text{msplit}}$	Fraction of manure in animal houses applied to cropland soils	TgN _r TgN _r
$N(x_t)_{t,i}^{m_cs}$	N _r in manure applied or ex- creted on cropland soils	TgN _r
$N(x_t)_{t,i}^{m_ps}$	N _r in manure applied or ex- creted on pasture soils	TgN _r
Emissions		
r ^{gas_fert}	Fraction of industrial fertiliser $N_{\rm r}$ that volatises as $NO_{\rm x}$ and $NH_{\rm y}~({\rm Frac}_{{\rm GasF}})$	TgNO _x NH _y TgN _r
$r_{I,c}^{\text{gas_awms}}$	Fraction of manure N _r that volatises in waste management facilities as NO _x and NH _y (Frac _{GasMS})	TgNO _x NH _y TgN _r
r ^{loss_awms}	Fraction of manure N_r that is lost in waste management (Frac _{LossMS})	TgNO _x NH _y TgN _r



Parameter	Description	Unit
r ^{gas_m}	Fraction of manure N_r that volatises during application as NO_x and NH_y (<i>Frac</i> _{<i>GasM</i>})	TgNO _x NH _y TgN _r
r ^{leach}	Fraction of Nr that leaches to water bodies (Frac _{Leach-H})	TgN _r TgN _r
r_v^{CF}	Combustion factor for on-field residue burning $(C_{\rm f})$	TgN _r TgN _r
r ^{dir}	direct emission factor for N inputs to managed soils (EF_1)	$\frac{\text{TgN}_2\text{O}-\text{N}}{\text{TgN}_r}$
r ^{dir_rice}	direct emission factor for N inputs to flooded rice fields (EF $_{\rm 1fr}$)	$\frac{\text{TgN}_2\text{O}-\text{N}}{\text{TgN}_r}$
r _c dir_house	direct emission factor for manure excreted in animal houses (EF $_{\mbox{\scriptsize 3(S)}})$	$\frac{\text{TgN}_2\text{O}-\text{N}}{\text{TgN}_r}$
r ^{dir_graz}	direct emissions from ma- nure excreted on pasture, range and paddock (EF _{3PRP})	$\frac{\text{TgN}_2\text{O}-\text{N}}{\text{TgN}_r}$
r ^{indir} ₋gas	N_2O emission factor for volatised N_r (EF _{iv})	TgN ₂ O–N TgNO _x NH _y
r ^{indir_leach}	N_2O emission factor for leached N_r (EF _v)	TgN ₂ O-N TgN _r
$N_2O(x_t)_{t,i}^{fert}$	N ₂ O from industrial fertiliser	TgN ₂ O – N
$N_2O(x_t)_{t,i}^{res}$	N ₂ O from crop residues	TgN ₂ O – N
$N_2O(x_t)_{t,i}^m$	N ₂ O from animal manure applied to croplands	TgN ₂ O – N
$N_2O(x_t)_{t,i}^{past}$	N_2O from pasture range and paddock	TgN ₂ O – N
$N_2O(x_t)_{t,i}^{house}$	N ₂ O from animal waste management systems	TgN ₂ O – N
$N_2O(x_t)_{t,i}^{som}$	N ₂ O from soil organic matter loss	TgN ₂ O – N

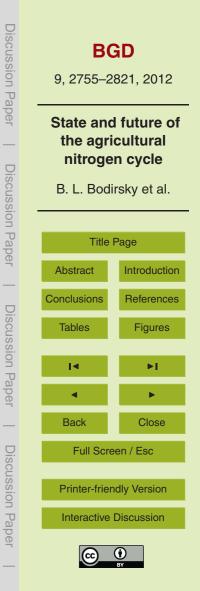
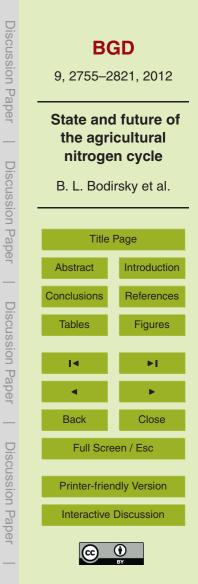

Crop type (kcr)	r _v ^{cgf_i}	$r_v^{\mathrm{cgf}_\mathrm{s}}$	$r_v^{\mathrm{cgf}\mathrm{r}}$
Temperate cereals	0.58	1.36	0.24
Tropical cereals	0.61	1.03	0.22
Maize	0.79	1.06	0.22
Rice	2.46	0.95	0.16
Soybeans	1.35	0.93	0.19
Rapeseed	0	1.86	0.22
Groudnnut	1.54	1.07	0.19
Sunflower	0	1.86	0.22
Oilpalm	0	1.86	0.24
Pulses	0.79	0.89	0.19
Potatoes	1.06	0.10	0.20
Tropical roots	0	0.85	0.20
Sugar cane	0	0.67	0.07
Sugar beet	0	0.54	0.20
Others	0	0.39	0.22
Fodder	0.26	0.28	0.45
Fibres	0	1.48	0.13

Table A3. Estimates of crop growth functions (sources see text).

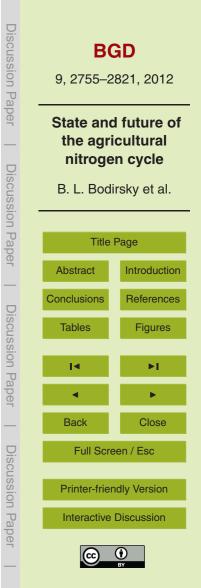
Table A4. N_r contents of harvested crops, aboveground crop residues, belowground crop residues and conversion byproducts for the MAgPIE crop types. Collected and aggregated from Wirsenius (2000); Fritsch (2007); Eggleston et al. (2006); FAO (2004); Roy et al. (2006); Chan and Lim (1980); Khalid et al. (2000).

Crop type (v)	r_v^{Nharvest}	$r_v^{\rm Nag}$	$r_v^{\rm Nbg}$	$r_v^{\rm Nby}$
Temperate cereals Maize Tropical cereals	2.17 1.60 1.63	0.74 0.88 0.70	0.98 0.70 0.60	2.93
Rice Soybeans	1.28 5.12 3.68	0.70 0.80 0.81	0.90 0.80 0.81) 7.90 6.43
Rapeseed Groudnnut Sunflower	2.99 2.16	2.24 0.80	0.80 0.80	7.28 5.92
Oilpalm Pulses Potatoes	0.57 4.21 1.44	0.52 1.05 1.33	0.53 0.80 1.40	6.43
Tropical roots Sugar cane Sugar beet	0.53 0.24 0.56	0.86 0.80 1.76	1.40 0.80 1.40	} 1.36
Others Fodder	2.85 2.01	0.81 1.91	0.70 1.41) 5.72
Fibres Pasture	2.39 1.60	0.93	0.70	
Pasture past	r _{past} 1.60			


Table A5. Estimates of whole body N _r content r_l^{NI} in % of dry matter (DM), and estimates of the
ratio between marketable product and whole body weight r_l^{sl} .

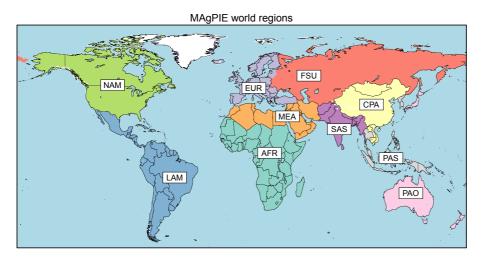
	$r_l^{\rm NI}$	$r_l^{\rm sl}$
Ruminant livestock	6.3 ^a	0.66 ^c
Non-ruminant livestock	6.0 ^a	0.81 ^c
Poultry	7.1 ^a	0.76 ^c
Eggs	5.6 ^a	1
Milk	4.6 ^b	1

^a Based on cows, market pigs, chicken and chicken eggs in Poulsen and Kristensen (1998).

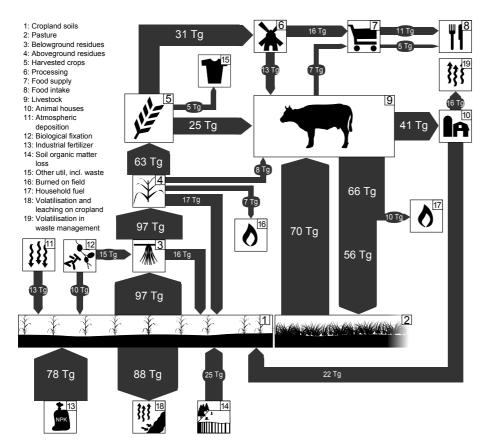

^b Based on milk with 3.5 % proteins in line with Smil (2002).

^c Based on medium quality cows, swine and broilers from Wirsenius (2000).

Table A6. Estimates of N_r fixation rates per area or as percentage of plant N_r (% Ndfa), based on Herridge et al. (2008) and aggregated to MAgPIE crop types.


Crop type	$r_v^{\rm Nfix}$	r_v^{ndfa}
	TgN _r Mha	TgN _r TgN _r
Temperate Cereals	0.005	_
Maize	0.005	_
Tropical Cereals	0.005	_
Rice	0.033	_
Soybeans	_	0.58
Rapeseed	0.005	_
Groudnut	_	0.58
Sunflower	0.005	_
Oilpalm	0.005	_
Pulses	-	0.53
Potatoes	0.005	_
Tropical roots	0.005	_
Sugar Cane	_	0.13
Sugar Beet	0.005	_
Others	0.005	_
Fodder	0.004	0.31
Fibres	0.005	-

Discussion Pa	BGD 9, 2755–2821, 2012				
ner Discuss	State and future the agricultural nitrogen cycle B. L. Bodirsky et al.				
עכ	Title	Page			
<u> </u>	Abstract	Introduction			
5	Conclusions	References			
	Tables	Figures			
D D	14	►I.			
aper	•	•			
_	Back	Close			
	Full Screen / Esc				
ssion	Printer-friendly Version				
Pan	Interactive	Discussion			
Đ	œ				


Table A7. Regression models for total calories C_T in kcal and the share of livestock calories in total demand C_S , depending on income *I* in 2005 US Dollar in market exchange rate.

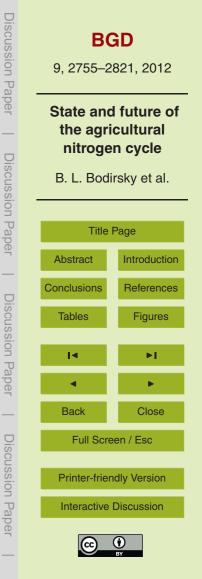

SRES	Model	Formulae	Parameter	Slope	r ²	p-value	F-statistics
А	Calories	$C_{T} = a \cdot (I)^b$	$a = \exp(2.825 + 2.131 \times 10^{-3} \cdot \text{year}),$ $b = 0.162 - 3.124 \times 10^{-5} \cdot \text{year}$	0.658	0.65	<0.001 (***)	11060
	Livestock share	$C_{S} = \exp(k + l \cdot \ln(l) + m \cdot \log (k + n \cdot \ln(l) \cdot \log n))$	k = -36.733, l = 4.497, m = 0.016, n = -0.002	0.705	0.63	<0.001 (***)	9913
В	Calories	$C_{\rm T}=a\cdot(I)^b$	<i>a</i> = 7.074, <i>b</i> = 0.0993	1.004	0.63	<0.001 (***)	5887
	Livestock share	$C_{\rm S} = p \cdot \sqrt{I} \cdot \exp(-q \cdot I)$	$p = 0.00932 - 3.087 \times 10^{-6} \cdot \text{year},$ $q = -2.654 \times 10^{-4} + 1.420 \times 10^{-7}$	0.706	0.62	<0.001 (***)	9685

Fig. 1. The ten MAgPIE world regions. Sub-Sahara Africa (AFR), Centrally Planned Asia (CPA), Europe (incl. Turkey) (EUR), Former Soviet Union (FSU), Latin America (LAM), Middle East and North Africa (MEA), North America (NAM), Pacific OECD (Australia, Japan and New Zealand) (PAO), Pacific Asia (PAS), South Asia (SAS).

	BGD 9, 2755–2821, 2012				
	State and future of the agricultural nitrogen cycle B. L. Bodirsky et al.				
5 D	Title Page				
2	Abstract	Introduction			
-	Conclusions	References			
	Tables	Figures			
	14	►I			
5	•	•			
-	Back	Close			
	Full Screen / Esc				
	Printer-friendly Version				
5		Discussion			

Fig. 2. Agricultural N_r cycle in Tg N_r in the year 1995. Flows below 5 Tg N_r are not depicted. N_r inputs to pasture soils by atmospheric deposition and biological fixation were not considered, as they depend largely on the definition of pasture land.

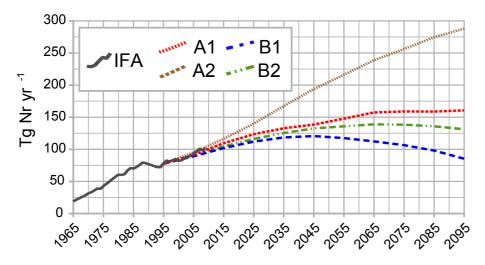
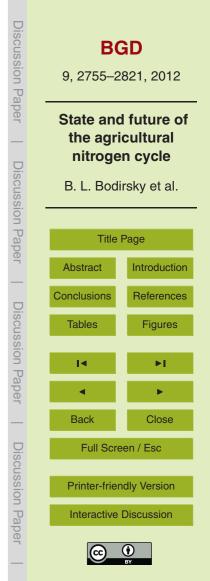
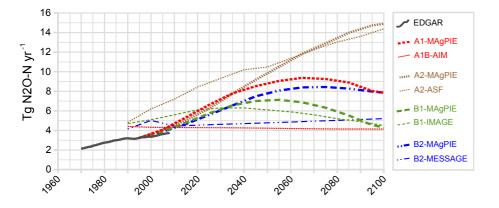
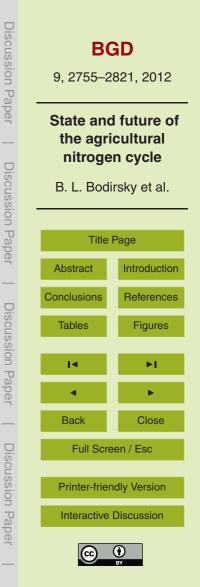
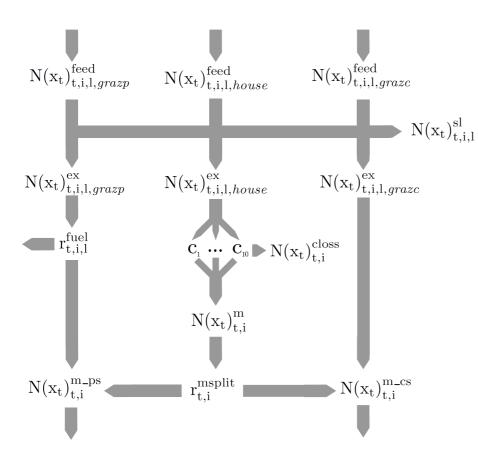
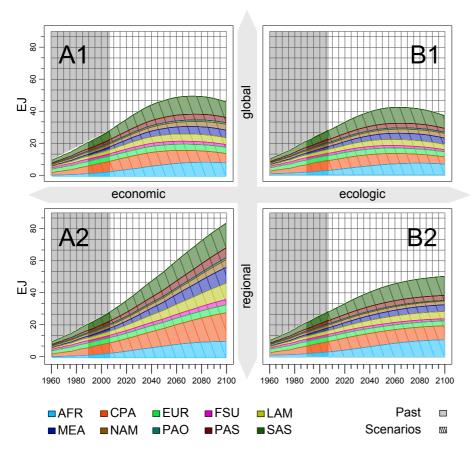
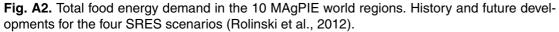
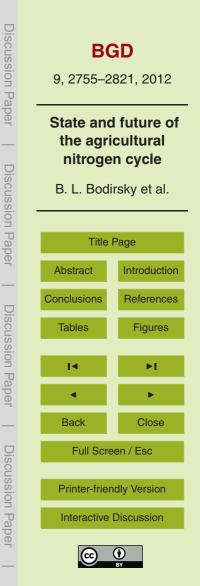
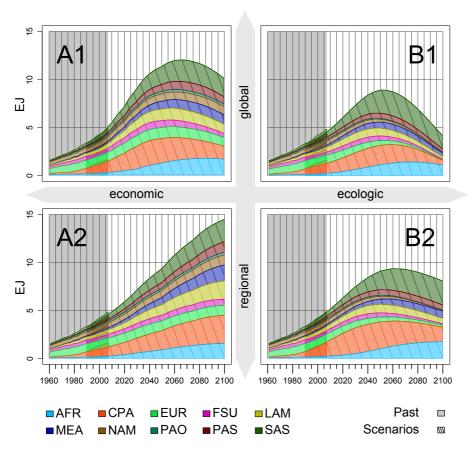





Fig. 3. Fertilizer consumption, historic dataset of the IFADATA database (IFADATA, 2011) and our scenarios for the 4 SRES storylines for 1995–2095.

Fig. 4. N_2O emissions from soils and manure, historic estimates for 1970–2008 of the EDGAR 4.2 database (EC-JRC/PBL, 2011), the SRES marker scenarios (Nakicenovic et al., 2000) for 1990–2100 and our scenarios for the SRES storylines for 1995–2095.


Fig. A1. Modelling N_r flows in the livestock sector.

Discussion Paper	BGD 9, 2755–2821, 2012				
per Discussion Paper	State and future of the agricultural nitrogen cycle B. L. Bodirsky et al.				
n Pape	Title Page				
_	Abstract	Introduction			
	Conclusions	References			
Discussion Paper	Tables	Figures			
on P	14	►I			
aper	•	•			
_	Back	Close			
Discussion Paper	Full Screen / Esc Printer-friendly Version				
n Pap	Interactive Discussion				
ber		O BY			

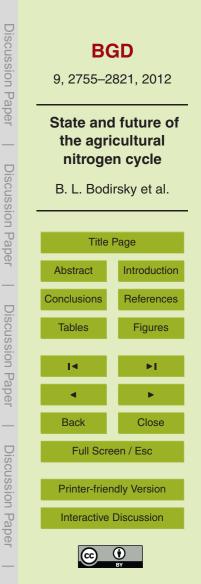


Fig. A3. Demand for energy from livestock products in the 10 MAgPIE world regions. History and future developments for the four SRES scenarios (Rolinski et al., 2012).

