1 Supplementary Information.

- 2
- 3 Table S1: Summary of eco zones and vegetation types used for computing the forest area according to the legend
- 4 of GEZ FAO map and GLC 2000 map.

FAO GEZ map			GLC 2000 map		
Eco zones	Symbol	Forest type	Classes		
Tropical	TAr	Tropical rain forest	1	Tree Cover, broadleaved, evergreen	
	TAwa	Tropical moist deciduous	2	Tree Cover, broadleaved, deciduous, closed	
		forest			
	TAwb	Tropical dry forest	3	Tree Cover, broadleaved, deciduous, open	
	TBSh	Tropical shrubland	4	Tree Cover, needle-leaved, evergreen	
	TBWh	Tropical desert	5	Tree Cover, needle-leaved, deciduous	
	TM	Tropical mountain systems	6	Tree Cover, mixed leaf type	
Subtropical	SCf	Subtropical humid forest			
	SCs	Subtropical dry forest	Other po	ssible forest classes (not used in this study)	
	SBSh	Subtropical steppe	7	Tree Cover, regularly flooded, fresh water	
	SBWh	Subtropical desert	8	Tree Cover, regularly flooded, saline water	
	SM	Subtropical mountain systems	9	Mosaic: Tree Cover / Other natural	
				vegetation	
Temperate	TeDo	Temperate oceanic forest	11	Shrub Cover, closed-open, evergreen	
	TeDc	Temperate continental forest	12	Shrub Cover, closed-open, deciduous	
	TeBSk	Temperate steppe			
	TeBWk	Temperate desert			
	TeM	Temperate mountain systems			
Boreal	Ва	Boreal coniferous forest			
	Bb	Boreal tundra woodland			
	BM	Boreal mountain systems			
Polar	Р	Polar			

- 5
- 6 S1. GPG LULUCF methodology IPCC 2003
- 7
- 8 GAINS
- 9
- 10 We refer to Equations contained by the Chapter 3.2. of IPCC 2003 methodology

TT	http://www.ipcc-nggip.iges.or.jp/public/gpgluluct/gpgluluct_files/Chp3/Chp3_2_Forest_Land.pdf
12	We refer to Tables contained by the Annex 3A.1 of IPCC 2003 methodology
13	http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/Chp3/Anx_3A_1_Data_Tables.pdf
14	Step 1
15	The year 2000 was chosen as base year for this study. The main reason was the use of GLC 2000
16	map which was developed for this particular year to be used by countries in the FRA 2000 reporting
17	process. The activity data was categorized as forest area (1000 ha) and each country was subdivided into
18	spatial units (polygons) that resulted from the integration of the following data sources (layers): country,
19	eco zones forest types and vegetation classes, using the two maps as described in paragraph 2.1.
20	
21	Step 2
22	The annual average increment (i.e. growth) in biomass (G_{total}) and was estimated using equation
23	3.2.5 (IPCC, 2003):
24	
25	$G_{total} = G_w * (1+R) $ (1)
26	
27	where:
	1 1
28	G _{total} = average annual biomass increment above and below ground, t d.m. ha ⁻¹ yr ⁻¹
28 29	G _{total} = average annual biomass increment above and below ground, t d.m. ha ⁻¹ yr ⁻¹ G _w = average annual aboveground biomass increment, t d.m. ha ⁻¹ yr ⁻¹ Table 3A.1.5., values for
28 29 30	G _{total} = average annual biomass increment above and below ground, t d.m. ha ⁻¹ yr ⁻¹ G _w = average annual aboveground biomass increment, t d.m. ha ⁻¹ yr ⁻¹ Table 3A.1.5., values for forests > 20 years
28 29 30 31	 G_{total} = average annual biomass increment above and below ground, t d.m. ha⁻¹ yr⁻¹ G_w = average annual aboveground biomass increment, t d.m. ha⁻¹ yr⁻¹ Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8.
28 29 30 31 32	 G_{total} = average annual biomass increment above and below ground, t d.m. ha⁻¹ yr⁻¹ G_w = average annual aboveground biomass increment, t d.m. ha⁻¹ yr⁻¹ Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8. G_w value was determined from relevant IPCC table for each forest type and climate zone for each
28 29 30 31 32 33	 G_{total} = average annual biomass increment above and below ground, t d.m. ha⁻¹ yr⁻¹ G_w = average annual aboveground biomass increment, t d.m. ha⁻¹ yr⁻¹ Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8. G_w value was determined from relevant IPCC table for each forest type and climate zone for each administrative boundary of each country.
28 29 30 31 32 33 34	 G_{total} = average annual biomass increment above and below ground, t d.m. ha⁻¹ yr⁻¹ G_w = average annual aboveground biomass increment, t d.m. ha⁻¹ yr⁻¹ Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8. G_w value was determined from relevant IPCC table for each forest type and climate zone for each administrative boundary of each country.
28 29 30 31 32 33 34 35	 G_{total} = average annual biomass increment above and below ground, t d.m. ha⁻¹ yr⁻¹ G_w = average annual aboveground biomass increment, t d.m. ha⁻¹ yr⁻¹ Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8. G_w value was determined from relevant IPCC table for each forest type and climate zone for each administrative boundary of each country.
28 29 30 31 32 33 34 35 36	 G_{total} = average annual biomass increment above and below ground, t d.m. ha⁻¹ yr⁻¹ G_w = average annual aboveground biomass increment, t d.m. ha⁻¹ yr⁻¹ Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8. G_w value was determined from relevant IPCC table for each forest type and climate zone for each administrative boundary of each country. Step 3 Annual increase in country's C stocks due to biomass increment was calculated based on equation
28 29 30 31 32 33 34 35 36 37	 G_{total} = average annual biomass increment above and below ground, t d.m. ha⁻¹ yr⁻¹ G_w = average annual aboveground biomass increment, t d.m. ha⁻¹ yr⁻¹ Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8. G_w value was determined from relevant IPCC table for each forest type and climate zone for each administrative boundary of each country. Step 3 Annual increase in country's C stocks due to biomass increment was calculated based on equation 3.2.4. (IPCC, 2003):
28 29 30 31 32 33 34 35 36 37 38	 G_{total} = average annual biomass increment above and below ground, t d.m. ha⁻¹ yr⁻¹ G_w = average annual aboveground biomass increment, t d.m. ha⁻¹ yr⁻¹ Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8. G_w value was determined from relevant IPCC table for each forest type and climate zone for each administrative boundary of each country. Step 3 Annual increase in country's C stocks due to biomass increment was calculated based on equation 3.2.4. (IPCC, 2003):
28 29 30 31 32 33 34 35 36 37 38 39	G_{total} = average annual biomass increment above and below ground, t d.m. ha ⁻¹ yr ⁻¹ G_w = average annual aboveground biomass increment, t d.m. ha ⁻¹ yr ⁻¹ Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8. G_w value was determined from relevant IPCC table for each forest type and climate zone for each administrative boundary of each country. <i>Step 3</i> Annual increase in country's C stocks due to biomass increment was calculated based on equation 3.2.4. (IPCC, 2003): $\Delta C_{FFG} = \sum_{ij} (G_{total,ij} * A_{ij}) * CF$ (2)
28 29 30 31 32 33 34 35 36 37 38 39 40	$G_{total} = average annual biomass increment above and below ground, t d.m. ha-1 yr-1 G_{w} = average annual aboveground biomass increment, t d.m. ha-1 yr-1 Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8. G_{w} value was determined from relevant IPCC table for each forest type and climate zone for each administrative boundary of each country. Step 3 Annual increase in country's C stocks due to biomass increment was calculated based on equation 3.2.4. (IPCC, 2003): \Delta C_{FFG} = \sum_{ij} (G_{total,ij} * A_{ij})^* CF (2)$
 28 29 30 31 32 33 34 35 36 37 38 39 40 41 	$G_{total} = average annual biomass increment above and below ground, t d.m. ha-1 yr-1 G_{w} = average annual aboveground biomass increment, t d.m. ha-1 yr-1 Table 3A.1.5. , values for forests > 20 years R = root to shoot ratio appropriate to increments, dimensionless, Table 3A.1.8. G_{w} value was determined from relevant IPCC table for each forest type and climate zone for each administrative boundary of each country. Step 3 Annual increase in country's C stocks due to biomass increment was calculated based on equation 3.2.4. (IPCC, 2003): \Delta C_{FFG} = \sum_{ij} (G_{total,ij} * A_{ij})^* CF (2)$

43	where:
44	ΔC_{FFG} = annual increase in C stocks due to biomass increment in forest land remaining forest land
45	by forest type and climatic zones, tones C yr ⁻¹
46	$G_{total, ij}$ = average annual biomass increment above and below ground by forest type (i = 1 to n) and
47	climatic zone (j = 1 to m), tones d.m. $ha^{-1} yr^{-1}$
48	A_{ij} = total country area of forest land remaining forest land by forest type (i = 1 to n) and climatic
49	zone (j = 1 to m), ha
50	$CF = carbon fraction of dry matter (default = 0.5) tones C (tones d.m.)^{-1}$
51	
52	HARVEST
53	
54	C losses were computed for Annex I parties same as for Non-Annex I countries by applying the
55	following formula:
56	
57	$\Delta C_{FFL} = H * BEF2 * D * CF $ (3)
58	
59	ΔC_{FFL} = annual carbon loss, tones C yr ⁻¹
60	H= annually extracted volume, roundwood + Wf, $m^3 yr^{-1}$
61	R _w (total) roundwood volume, m ³ yr ⁻¹
62	W _f = wood fuel annual volume, m ³ yr ⁻¹
63	D = basic wood density, tones d.m. m^{-3} , Table 3A.1.9
64	CF = carbon fraction of dry matter (default = 0.5) tones C (tones d.m.)-1
65	BEF2 = biomass expansion factor for converting volume of extracted roundwood to total above
66	ground biomass (including bark), dimensionless, Table 3A.1.10
67	
68	The above formula is the combination of Eq. 3.2.7 and 3.2.8 where H = Rw + Wf
69	We changed the initial Eq. 3.2.7 as following: the term 1-fBL which is the fraction of biomass left to
70	decay in forest (transferred to dead organic matter) was not used and is assumed to be 0 when applying
71	Tier 1 (IPCC, 2003).
72	For all countries it is assumed a high efficiency in wood use, so from one tree the harvested part is
73	used in industry (reported as "roundwood") and the rest is used as firewood (then reported under
74	"firewood") (INESTENE, 2011). Therefore BEF2 applies to the total harvest volume H of firewood

statistics which is composed by total roundwood (R_w) and wood fuel (W_f) due to the entire usage of the tree.

77

$$\Delta C_{FFL1} = (Rw + Wf) * BEF2 * D * CF$$
(4)

78 79

D was used as average of all default values per eco region and forest type which is provided in the IPCC Table 3A.1.9, while BEF2 is already provided as an average of growing stock and age. The values are shown in Table S2.

83

Table S2: Mean D and BEF2 per eco region and forest type (IPCC, 2003)

Eco region	Mean D	Climate	Forest type	Mean
		zone		BEF2
Tropical Asia	0.56	Boreal	Needle-leaved	1.35
Tropical America	0.60		Broadleaved	1.3
Tropical Africa	0.59	Temperate	Needle-leaved	1.3
Boreal/Temperate needle-leaved	0.40		Broadleaved	1.4
Boreal/Temperate broadleaved	0.48	Tropical	Pines	1.3
			Broadleaved	3.4

85

86 **To convert FAO statistical roundwood data without bark into merchantable wood removals including**

```
87 bark, multiply by default expansion factor 1.12 (12%).
```

- 88
- 89 **FIRES**
- 90

91 The data from GFEDv3 was used and losses dues to fires were calculated based on the following 92 formula:

93

LForestFires = Biomass burned • CF

95

94

Biomass burned = from GFED v.3, tones d.m. yr^{-1}

(5)

97	CF = carbon fraction of dry matter as defined by van der Werf, 2010 for each partition and specie (for				
98	tropical forests 0.48 and for temperate forests 0.47 t C (tones d.m.) ⁻¹				
99					
100	NET DEFORESTATION				
101					
102	The C losses due to Net Deforestation were calculated based on the stock change method as following				
103					
104	LNet Deforestation = AGbi, j • Forest area change i, j • CF (6)				
105					
106	AGb = Above–Ground Biomass stock in forest by vegetation type and climatic zone (t dm ha^{-1}) (Table				
107	3A.1.2 and Table 4.7)				
108	Forest area change in ha/yr by vegetation type and climatic zone (from GEZ FAO map and GLC 2000				
109	map) as:				
110	(A2-A1)/n (7)				
111	n = nr of years				
112	i = ecological zone				
113	j = climate domaine				
114					
115	Data for forest area in 1980 was not available, therefore we assumed that the % of change between				
116	1980 - 1990 is equal to the one from 1990-2000.				
117					
118	S2. AFOLU IPCC 2006 methodology				
119					
120	GAINS				
121					
122	We refer to Equations in the Chapter 4.2.1 of IPCC2006				
123	http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf				
124	We refer to Tables in the Chapter 4.5 of IPCC2006				
125	http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf				
126					
127	Step 1				

128	The year 2000 was chosen as base year for this study. The main reason was the use of GLC 2000
129	map which was developed for this particular year to be used by countries in the FRA 2000 reporting
130	process. The activity data was categorized as forest area (1000 ha) and each country was subdivided into
131	spatial units (polygons) that resulted from the integration of the following data sources (layers): country,
132	eco zones forest types and vegetation classes, using the two maps as described in paragraph 2.1.
133	
134	
135	Step 2
136	The annual average increment (i.e. growth) in biomass (G_{total}) and was estimated using equation
137	2.10 (IPCC, 2006):
138	
139	$Gtotal = \Sigma \{ GW \bullet (1+R) \} $ (8)
140	
141	where:
142	G_{total} = average annual biomass increment above and below ground, tones d.m. ha ⁻¹ yr ⁻¹
143	G_w = average annual above-ground biomass growth for a specific woody vegetation type, tones
144	d.m. ha ⁻¹ yr ⁻¹ ,Table 4.9, values for forests > 20 years
145	R = root to shoot ratio appropriate to increments, dimensionless.
146	
147	For Tier 1 approach no change of below-ground biomass is assumed, therefore R=0
148	$G_{\ensuremath{w}}$ value was determined from relevant IPCC table for each forest type and climate zone for each
149	administrative boundary of each country.
150	
151	Step 3
152	Annual increase in country's C stocks due to biomass increment was calculated based on equation
153	2.9 (IPCC, 2006):
154	
155	$\Delta C_{G} = \sum_{ij} \left(G_{\text{total},ij} * A_{ij} \right) * CF $ (9)
156	
157	where:
158	ΔC_G = annual increase in biomass carbon stocks due to biomass growth by vegetation type and
159	climatic zone, tones C yr ⁻¹

160	$G_{total, ij}$ = average annual biomass increment above and below ground by forest type (i = 1 to n) and				
161	climatic zone (j = 1 to m), tones d.m. ha ⁻¹ yr ⁻¹				
162	A_{ij} = total country area of forest land remaining forest land by forest type (i = 1 to n) and climatic				
163	zone (j = 1 to m), ha				
164	CF = carbon fraction of dry matter (default = 0.47) tones C (tones d.m.) ⁻¹				
165					
166	For Tier 1 approach: no change of below-ground biomass is assumed. R=0				
167					
168	HARVEST				
169					
170	C losses for harvest from wood removal were computed for Annex I countries same as for Non-Annex I				
171	countries by applying the Eq. 2.12 as following:				
172					
173	Lwood removals = { $Rw \bullet BCEFr \bullet (1 + R) \bullet CF$ } (10)				
174					
175	L wood removals= annual carbon loss, tones C yr ⁻¹				
176	Rw = annual wood removals, roundwood, $m^3 yr^{-1}$ (data from FORESTAT, 2010)				
177	CF = carbon fraction of dry matter, tones C tones d.m. ⁻¹ (CF=0.47)				
178	BCEFr = biomass conversion and expansion factor for conversion of roundwood removals volume to				
179	total biomass removals (including bark). tones d.m. m ⁻³ (Table 4.5)				
180	R = ratio of below-ground biomass to above-ground biomass, dimensionless.				
181					
182	For Tier 1 approach: no change of below-ground biomass is assumed. R=0				
183	To convert FAO statistical roundwood data without bark into merchantable wood removals including				
184	bark, multiply by default expansion factor 1.15 (15%)				
185					
186	The loss for C from wood fuel was calculated using the Eq. 2.13 as following:				
187					
188	$Lfuelwood = [{FGtrees • BCEFr • (1+ R)} + FGpart • D] • CF $ (11)				
189					
190	Lfuelwood = annual carbon loss due to fuelwood removals, tones C yr ⁻¹				
191	FGtrees = annual volume of fuelwood removal of whole trees, $m^3 yr^{-1}$ (data from FORESTAT, 2010)				

192	FGpart = annual volume of fuelwood removal as tree parts, $m^3 yr^{-1}$
193	R = ratio of below-ground biomass to above-ground biomass,
194	$CF = carbon fraction of dry matter, tones C (tones d.m.)^{-1}$
195	D = basic wood density, tones d.m. m^{-3}
196	BCEFr = biomass conversion and expansion factor for conversion of removals in merchantable volume to
197	biomass removals (including bark), tones d.m. m ⁻³ (Table 4.5)
198	
199	For Tier 1 approach: no change of below-ground biomass is assumed. R=0
200	FGpart is considered included in FGtrees according to the fuelwood Forestat definition. FGpart=0
201	
202	By combining these two formulas the total C loss dues to harvest results as:
203	
204	$Loss harvest = (Rw + Fw) \bullet BCEFr \bullet CF $ (12)
205	
206	A comparison between BCEF and BEF2 is shown in Tab. S4.
207	
208	FIRES
209	
210	Same as in S1.
211	
212	NET DEFORESTATION
213	
214	Same as in S1.
215	
216	
217	Tab. S3. Difference between above ground biomass stock in the two IPCC guidelines. Global weighted

averaged values per country, climate and vegetation type (tones d.m. ha⁻¹).

	IPCC 2006		IPCC 2003			
Climate zone	Vegetation (forest) type	Averaged regional above ground biomass (t d.m. ha ⁻¹)	Climate zone	Vegetation (forest)type	Averaged regional above ground biomass (t d.m. ha ⁻¹)	
	Tropical rain	308.61		Wet	335.25	
	Tropical moist deciduous 242.54			Moist with short or long dry season	180.52	
TROPICAL	Tropical desert	65.00	TROPICAL		66.03	
TROPICAL	Tropical dry	159.65	TROPICAL	Dry	71.58	
	Tropical shrubland	66.67			61.89	
	Tropical mountain systems	150.54		Mountain moist or mountain dry	164.21	
	Subtropical humid	209.96		Moist with short or long dry season	203.85	
	Subtropical dry	144.35		Dry	99.95	
SUBTROPICAL	Subtropical desert	70.00	TROPICAL*		66.57	
	Subtropical steppe	72.29			71.20	
	Subtropical mountain	136.08		Tropical mountain moist or mountain dry	115.56	
	Temperate oceanic	202.56		Coniference	128.05	
	Temperate continental	124.64		connerous	129.81	
TEMPERATE	Temperate steppe	perate steppe 127.00		Broadleaf	129.60	
	Temperate desert 130.00			Mixed broadlast coniference	126.48	
	Temperate mountain	129.97		Mixed broadlear-connerous	127.98	
	Boreal coniferus	50.00		Coniferous	56.73	
BOREAL	Boreal tundra	18.00	BOREAL	Forest-tundra	16.14	
	Boreal mountain	45.00		Mixed broadleaf-coniferous	57.22	
POLAR	Polar	18.00	POLAR	Not existing (same as for boreal)	49.41	

219

* IPCC 2003 does not include Subtropical zone, therefore we assume that Subtropical in IPCC 2006 corresponds to Tropical in

221 IPCC 2003 (with assumptions for each country depending on the vegetation type, see below)

222 Averaged above ground biomass values represent weighted averages per country and vegetation type for > 20yr. (taken from

223 Tables 4.9 IPCC 2006 and 3A1.2 IPCC 2003).

224

225 Figure S1: Representation of climate zones in the two IPCC reports

- Tab. S4. Difference between BEF factors (BEF2 and BCEF) in the two IPCC guidelines. Global averaged
- values per main regions.

Region	IPCC 2003 IPCC 2006		Difference	
negion	BEF*D (tones /m3)	BCEF (tones /m3)	Absolute	%
Africa	2.01	1.99	0.02	0.77%
Asia	1.45	2.11	0.66	45.51%
Europe	0.57	0.92	0.34	59.80%
North America	1.29	0.85	0.44	51.94%
Central America	2.04	1.34	0.70	51.82%
South America and Caribbean	1.78	1.39	0.40	28.59%
Oceania	1.75	1.36	0.40	29.13%
World	1.56	1.42	0.13	9.48%

232

233