Daily CO₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
North Americ	a							
-1.52	-136.8	Summer (90 days)	1966	70°29'N 157°25'W	Meade river, Alaska	СН	Moist tussock	Johnson & Kelley 1970
-0.26	-23.4	Summer (90 days)	1970	71°18'N 156°40'W	Barrow, Alaska	СН	Moist/wet sedge	Coyne & Kelley 1975 Tieszen 1975
-0.30	-27	Summer (90 days)	1971	71°18'N 156°40'W	Barrow, Alaska	СН	Moist/wet sedge	Coyne & Kelley 1975 Tieszen 1975
-0.28	-25.2	Summer (90 days)	1972	71°18'N 156°40'W	Barrow, Alaska	СН	Moist/wet sedge	Coyne & Kelley 1975 Tieszen 1975
3.90	351	Summer (90 days)	1983	68°38'N 149°35'W	Toolik lake, Alaska	СН	Moist tussock	Oechel et al. 1993
3.90	351	Summer (90 days)	1984	68°38'N 149°35'W	Toolik lake, Alaska	СН	Moist tussock	Oechel et al. 1993
1	90	Summer (90 days)	1985	68°38'N 149°35'W	Toolik lake, Alaska	СН	Moist tussock	Oechel et al. 1993
1.34	120.6	Summer (90 days)	1990	68°38'N 149°35'W	Toolik lake, Alaska	СН	Moist tussock	Oechel et al. 1993
1.15	103.5	Summer (90 days)	1990	69°08'N 148°50'W	Happy Valley, Alaska	СН	Moist tussock	Oechel et al. 1993
0.66	59.4	Summer (90 days)	1990	70°22'N 148°45'W	Prudhoe Bay, Alaska	СН	Moist sedge	Oechel et al. 1993

Appendix A. A compilation of published observational data 1980-2010 on CO₂ and CH₄ fluxes in the circumpolar North.

Daily CO₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.03	2.7	Summer (90 days)	1990	70°22'N 148°45'W	Prudhoe Bay, Alaska	СН	Wet sedge	Oechel et al. 1993
0.09	8.1	Summer (90 days)	1990	69°50'N 148°45'W	Alaska	СН	Flooded sedge	Oechel et al. 1993
0.22	19.8	Summer (90 days)	1990	69°50'N 148°45'W	Alaska	СН	Wet Sedge	Oechel et al. 1993
0.39	35.1	Summer (90 days)	1990	69°50'N 148°45'W	Alaska	СН	Moist Sedge	Oechel et al. 1993
0.88	79.2	Summer (90 days)	1991	68°38'N 149°35'W	Toolik lake, Alaska	СН	Moist tussock	Vourtilis et al. 1993
0.67	60.3	Summer (90 days)	1991	69°08'N 148°50'W	Happy Valley, Alaska	СН	Moist tussock	Vourtilis et al. 1993
0.32	28.8	Summer (90 days)	1991	69°25'N 148°45'W	Sagwon, Alaska	СН	Moist tussock	Vourtilis et al. 1993
0.11	9.9	Summer (90 days)	1991	70°22'N 148°45'W	Prudhoe Bay, Alaska	СН	Moist tussock	Vourtilis et al. 1993
-0.25	-22.5	Summer (90 days)	1991	70°22'N 148°45'W	Prudhoe Bay, Alaska	СН	Wet sedge	Vourtilis et al. 1993
-0.39	-35.1	Summer (90 days)	1991	69°50'N 148°45'W	Alaska	СН	Flooded sedge	Vourtilis et al. 1993
-0.13	-11.7	Summer (90 days)	1991	69°50'N 148°45'W	Alaska	СН	Wet sedge	Vourtilis et al. 1993
0.27	24.3	Summer (90 days)	1991	69°50'N 148°45'W	Alaska	СН	Moist sedge	Vourtilis et al. 1993
-0.87	-78.7	Summer (90 days)	1992	71°19'N 156°37'W	Barrow, Alaska	EC	Moist/Wet sedge	Oechel et al. 2000a
0.07	6.3	Summer (90 days)	1992	71°18'N 156°40'W	Barrow, Alaska	СН	Moist/Wet sedge	Oechel et al. 1995

Daily CO ₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.27	24.3	Summer (90 days)	1993	68°38'N 149°35'W	Toolik lake, Alaska	СН	Moist tussock	Oechel et al. 2000a
-0.12	-10.8	Summer (90 days)	1993	70°22'N 148°45'W	Prudhoe Bay, Alaska	СН	Wet sedge	Oechel et al. 1998
0.3	70	Winter (September -May)	1993-1994	69°70°N 148°53'W	North slope, Alaska	СН	Moist tussock	Oechel et al. 1997
0.08	20	Winter (September -May)	1993-1994	69°70°N 148°53'W	North slope, Alaska	СН	Wet sedge	Oechel et al. 1997
-	44	Summer (June-Augu st)	1994	69°70°N 148°53'W	North slope, Alaska	СН	Moist tussock	Oechel et al. 1997
-	4.4	Summer (June-Augu st)	1994	69°70°N 148°53'W	North slope, Alaska	СН	Wet sedge	Oechel et al. 1997
0.3	112	Annual (September 1993-Augu st 1994)	1993-1994	69°70°N 148°53'W	North slope, Alaska	СН	Moist tussock	Oechel et al. 1997
0.08	25	Annual (September 1993-Augu st 1994)	1993-1994	69°70°N 148°53'W	North slope, Alaska	СН	Wet sedge	Oechel et al. 1997
0.114	10.3	Summer	1994	68°38'N 149°36'W	Toolik, Alaska	EC	Lake	Eugster et al. 2003
0.34	30.6	Summer (90 days)	1994	68°38'N 149°35'W	Toolik lake, Alaska	СН	Moist tussock	Oechel et al. 2000a

Daily CO ₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-0.38	-34.2	Summer (90 days)	1994	69°08'N 148°50'W	Happy Valley, Alaska	СН	Moist tussock	Oechel et al. 2000a
-0.51	-45.9	Summer (90 days)	1994	69°08'N 148°50'W	Happy Valley, Alaska	EC	Moist tussock	Vourlitis and Oechel, 1999
-0.25	22.5	Summer (90 days)	1994	70°22'N 148°45'W	Prudhoe Bay, Alaska	СН	Wet sedge	Oechel et al. 1998
-0.09	-8.1	Summer (90 days)	1994	70°16'N 148°53'W	Prudhoe Bay, Alaska	СН	Moist/Wet sedge	Oechel et al. 2000a
-0.14	-12.6	Summer (90 days)	1994	70°16'N 148°53'W	Prudhoe Bay, Alaska	EC	Moist/Wet sedge	Vourlitis and Oechel, 1997
-0.58	-52.2	Summer (90 days)	1995	69°08'N 148°50'W	Happy Valley, Alaska	EC	Moist tussock	Vourlitis and Oechel, 1999
-0.13	-11.7	Summer (90 days)	1995	70°16'N 148°53'W	Prudhoe Bay, Alaska	EC	Moist/Wet sedge	Vourlitis and Oechel, 1997
-0.34	-30.6	Summer (90 davs)	1995	69°56'N 148°53'W	Alaska	EC	Moist/Wet sedge	Vourlitis and Oechel, 1997
-1.134	-102.1	(June 9 days)	1995	69 °24.06'N 148 °48.34'W	Alaska	EC	Moist acidic tundra	Eugster et al. 2005
-0.9	-81	Summer (June 9 days)	1995	69°26.46'N 148°40.22'W	Alaska	EC	Moist nonacidic tundra	Eugster et al. 2005
0.081	29.5	Annual	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Acidic - Tundra landscapes	Oechel et al. 2000b

Daily CO₂ Flux $gC m^{-2}d^{-1}$	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.043	15.6	Annual	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Non Acidic - Tundra landscapes	Oechel et al. 2000b
0.128	46.8	Annual	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Shrub - Tundra landscapes	Oechel et al. 2000b
0.002	0.6	Annual	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Wet sedge - Tundra landscapes	Oechel et al. 2000b
-	-4.1	Summer	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Acidic - Tundra landscapes	Oechel et al. 2000b
-	-7.6	Summer	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Non Acidic - Tundra landscapes	Oechel et al. 2000b
-	20.1	Summer	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Shrub - Tundra landscapes	Oechel et al. 2000b
-	-1.7	Summer	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Wet sedge - Tundra landscapes	Oechel et al. 2000b
	33.6	Winter	1995-1996	69°-70°N 148°53'W	Alaska	EC and CH	Acidic - Tundra landscapes	Oechel et al. 2000b
-	23.2	Winter	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Non Acidic - Tundra landscapes	Oechel et al. 2000b
-	26.7	Winter	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Shrub - Tundra landscapes	Oechel et al. 2000b
-	2.3	Winter	1995-1996	69°70°N 148°53'W	Alaska	EC and CH	Wet sedge - Tundra landscapes	Oechel et al. 2000b
-0.60	-54	Summer (90 days)	1996	69°08'N 148°50'W	Happy Valley, Alaska	EC	Moist tussock	Oechel et al. 2000a

Daily CO₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.24	21.6	Summer (90 days)	1996	70°16'N 148°53'W	Prudhoe Bay, Alaska	EC	Moist/Wet sedge	Oechel et al. 2000a
0.32	31	Summer	1996	68° 38' N, 149° 36' W	Alaska	СН	Tussock tundra	Oberbauer et al. 1998
0.064	5.9	Summer (92 days)	1996	68°38'N 149°38'E	Alaska	Snow profile	Moist acidic tundra	Fahnestock et al. 1998
-	44	Winter (September -May)	1996-1997	70°16'N 148°53'W	Prudhoe Bay, Alaska	СН	Moist/Wet sedge	Oechel et al. 2000a
-	40	Annual	1996-1997	70°16'N 148°53'W	Prudhoe Bay, Alaska	СН	Moist/Wet sedge	Oechel et al. 2000a
-0.04	-3.6	Summer (90 days)	1997	70°16'N 148°53'W	Prudhoe Bay, Alaska	EC	Moist/Wet sedge	Oechel et al. 2000a
0.062	12.3	Winter (240 days)	1996- 1997	69°08'N 70°23'N 148°30'W 149°60'W	Alaska	Snow profile	A wide range of systems	Fahnestock et al. 1999
-0.2	-14.4	Summer (64 days)	1997	58°45'N 94°04'W	Alaska	profile	Subarctic sedge fen	Griffis et al. 2000
-0.41	-27.2	Summer (65 days)	1997	58°45'N 94°04'W	Canada	EC	Treeline forest	Lafleur et al. 2001
-0.3	-20	Summer (65 days)	1997	58°45'N 94°04'W	Canada	profile	Fen tundra	Lafleur et al. 2001
-0.84	-55	Summer (65 days)	1998	58°45'N 94°04'W	Canada	profile	Fen tundra	Lafleur et al. 2001
-2	-130	Summer (65 days)	1998	58°45'N 94°04'W	Canada	EC	Treeline forest	Lafleur et al. 2001
-0.011	-0.9	Annual	1998	71°18'N 156°42'W	Alaska	CH and Model	Tundra (coastal arctic tundra)	Grant et al. 2003

Daily CO₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-0.16	-10.4	Summer (65 days)	1999	58°45'N 94°04'W	Canada	profile	Fen tundra	Lafleur et al. 2001
-1.4	-85.3	Summer (65 days)	1999	58°45'N 94°04'W	Canada	EC	Treeline forest	Lafleur et al. 2001
-0.044	-3.6	Annual	1999	71°18'N 156°42'W	Alaska	CH and Model	Tundra (coastal arctic tundra)	Grant et al. 2003
-1.1	-161.6	Summer (147 days)	1999	71°19'N 156°37'W	Alaska	EC	Tundra (wet sedge tundra)	Harazono et al. 2003
-	-70	Summer	1999	71° 19' N 156° 36' W	Alaska	EC	Wet sedge tundra	Kwon et al. 2006
-	30.9	Summer	1999	71° 19' N 156° 36' W	Alaska	EC	Moist tussock tundra	Kwon et al. 2006
-	60.8	Summer	2000	71° 19' N 156° 36' W	Alaska	EC	Moist tussock tundra	Kwon et al. 2006
-	-46.4	Summer	2000	71° 19' N 156° 36' W	Alaska	EC	Wet sedge tundra	Kwon et al. 2006
-0.7	-104.6	Summer (147 days)	2000	71°19'N 156°37'W	Alaska	EC	Tundra (wet sedge tundra)	Harazono et al. 2003
-	-2	Summer	2001	71° 19' N 156° 36' W	Alaska	EC	Moist tussock tundra	Kwon et al. 2006
-	-51.7	Summer	2001	71° 19' N 156° 36' W	Alaska	EC	Wet sedge tundra	Kwon et al. 2006
-	-60.8	Summer	2002	71° 19' N 156° 36' W	Alaska	EC	Wet sedge tundra	Kwon et al. 2006
-	+2.7	Summer	2002	71° 19' N 156° 36' W	Alaska	EC	Moist tussock tundra	Kwon et al. 2006
-	-48.8	Summer	2003	71° 19' N 156° 36' W	Alaska	EC	Wet sedge tundra	Kwon et al. 2006
-	-1.1	Summer	2003	71° 19' N 156° 36' W	Alaska	EC	Moist tussock tundra	Kwon et al. 2006
-	37.3	Annual	2003	72°52°N 140°168°W	Alaska	EC+modellin g	Mature black spruce	Ueyama et al. 2010

Daily CO ₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.86	129.1	Summer (May-Septe mber)	2003	64°41.773'N 148°19.263'W	Alaska	СН	Permafrost plateau	Wickland et al. 2006
0.45	68	Summer (May-Septe mber)	2003	64∘41.773'N 148∘19.263'W	Alaska	СН	Thermokarst wetlands	Wickland et al. 2006
0.53	79.3	Summer (May-Septe mber)	2003	64°41.773'N 148°19.263'W	Alaska	СН	Thermokarst edges	Wickland et al. 2006
-0.11	-39	Annual	2003-2004	64°52'N 147° 51'W	Alaska	EC+model	Subarctic black	Ueyama et al. 2006
-0.16 to -0.05	-57.2 to -19.1	Annual	2003-2004	64° 52N 147° 51W	Alaska	EC	Subarctic black	Ueyama et al. 2006
-	-1	Summer	2004	472710° E 7194082° N	Daring lake Canada	СН	Dry heath lichen tundra	Nobrega & Grogan, 2008
-	-37	Summer	2004	472797°E 7194015° N	Daring lake Canada	СН	Mesic dwarf birch	Nobrega & Grogan, 2008
-	-88	Summer	2004	472842° E 7194051° N	Daring lake Canada	СН	Wet sedge meadow	Nobrega & Grogan, 2008
-	-14.8 to -12.06	Summer (14 days)	2004	68° 10–45'N	Alaska	EC and model	Heterogeneous tundra	Shaver et al. 2007
-	-36	Annual	2004	63°52'42''N, 149°15'12''W	Alaska	СН	Tussock tundra: minimal thaw	Vogel et al. 2009, Schuur et al. 2009
-0.3	-32	Summer (109 days)	2004	64° 52' N 111° 34' W	Daring Lake, Canada	EC	Mixed tundra	Lafleur and Humphreys 2008
-	26	Annual	2004	63°52'42''N 149°15'12''W	Alaska	СН	Tussock tundra: intermediate thaw	Vogel et al. 2009 Schuur et al. 2009
-	-54	Annual	2004	63°52'42''N 149°15'12''W	Alaska	СН	Tussock tundra: extensive thaw	Vogel et al. 2009 Schuur et al. 2009

]] 8	Daily CO ₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
	0.5 to -2.0	-32 to -82	Summer (109 days)	2004-2010	64° 52' N : 111° 34' W	Daring Lake, Canada	EC	Mixed tundra	Humphreys & Lafleur 2011
	0.2 to -2.3	-63 to -111	Summer (109 days)	2006-2010	64° 52' N : 111° 34' W	Daring Lake, Canada	EC	Sedge fen	Humphreys & Lafleur 2011
	0.21 to 0.24	49 ± 13	Winter (212 days)	2004-2005	64°52'N 147°51'W	Alaska	CH, EC and concentration profile method	Black spruce forest	Kim et al. 2007
	-	41.1	Annual	2005	72°–52°N 140°–168°W	alaska	EC+modellin g	Mature black spruce	Ueyama et al. 2010
	-0.5	-51	Summer (109 days)	2005	64° 52' N 111° 34' W	Daring lake, Canada	EC	Mixed tundra	Lafleur & Humphreys. 2008
	-	-19	Annual	2005	63°52'42''N 149°15'12''W	Alaska	СН	Tussock tundra: minimal thaw	Vogel et al. 2009, Schuur et al. 2009
	-	-7	Annual	2005	63°52'42''N 149°15'12''W	Alaska	СН	Tussock tundra: intermediate thaw	Vogel et al. 2009 Schuur et al. 2009
	-	-78	Annual	2005	63°52'42''N, 149°15'12''W	Alaska	СН	Tussock tundra: extensive thaw	Vogel et al. 2009 Schuur et al. 2009
	-0.6	-61	Summer (109 days)	2006	64° 52' N 111° 34' W	Daring lake, Canada	EC	Mixed tundra	Lafleur & Humphreys 2008
	-	5	Annual	2006	63°52'42''N 149°15'12''W	Alaska	СН	Tussock tundra: minimal thaw	Vogel et al. 2009, Schuur et al. 2009
	-	57	Annual	2006	63°52'42''N 149°15'12''W	Alaska	СН	Tussock tundra: intermediate thaw	Vogel et al. 2009 Schuur et al. 2009
	-	40	Annual	2006	63°52'42''N 149°15'12''W	Alaska	СН	Tussock tundra: extensive thaw	Vogel et al. 2009 Schuur et al. 2009

Daily CO ₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-	18.5	Annual	2006	72°–52°N 140°–168°W	Alaska	EC+modellin g	Mature black	Ueyama et al. 2010
0.01 to 0.20	0.6 to 12	Summer (June-July)	2006 2007	55°16'N 77°46'W	Canada	CH+EC	Subarctic thaw pond	Laurion et al. 2010
-0.07 to 0.37	-4.2 to 22.2	Summer (June-July)	2006 2007	73°09'N 79°58'W	Canada	CH+EC	Continuous permafrost ponds	Laurion et al. 2010
-1.11	-93.2	Summer (June-augu st)	2007	71° N 156° W	Alaska	EC	Young Drained lake basin	Zona et al. 2010
-0.73	-61.3	Summer (June-augu st)	2007	71∘ N 156∘ W	Alaska	EC	Medium Drained lake basin	Zona et al. 2010
-0.87	-73.1	Summer (June-augu st)	2007	70° N 156° W	Alaska	EC	Old Drained lake basin	Zona et al. 2010
North Atlantic	c Area							
-0.047	-3.9	Summer (83 days)	1995	79°56'N 11°55'E	Svalbard	EC/model	Desert (sub-polar desert)	Lloyd, 2001a; Lloyd, 2001b
0.057	5	Summer (87days)	1996	79°56'N 11°55'E	Svalbard	EC/model	Desert (sub-polar desert)	Lloyd, 2001a; Lloyd, 2001b
-	-96.3	Summer (56 days)	1996	74°28'N 20°34'W	NE Greenland	EC	Fen	Soegaard et al. 1999
-	-64.4	Annual	1996	74°28'N 20°34'W	NE Greenland	EC	Fen	Soegaard et al. 1999
-	-63	Summer	1997	74°28'N 20°34'W	NE Greenland	EC	Fen	Rennermalm et al. 2005
-	-50	Summer	1997	74°28'N 20°34'W	NE Greenland	EC	Fen	Rennermalm et al. 2005
-0.006	-2.3	Annual	1997	74°28'N 20°34'W	NE Greenland	EC / model	Arctic valley (integrated)	Soegaard et al. 2000

Daily CO₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-0.015	-5.4	Annual	1997	74°28'N	NE	EC / model	Fen	Nordstroem et al 2001
0.010		1 11110001	1777	20°34'W	Greenland	20, 110401		
-0.88	-18.8	Summer	1997	74°28'N	NE	EC	Arctic valley	Soegaard et al. 2000
		(June –		20°34'W	Greenland		(integrated)	C
		august)						
-3	-	Summer	1997	74°28'N	NE	СН	Arctic valley	Christensen et al. 2000
		(June-Augu		20°34'W	Greenland		(integrated)	
		st)						
-0.09	-	Summer	1997	74°28'N	NE	СН	Cassiope heath	Christensen et al. 2000
		(June-Augu		20°34'W	Greenland			
		st)						
-2,6	-	Summer	1997	74°28'N	NE	СН	Continuous fen	Christensen et al. 2000
		(June-Augu		20°34'W	Greenland			
		st)						
-0.75	-	Summer	1997	74°28'N	NE	СН	Salix snowbed	Christensen et al. 2000
		(June-Augu		20°34'W	Greenland			
		st)					~	
-4.8	-	Summer	1997	74°28'N	NE	СН	Grassland	Christensen et al. 2000
		(June-Augu		20°34'W	Greenland			
		st)	1007	5 40 0 03 I		CT I		
-4.5	-	Summer	1997	74°28′N	NE	СН	Hummocky fen	Christensen et al. 2000
		(June-Augu		20°34°W	Greenland			
1 00	10 7	st)	1007	740001	NE	EC	Ean	Second et al. 2000
-1.88	-48./	Summer (00 days)	1997	74°28 IN	NE Creenland	EC	ren	Soegaard et al. 2000
0.52	7.1	(90 days)	1007	20 34 W	NE	EC	Haath	Second et al. 2000
-0.55	-/.1	(90 days)	1997	74 20 IN 20°34'W	Greenland	EC	neatii	Soegaalu et al. 2000
	-1.4	(90 days) Summer	1007	20 34 W 7/028'N	NF	FC	Heath	Groendahl et al. 2007
-	-1.4	Summer	1997	$20^{\circ}34^{\circ}W$	Greenland	LC	ITeatii	Groendam et al. 2007
_	-18 9	Summer	2000	74°28'N	NE	EC	Heath	Groendahl et al. 2007
	10.7	(80 days)	2000	20°34'W	Greenland	20	1100011	Groendum et ul. 2007
-	-8.3	Summer	2001	74°28'N	NE	EC	Heath	Groendahl et al 2007
		(80 days)		20°34'W	Greenland	-		

Daily CO ₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-	-9.9	Summer (80 days)	2002	74°28'N 20°34'W	NE Greenland	EC	Heath	Groendahl et al. 2007
-	-23.3	Summer (80 days)		74°28'N 20°34'W	NE Greenland	EC	Heath	Groendahl et al. 2007
-1.09	-98.1	Summer (June – august)	2004	74°28'N 20°34'W	NE Greenland	СН	Arctic valley (integrated)	Groendahl et al. Submitted
-0.54	-198.1	Annual estimate	2005	65∘19_N, 14∘56 W,	Eastern Iceland	EC	Larch plantation	Bjarnadottir et al. 2007
-1.89	-170	Summer (June-Augu st)	2007	74°28 ⁷ N 20°34' W	NE Greenland	СН	Continuous fen	Tagesson et al. 2010
-1.65	-148.5	Summer (June-Augu st)	2007	74°28' N 20°34' W	NE Greenland	СН	Hummocky fen	Tagesson et al. 2010
-0.94	-84.6	Summer (June-Augu st)	2007	74°28' N 20°34' W	NE Greenland	СН	Grassland	Tagesson et al. 2010
-0.24	-21.6	Summer (June-Augu st)	2007	74°28' N 20°34' W	NE Greenland	СН	Salix snowbed	Tagesson et al. 2010
-0.14	-12.6	Summer (June-Augu st)	2007	74°28' N 20°34' W	NE Greenland	СН	Cassiope heath	Tagesson et al. 2010
-0.25	-22.5	Summer (June-Augu st)	2007	74°28' N 20°34' W	NE Greenland	СН	Dryas heath	Tagesson et al. 2010
-0.20	-18	Summer (June-Augu st)	2007	74°28' N 20°34' W	NE Greenland	СН	Vaccinium heath	Tagesson et al. 2010

Daily CO₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
Northern Euro	ope							
-0.26	-98	Annual	1993	62°47'N 30°56'E	Finland	СН	Low sedge pine fen	Alm et al. 1997
0.16 to 0.30	30 to 53	Winter (November -May)	1994-1995	65°51'N, 30°53'E	Finland	CH + snowpack diffusion method	Ombortrophic bog	Alm et al.1999
0.14 to 0.35	30 to 76	Winter (November -May)	1994-1995	65°51'N 30°53'E	Finland	CH + snowpack diffusion method	Minerotrophic fen	Alm et al.1999
-1.53 to 0.449	-229.5 to 67.3	Summer (June – September)	1995	69°08'N 27°17'E	Finland	EC and CH	Fen (flark fen)	Heikkinen et al. 2002b
-2.04	-122.4	Summer (60 days)	1996	69°28'N 27°14'E	Finland	EC	Forrest (Birch ecosystem)	Aurela et al. 2001
-1.09	-101.4	Summer (93 days)	1998	69°49'N 27°10'E	Finland	СН	Mire (Palsa mire)	Nykanen et al. 2003
0.155	28.8	Winter (186 days)	1998 – 1999	69°08'N 27°17'E	Finland	EC	Fen (subarctic flark fen)	Aurela et al. 2002
-0.052	-19	Annual	1998- 1999	69°08'N 27°17'E	Finland	EC	Fen (subarctic flark fen)	Aurela et al. 2002
-0.05	-18	Annual	1998-1999	69°08'N 27°17'E	Finland	EC	Mesotrophic subarctic fen	Aurela et al. 2002
-0.92	-85.6	Summer (93 days)	1999	69°49'N 27°10'E	Finland	СН	Mire (Palsa mire)	Nykanen et al. 2003
-0.074 to -0.036	-27 to -13.2	Annual	2001-2003	68°21'N 19°02'E	Sweden	EC	Mire (subarctic mire)	Friborg in prep.

Daily CO₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-	-4	Annual	1997	69°08'N 27°17'E	Finland	EC	Fen (subarctic flark fen)	Aurela et al. 2004
-	-2	Annual	1998	69°08'N 27°17'E	Finland	EC	Fen (subarctic flark fen)	Aurela et al. 2004
-	-8	Annual	1999	69°08'N 27°17'E	Finland	EC	Fen (subarctic flark fen)	Aurela et al. 2004
-	-6	Annual	2000	69°08'N 27°17'E	Finland	EC	Fen (subarctic flark fen)	Aurela et al. 2004
-	-37	Annual	2001	69°08'N 27°17'E	Finland	EC	Fen (subarctic flark fen)	Aurela et al. 2004
-	-53	Annual	2002	69°08'N 27°17'E	Finland	EC	Fen (subarctic flark fen)	Aurela et al. 2004
0.831	86.4	Summer (June-Septe mber)	-	68°21' N 19°00' E	Sweden	СН	Sub-Arctic mire ombrotrophic	Ström & Christensen. 2007
-1.968 to -1.43	-204.7 to -148.9	Summer (June-Septe mber)	-	68°21' N 19°00' E	Sweden	СН	Sub-Arctic mire minerotrophic	Ström & Christensen. 2007
-0.01	-3	Annual	2002-2007	68°20'N 19°03'E	Sweden	СН	Mixed mire	Backstrand et al. 2009
0.08	30	Annual	2002-2007	68°20′N 19°03′E	Sweden	СН	Mixed mire, palsa site	Backstrand et al. 2009
-0.10	-35	Annual	2002-2007	68°20'N 19°03'E	Sweden	СН	Mixed mire, Shagnum site	Backstrand et al. 2009
-0.10	-35	Annual	2002-2007	68°20'N 19°03'E	Sweden	СН	Mixed mire, Eriophorum site	Backstrand et al. 2009
-	-108.7	Summer (July-Augu st)	2004	68°18'N 18°51'E	Sweden	EC	Arctic tundra (integrated)	Fox et al. 2008

Daily CO₂ Flux $gC m^{-2}d^{-1}$	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-	-140.7	Summer (July-Augu st 2004)	2004	68°18'N 18°51'E	Sweden	СН	Arctic tundra (integrated)	Fox et al. 2008
-0.12	-43	Annual	2005	61∘50_N 24∘12 E	Finland	EC	Boreal oligotrophic fen	Rinne et al. 2007
-0.24	-89	Annual	2006-2007	68°20 ⁷ N, 19°03′E	Sweden	EC	Mixed mire	Jackowicz-Korczyński et al. 2010
-0.98 to -0.62	-147 to -93	Summer (May-Septe mber)	2007	68°20' N, 18°58' E,	Sweden	СН	Subarctic bog	Lund et al. 2009
Eurasia								
-	51	Winter (October-F ebruary)	1989-1990	69° N 162°E	Russia	СН	Moist shrub and grass	Zimov et al. 1993
-0.24	-28.1	Summer (117 days)	1993-1998	65 -74°N 63°E-172°W	Russia	CH / model	Tundra landscape	Zamolodchikov et al. 2001
-0.286	-6	Summer (21 days)	1995	67°57'N 64°40'E	Russia	СН	Tundra -tall Shrub	Zamolodchikov et al. 2000
	7	Winter (February)	1995	57° N 82° E	Russia		Ombrotrophic bog	Panikov & Dedysh 2000
0.30	14	Summer (47 days)	1996	67°20'N 64°44'E	Russia	СН	Tundra – Dwarf Shrub (60% of total area)	Zamolodchikov et al. 2000
-0.915	-43	Summer (47 days)	1996	67°20'N 64°44'E	Russia	СН	Tundra – Sedge bog	Zamolodchikov et al. 2000
-0.64	-30	Summer (47 days)	1996	67°20'N 64°44'E	Russia	СН	Tundra - shrub	Zamolodchikov et al. 2000

Daily CO₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-	-62.2	Summer (June-Septe mber)	1998	56°27_N 32°55_E	Russia	EC	Tundra - bog	Arneth et al. 2002
-	21.5	Summer (April-Octo ber)	1999	56∘27_N 32∘55_E	Russia	EC	Tundra - bog	Arneth et al. 2002
-	-51.1	Summer (June-Septe mber)	1998	60°45_N 89°23_E	Russia	EC	Tundra - bog	Arneth et al. 2002
-	-45.5	Summer (April-Nov ember)	1999	60°45_N 89°23_E	Russia	EC	Tundra - bog	Arneth et al. 2002
-	-62.6	Summer (April-Nov ember)	2000	60°45_N 89°23_E	Russia	EC	Tundra - bog	Arneth et al. 2002
-0.94	-72.4	Summer (77 days)	1999	67°23'N 63°22'E	Russia	СН	Tundra – wetlands	Heikkinen et al. 2002a
1.8	138.6	Summer (77 days)	1999	67°23'N 63°22'E	Russia	СН	Tundra –shrub	Heikkinen et al. 2002a
-0.5	-89	Summer	1999	56°51'N 82°58'E	Russia	EC	Wetland	Friborg et al. 2003
-0.12	-10.2	Summer (85 days)	2000	65°36'N 171°04'E	Russia	EC	Tundra	Zamolodchikov et al. 2003
-0.43	-160	Annual estimate	2001	62°15'18.4''N , 129°37'07.9'' E).	Russia	EC	Larch forest	Dolman et al. 2004
-1.21	-108.9	Summer (90 days)	2001	67°23'N 63°22'E	Russia	СН	Tundra (wet)	Heikkinen 2003, Heikkinen et al. 2004
0.75	67.5	Summer (90 days)	2001	67°23'N 63°22'E	Russia	СН	Tundra (dry)	Heikkinen 2003, Heikkinen et al. 2004

Daily CO₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
 -0.104	-38	Annual	2002-2003	68°37'N 161°21'E	Russia	EC	Tussock tundra	Corradi et al. 2005
-	-53	Summer (July-Octo ber)	2002	69°36'47''N 16°120'29''E	Russia	EC + CH	Arctic wet tundra	Merbold et al. 2009
-	15	Summer (July-Octo ber)	2003	69°36'47''N 16°120'29''E	Russia	EC + CH	Arctic wet tundra	Merbold et al. 2009
-	4	Summer (July-Octo ber)	2004	69°36'47''N 16°120'29''E	Russia	EC + CH	Arctic wet tundra	Merbold et al. 2009
-0.19	-119	Summer (May-Octo ber)	2003-2004	72°22' N 126°30' E	Russia	EC	Wet arctic tundra	Kutzbach et al. 2007
-1.53	-92	Annual	2003-2006	70°49' 36.28'' N, 147°29' 56.23'' E	Russia	EC+CH	Mixed moist tundra	van Huissteden et al. 2008, van der Molen et al. 2007
-0.85 to -0.83	-78 to -68	Summer (91 days)	2004	64°16'N 100°12'E	Russia	EC	Larch forest	Nakai et al. 2008
-	8	Summer (July-Octo ber)	2005	69°36'47''N 16°120'29''E	Russia	EC + CH	Drained arctic wet tundra	Merbold et al. 2009
-0.33 to -0.10	-1.22 to -35	Annual	-	65°46'_N 89°25'_E	Russia	Biomass and soil carbon analysis (biometric method).	Larch forest	Vedrova et al. 2006
-3.44	-344	Summer (100 days)	2006	62°05'N 129°45'E	Russia	EC	Larch forest	Lopez et al. 2008

Daily CO ₂ Flux gC m ⁻² d ⁻¹	Seasonal CO ₂ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-1.38	-138	Summer (May-Augu st) 100 days	2006	62°05'N 129°45'E	Russia	EC	Grassland thermokarst depression (alas ecosystem)	Lopez et al. 2008

*The growing season (summer) was assumed to last 90 days when non-specified by the authors **EC stands for Eddy covariance method and CH means Chamber method.

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
North Am	ierica							
0.022	-	Summer (August)	-	68°38'N 149°39'W	Alaska	СН	Meadow & tussock tundras	King et al. 1989
0.004	0.36	Summer (August)	1984	70'N	Alaska	СН	moist tundra	Sebacher et al. 1986
0.089	8.01	Summer (August)	1984	70'N	Alaska	СН	waterlogged tundra	Sebacher et al. 1986
0.03	2.7	Summer (August)	1984	70'N	Alaska	СН	Wet tussock meadows	Sebacher et al. 1986
0.217	21.7	Summer (August)	1984	70'N	Alaska	СН	Alpine fen in the Alaskan range	Sebacher et al. 1986
0.017	6.2	Annual	1987	65'N	Alaska, Fairbanks	СН	Tussock tundra composite	Whalen & Reeburg 1988 Whalen & Reeburg, 1992
0.003	0.27	Summer (August)	1987	69'N	Alaska, N.Slope	СН	Tussocks	Morissey and Livingsson, 1992
0.048	4.32	Summer (August)	1987	69'N	Alaska, N.Slope	СН	Meadow tundra	Morissey and Livingsson, 1992
0.002	0.18	Summer (August)	1987	69'N	Alaska, N.Slope	СН	Intertussocks	Morissey and Livingsson, 1992
0.075 to 0.191	6.75 to 17.19	Summer (August)	1987	69'N	Alaska, N.Slope	СН	Wet tundra	Morissey and Livingsson, 1992
0.002 to 0.019	0.4 to 3.2	Annual	1987 -1990	65'N	Alaska, Fairbanks	СН	Intertussock	Whalen & Reeburg 1988 Whalen & Reeburg. 1992
0.002 to 0.340	0.6 to 45.6	Annual	1987 -1990	65'N	Alaska, Fairbanks	СН	Carex sedge	Whalen & Reeburg 1988 Whalen & Reeburg. 1992

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.022 to 0.073	6 to 10.2	Annual	1987 -1990	65'N	Alaska, Fairbanks	СН	Tussocks	Whalen & Reeburg 1988 Whalen & Reeburg. 1992
0.90	37.8	Summer (42 days)	1988	6045N	Alaska	СН	wet meadow tundra	Bartlett et al. 1992
0.01	0.42	Summer (42 days)	1988	6045N	Alaska	СН	dry upland tundra	Bartlett et al. 1992
0.008	0.72	Summer (July-august	1988	61°05.41'N 162°00.92'W	Alaska	EC	Dry tundra	Fan et al. 1992
0.022	1.98	Summer (July-august	1988	61°05.41'N 162°00.92'W	Alaska	EC	Dry tundra	Fan et al. 1992
0.019	1.71	Summer (July-august	1988	61°05.41'N 162°00.92'W	Alaska	EC	Integrated area	Fan et al. 1992
0.038	3.42	Summer (July-august)	1988	61°N	Alaska	EC	Tundra: Yukon-Kuskokw im Delta	Ritter et al. 1992
0.008	0.72	Summer (July-august)	1988	61°N	Alaska	EC	Tundra: Alaskan North Slope (ANS) region	Ritter et al. 1992
0.073	5.3 to 6.1	Summer (June-Aug)	1991 -1992	68°38'N 149°38'W	Toolik Lake Alaska	СН	Wet sedge	Christensen 1993.
0.019	1.4 to 2.7	Summer (June-Aug)	1991 -1992	68°38'N 149°38'W	Toolik Lake Alaska	СН	Mesic tussock tundra	Christensen 1993.
0.08	-	Summer (July)	1991	68° 38' N 149° 34' W	Alaska	СН	Tundra	Schimel, 1995.

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.02	-	Summer (July)	1992	68° 38' N 149° 34' W	Alaska	СН	Tundra	Schimel, 1995.
0.07	-	Summer (July-Augus t)	1993	68° 38' N 149° 34' W	Alaska	СН	Tundra	Schimel, 1995.
-	-0.03	Ánnual estimate (May-Septe mber)	1994	68°38' N, 149°34'W	Alaska	СН	Barrens	Reeburgh et al. 1998
-	0.06	Annual estimate (May-Septe mber)	1994	68°38' N 149°34'W	Alaska	СН	Shrublands	Reeburgh et al. 1998
-	0.12	Annual estimate (May-Septe mber)	1994	68°38' N 149°34'W	Alaska	СН	Nonacidic tundra	Reeburgh et al. 1998
-	0.41	Annual estimate (May-Septe mber)	1994	68°38' N 149°34'W	Alaska	СН	Acidic tundra	Reeburgh et al. 1998
-	3.65	Annual estimate (May-Septe mber)	1994	68°38' N 149°34'W	Alaska	СН	wet tundra	Reeburgh et al. 1998
0.13 to 0.45	3.2 to 5.1	Annual	1995 -1996	68°38'N 149°39'W	Alaska	Pulse-labeli ng experiment & CH	Wet sedge tundra	King & Reeburg 2002

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.06	4.13	Annual estimate (June-Augus t)	1995	68° 38' N 149° 34' W	Alaska	СН	Tundra	Verville et al. 1998, King et al. 1998
-	-0.05	Ánnual estimate (May-Septe mber)	1995	68°38' N 149°34'W	Alaska	СН	Barrens	Reeburgh et al. 1998
-	0.28	Annual estimate (May-Septe mber)	1995	68°38' N 149°34'W	Alaska	СН	Shrublands	Reeburgh et al. 1998
-	0.14	Annual estimate (May-Septe mber)	1995	68°38' N, 149°34'W	Alaska	СН	Nonacidic tundra	Reeburgh et al. 1998
-	1.09	Annual estimate (May-Septe mber)	1995	68°38' N 149°34'W	Alaska	СН	Acidic tundra	Reeburgh et al. 1998
-	4.5	Annual estimate (May-Septe mber)	1995	68°38' N 149°34'W	Alaska	СН	wet tundra	Reeburgh et al. 1998
0.002 to 0.01	0.15 to 0.9	Summer (July-Augus t)	1995	68° 38' N 149° 36' W	Alaska	СН	Tussock tundra	Oberbauer et al. 1998
0.05	3.23	Ánnual estimate (June-Augus t)	1996	68° 38' N 149° 34' W	Alaska	СН	Tundra	Verville et al. 1998, King et al. 1998

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-	-0.05	Annual estimate (May-Septe mber)	1996	68°38' N 149°34'W	Alaska	СН	Barrens	Reeburgh et al. 1998
-	0.31	Annual estimate (May-Septe mber)	1996	68°38' N 149°34'W	Alaska	СН	Shrublands	Reeburgh et al. 1998
-	0.05	Annual estimate (May-Septe mber)	1996	68°38' N 149°34'W	Alaska	СН	Nonacidic tundra	Reeburgh et al. 1998
-	0.34	Annual estimate (May-Septe mber)	1996	68°38' N 149°34'W	Alaska	СН	Acidic tundra	Reeburgh et al. 1998
-	3.51	Annual estimate (May-Septe mber)	1996	68°38' N 149°34'W	Alaska	СН	wet tundra	Reeburgh et al. 1998
0.001 to 0.005	0.01 to 0.04	Summer (July-Augus t)	1996	68° 38' N 149° 36' W	Alaska	СН	Tussock tundra	Oberbauer et al. 1998
0.063	23	Ánnual	1998	71°18'N 156°42'W	Alaska	CH and Model	Tundra (coastal arctic tundra)	Grant el al. 2003
0 to 0.004	0 to 0.36	Summer (July-Octob er)	1998 -1999	55°51'N, 107°41'W	Canada	СН	Peatlands (permafrost)	Turetsky et al. 2002
0.055	20.1	Annual	1999	71°18'N 156°42'W	Alaska	CH and Model	Tundra (coastal arctic tundra)	Grant el al. 2003
0.016 to 0.051	1.92 to 6.16	Summer (120 days)	1999 -2000	71° N 156° W	Alaska	СН	Wet Sedge	Harazono et al. 2003

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.007	0.315	Summer (May-Septe mber)	2003	64°41.773'N 148°19.263'W	Alaska	СН	permafrost plateau	Wickland et al. 2006
0.086	31.28	Annual estimate (May-Septe mber)	2003	64°41.773'N 148°19.263'W	Alaska	СН	thermokarst wetlands	Wickland et al. 2006
0.007	2.41	Annual estimate (May-Septe mber)	2003	64°41.773'N 148°19.263'W	Alaska	СН	thermokarst edges	Wickland et al. 2006
0.0005	0.11 ± 0.07	Winter (212 days)	2004 -2005	64°52_N 147°51_W	Alaska	CH, EC and concentrati on profile method	Black spruce forest	Kim et al. 2007
0 to 0.005	0 to 0.45	Summer (June-July)	2006 2007	55°16'N 77°46'W	Canada	CH+EC	Subarctic thaw pond	Laurion et al. 2010
0 to 0.068	0 to 6.12	Summer (June-July)	2006 2007	73°09'N 79°58'W	Canada	CH+EC	Continuous permafrost ponds	Laurion et al. 2010
0.003	0.24	Summer (July-Augus t)	2007	71°17′N 156°37′W	Alaska	СН	Dry tundra	von Fisher et al. 2010
0.015	0.65	Summer (July-Augus t)	2007	71°17′N 156°37′W	Alaska	СН	moist tundra	von Fisher et al. 2010
0.037	1.68	Summer (July-Augus t)	2007	71°17′N 156°37′W	Alaska	СН	wet tundra	von Fisher et al. 2010
0.063	2.81	Summer (July-Augus t)	2007	71°17′N 156°37′W	Alaska	СН	flooded tundra	von Fisher et al. 2010

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
North Atla	antic Area							
0.0324	2.79	Summer (86 days)	1997	74°28'N 20°34'W	NE Greenland	EC	Fen	Friborg et al. 2000
0.0341	3.07	Summer (June-Augus t)	1997	74°28'N 20°34'W	NE Greenland	СН	Integrated Arctic vallev(wet)	Christensen et al. 2000
-	3.38	Summer (June-Octob er)	2007	74.30°N 21.00° W	NE Greenland	СН	Arctic fen	Mastepanov et al. 2008
Northern	Europe							
-0.002 to 0.002	-0.31 to 0.31	Summer (April-Octo ber)	1970	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Dry ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980: Svensson et al. 1999
0.004 to 0.012	0.7 to 2.25	Summer (April-Octo ber)	1970	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Semi-dry ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980: Svensson et al. 1999
0.02 to 0.18	3.6 to 32.9	Summer (April-Octo ber)	1970	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980: Svensson et al. 1999
0.024 to 0.043	4.32 to 7.78	Summer (April-Octo ber)	1970	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet intermediate ombro-minerotro phic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.077 to 0.432	13.82 to 77.77	Summer (April-Octo ber)	1970	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet minerotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.02	3.6	Summer (April-Octo ber)	1974	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.001	0.182	Summer (April-Octo ber)	1974	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Dry ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.012	2.25	Summer (April-Octo ber)	1974	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Semi-dry ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.044	7.78	Summer (April-Octo ber)	1974	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet intermediate ombro-minerotro phic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.27	49.02	Summer (April-Octo ber)	1974	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet minerotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.0087	0.1	Annual estimate (June-Septe mber)	1974	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: ombrotrophic	Svensson 1976. Svensson & Rosswall 1984
0.0436	1.08	Annual estimate (June-Septe mber)	1974	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire:intermediat e	Svensson 1976. Svensson & Rosswall 1984
0.2707	22.93	Annual estimate (June-Septe mber)	1974	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: minerotrophic	Svensson 1976. Svensson & Rosswall 1984
0.082	30	Annual	1993	62°47'N 30°56'E	Finland	СН	Low sedge pine fen	Alm et al. 1997

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-0.0002	-0.033	Summer (April-Octo ber)	1994	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Dry ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.011	2.1	Summer (April-Octo ber)	1994	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Semi-dry ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.004	0.78	Summer (April-Octo ber)	1994	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.034	6.14	Summer (April-Octo ber)	1994	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet intermediate ombro-minerotro phic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.18	32.69	Summer (April-Octo ber)	1994	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet minerotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.0042	2.04	Winter (November- May)	1994 -1995	65°51'N 30°53'E	Finland	CH + snowpack diffusion method	Ombortrophic bog	Alm et al.1999
0.0246	6	Winter (November- May)	1994 -1995	62°47'N 30°56'E	Finland	CH + snowpack diffusion method	Minerotrophic fen	Alm et al.1999
0.024	4.32	Summer (April-Octo ber)	1995	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet intermediate ombro-minerotro phic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
-0.0005	-0.091	Summer (April-Octo ber)	1995	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Dry ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.004	0.70	Summer (April-Octo ber)	1995	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Semi-dry ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.04	6.7	Summer (April-Octo ber)	1995	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.15	27.47	Summer (April-Octo ber)	1995	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet minerotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.0019 to 0.0168	0.17 to 1.51	Summer (May)	1996	68°21'N 19°02'E	Sweden	EC and CH	Mire (subarctic mire)	Friborg et al. 1997
0.0112	4.13	Annual estimate (May to October)	1998 -1999	69°8'N 27°16'E	Finland	EC	Mire (aapa mire)	Hargreaves et al. 2001
0.091	8.19	Summer (90 days)	1998	69°49'N 27°10'E	Finland	СН	Mire (Palsa mire)	Nykanen et al. 2003
0.03	11	Annual	1998 -1999	69°08'N 27°17'E	Finland	EC	Mesotrophic subarctic fen	Aurela et al. 2002
0.133	11.97	Summer (90 days)	1999	69°49'N 27°10'E	Finland	СН	Mire (Palsa mire)	Nykanen et al. 2003
-0.002 to 0.002	-0.31 to 0.31	Summer (April-Octo ber)	2000	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Dry ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.004 to 0.012	0.7 to 2.25	Summer (April-Octo ber)	2000	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Semi-dry ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.02 to 0.18	3.6 to 32.9	Summer (April-Octo ber)	2000	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet ombrotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.024 to 0.043	4.32 to 7.78	Summer (April-Octo ber)	2000	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet intermediate ombro-minerotro phic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.077 to 0.432	13.82 to 77.77	Summer (April-Octo ber)	2000	68° 22'N 19° 03'E	Sweden	СН	Subarctic mire: Wet minerotrophic	Christensen et al.,2003; Oquist and Svensson, 2002; Svensson, 1980; Svensson et al., 1999
0.0139	5.07	Annual Campaigns	2001 -2002	68°21'N 19°02'E	Sweden	EC	Mire (subarctic mire)	Friborg et al. in prep.
0.016	6	Annual	2002 -2007	68°20'N, 19°03'E	Sweden	СН	Mixed mire	Backstrand et al. 2009
0.002	1	Annual	2002 -2007	68°20′N 19°03′E	Sweden	СН	Mixed mire, palsa site	Backstrand et al. 2009
0.016	6	Annual	2002 -2007	68°20'N 19°03'E	Sweden	СН	Mixed mire, Shagnum site	Backstrand et al. 2009
0.088	32	Annual	2002 -2007	68°20'N 19°03'E	Sweden	СН	Mixed mire, Eriophorum site	Backstrand et al. 2009
0.0848	7.63	Summer	2004 -2006	68°N 19° E	Sweden	СН	Wetland	Petrescu et al. 2008
0.026	9.4	Annual	2005	61∘50_N 24∘12_E	Finland	EC	Boreal oligotrophic fen	Rinne et al. 2007
0.0036 to 0.6514	0.32 to 58.63	Summer (June-Septe mber)	-	68°21' N 19°00' E	Sweden	СН	Sub-Arctic mire	Ström & Christensen. 2007
0.055 to 0.112	20	Annual	2006 -2007	68°20'N 19°03'E	Sweden	EC	Mixed mire	Jackowicz-Korczyński et al. 2010
0.0038 to 0.0081	0.57 to 1.21	Summer (May-Septe mber)	2007	68°20' N 18°58' E,	Sweden	СН	Subarctic bog	Lund et al. 2009

Eurasia

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.012 to 0.0574	1.08 to 5.17	Summer	1993	71.5°N 130.0°E	Russia	СН	Waterlogged tundra	Nakano et al. 2000
0.0002 to 0.0011	0.02 to 0.1	Summer	1993	71.5°N 130.0°E	Russia	СН	Drier peat mound	Nakano et al. 2000
0.0017	0.15	Summer	1994	67-77 °N	Russia	СН	Mesic	Christensen et al. 1999
0.035	3.15	Summer	1994	67-77 °N	Russia	СН	Wet	Christensen et al. 1999
0.1241	11.17	Summer (July-Augus t)	1995	68°5'N 161°4'E	Russia	СН	Horsetail grassland	Tsuyuzaki et al. 2001
0.055	4.95	Summer (July-Augus t)	1995	68°5'N 161°4'E	Russia	СН	Carex grassland	Tsuyuzaki et al. 2001
-0.0014	-0.13	Summer (July-Augus t)	1995	68°5'N 161°4'E	Russia	СН	<i>Eriophorum</i> grassland	Tsuyuzaki et al. 2001
0.06	0.17	Summer (August)	1995	68°08'N, 71°42'E	Russia	СН	Tundra	Heyer et al. 2002
0.0882 to 0.391	7.938 to 35.19	Summer	1995	68.5°N 161.4°E	Russia	СН	Waterlogged tundra	Nakano et al. 2000
-0.003 to 0.0011	-0.27 to 0.1	Summer	1995	68.5°N 161.4°E	Russia	СН	Grassland	Nakano et al. 2000
0.026	0.15	Summer (June)	1996	68°08'N, 71°42'E	Russia	СН	Tundra	Heyer et al. 2002
-0.04	-4.8	Summer (May-Septe mber)	1999	N 72°22 E 126°28	Russia	СН	Polygon depression tundra	Wagner et al. 2003, 2004
0.03	3.6	Summer (May-Septe mber)	1999	N 72°22 E 126°28	Russia	СН	Polygon rim tundra	Wagner et al. 2003, 2004

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.021	1.89	Summer (August)	1999	72.37N 126.47E	Russia	СН	Wet polygonal tundra	Kutzbach et al. 2004
0.0032	0.29	Summer (August)	1999	72.37N 126.47E	Russia	СН	Polygon rim tundra	Kutzbach et al. 2004
0.0835	7.52	Summer (90 days)	2001	67°23'N 63°22'E	Russia	СН	Tundra(wet)	Heikkinen 2003. Heikkinen et al. 2004
0.0004	0.01	Summer (90 days)	2001	67°23'N 63°22'E	Russia	СН	Tundra (dry)	Heikkinen 2003. Heikkinen et al. 2004
-	20	Summer (July-Octob er)	2002	69°36'47''N, 161°20'29''E	Russia	СН	arctic wet tundra	Merbold et al. 2009
0.0328	12	Annual estimate (summer 60 days)	2002 -2003	68°37'N 161°21'E	Russia	EC	Tussock tundra	Corradi et al. 2005
-	20	Summer (July-Octob	2003	69°36'47''N, 161°20'29''E	Russia	СН	arctic wet tundra	Merbold et al. 2009
0.47	28	Annual	2003 -2006	70°49' 36.28'' N, 147°29' 56 23''E	Russia	EC+CH	Mixed moist tundra	van Huissteden et al. 2008, van der Molen et al. 2007
0.0226	2.37	Annual (June-Octob er)	2003 -2004	72°22'N, 126°30'E	Russia	EC	Wet polygonal Tundra	Wille et al. 2008
0	-0.04	Summer (August-No vember)	2003	67°29.90'N 86°25.26'E	Russia	СН	Bog plateaux	Flessa et al. 2008
-0.0002	-0.08	Summer (August-No vember)	2003	67°29.90'N 86°25.26'E	Russia	СН	Well-drained mineral soils	Flessa et al. 2008

Daily CH ₄ Flux $gC m^{-2}d^{-1}$	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0	-0.03	Summer (August-No vember)	2003	67°29.90'N 86°25.26'E	Russia	СН	Mineral soils with gleyic properties	Flessa et al. 2008
-	6.23	Summer (August-No vember)	2003	67°29.90'N 86°25.26'E	Russia	СН	Thermokarst ponds and lakes	Flessa et al. 2008
-	24	Summer (July-Octob er)	2004	69°36'47''N, 161°20'29''E	Russia	СН	arctic wet tundra	Merbold et al. 2009
0.0233 to 0.0377	2.1 to 3.39	Summer	2004 -2006	70°N, 147° E	Russia	CH+model	Wetland	Petrescu et al. 2008
-	-0.004	Summer (May-Septe mber)	2004	62°19'N, 129°30'E	Russia	СН	Dry grassland (Continuous ecosystem)	Takakai et al. 2008
-	6.36	Summer (May-Septe mber)	2004	62°19'N, 129°30'E	Russia	СН	Wet grassland (Continuous ecosystem)	Takakai et al. 2008
-	-0.013	Summer (May-Septe mber)	2004	62°19'N, 129°30'E	Russia	СН	Forest (Continuous ecosystem)	Takakai et al. 2008
-	0.6	Summer (July-Octob er)	2004	69°36'47''N, 161°20'29''E	Russia	СН	Drained arctic wet tundra	Merbold et al. 2009
-	-0.005	Summer (May-Septe mber)	2005	62°19'N, 129°30'E	Russia	СН	Dry grassland (Continuous ecosystem)	Takakai et al. 2008
-	39.2	Summer (May-Septe mber)	2005	62°19'N, 129°30'E	Russia	СН	Wet grassland (Continuous ecosystem)	Takakai et al. 2008

Daily CH ₄ Flux gC m ⁻² d ⁻¹	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
-	-0.008	Summer (May-Septe mber)	2005	62°19'N, 129°30'E	Russia	СН	Forest (Continuous ecosystem)	Takakai et al. 2008
-0.006	-0.5	Summer (July-august)	2005	62°15'18''N, 129°37'08''E	Russia	СН	Moist forest	van Huissteden et al. 2008
0.024	2.16	Summer (July-august	2005	62°15'18''N, 129°37'08''E	Russia	СН	Mesotrophic fen	van Huissteden et al., 2008
0	-0.03	Annual	2006 -2007	67°29.90'N 86°25.26'E	Russia	СН	Bog plateaux	Flessa et al. 2008
-0.0002	-0.09	Annual	2006 -2007	67°29.90'N 86°25.26'E	Russia	СН	Well-drained mineral soils	Flessa et al. 2008
0	-0.02	Annual	2006 -2007	67°29.90'N 86°25.26'E	Russia	СН	Mineral soils with gleyic properties	Flessa et al. 2008
-	15.04	Annual	2006 -2007	67°29.90'N 86°25.26'E	Russia	СН	Thermokarst ponds and lakes	Flessa et al. 2008
-0.0067	-0.01	Summer (July-august)	2006	62°15'18''N, 129°37'08''E	Russia	СН	Dry forest	van Huissteden et al. 2008
-0.01	-0.86	Summer (July-august)	2006	62°15'18''N, 129°37'08''E	Russia	СН	Moist forest	van Huissteden et al. 2008
0.0141	1.45	Summer (103 days)	2006	72°22′N, 126°30′E	Russia	EC+CH	Wet polygonal tundra	Sachs et al. 2008
0.0707	6.36	Summer (August)	2006	72°22′N, 126°30′E	Russia	CH+EC	Polygonal tundra: very wet soils	Sachs et al. 2010

$\begin{array}{c} \textbf{Daily}\\ \textbf{CH}_4\\ \textbf{Flux}\\ \text{gC } \text{m}^{-2}\text{d}^{-1} \end{array}$	Seasonal CH ₄ Flux* gC m ⁻²	Season	Year	Geographical position	Location	Method**	Ecosystem	Reference
0.0058	0.52	Summer (August)	2006	72°22′N, 126°30′E	Russia	CH+EC	Polygonal tundra: drier or moderately moist soils	Sachs et al. 2010
0.06	5.4	Summer (July-Augus t)	2007	70°49'44.9'' N 147°29'39.4''E	Russia	EC+CH	Mixed moist Tundra	Parmentier et al. 2011
0.05	1.125	Summer (July-Augus t)	2008	70°49'44.9'' N 147°29'39.4''E	Russia	EC+CH	Mixed moist Tundra	Parmentier et al. 2011
0.03	0.675	Summer (July-Augus	2009	70°49'44.9'' N 147°29'39.4''E	Russia	EC+CH	Mixed moist Tundra	Parmentier et al. 2011

t) *The growing season was assumed to last 90 days when non specified by the authors **EC stands for Eddy covariance method and CH Means Chamber method.

Appendix 1. References

- Alm, J., A. Talanov, et al. (1997). "Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland." <u>Oecologia</u> 110(3): 423-431.
- Alm, J., S. Saarnio, et al. (1999). "Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands." <u>Biogeochemistry</u> 44(2): 163-186.
- Arneth, A., J. Kurbatova, et al. (2002). "Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. InterSummeral and interannual variability of CO₂ fluxes." <u>Tellus Series</u> <u>B-Chemical and Physical Meteorology</u> 54(5): 514-530.
- Aurela, M., T. Laurila, et al. (2002). "Annual CO₂ balance of a subarctic fen in northern Europe: Importance of the wintertime efflux." <u>Journal of Geophysical</u> <u>Research-Atmospheres</u> 107(D21): 12.
- Aurela, M., T. Laurila, et al. (2004). "The timing of snow melt controls the annual CO₂ balance in a subarctic fen." <u>Geophysical Research Letters</u> **31**(16): 4.
- Aurela M, Tuovinen JP, Laurila T. (2001). Net CO₂ exchange of a subarctic mountain birch ecosystem. Theoretical and Applied Climatology **70:** 135-148.
- Backstrand, K., P. M. Crill, et al. (2009). "Annual carbon gas budget for a subarctic peatland, Northern Sweden." <u>Biogeosciences</u> 7(1): 95-108.
- Bartlett, K. B., P. M. Crill, et al. (1992). "Methane emissions from tundra environments in the Yukon-Kuskokwim Delta, Alaska." Journal of Geophysical Research 97(D15): 16,645-16,660.
- Bjarnadottir, B., B. D. Sigurdsson, et al. (2007). "Estimate of annual carbon balance of a young Siberian larch (Larix sibirica) plantation in Iceland." <u>Tellus Series</u> <u>B-Chemical and Physical Meteorology</u> **59**(5): 891-899.
- Christensen, T. R. (1993). "Methane emission from arctic tundra." <u>Biogeochemistry</u> 21(2): 117-139.

- Christensen, T. R., A. Ekberg, et al. (2003). "Factors controlling large scale variations in methane emissions from wetlands." <u>Geophysical Research Letters</u> **30**(7): 4.
- Christensen, T. R., A. Michelsen, et al. (1999). "Exchange of CH₄ and N₂O in a subarctic heath soil: effects of inorganic N and P and amino acid addition." <u>Soil</u> <u>Biology & Biochemistry</u> **31**(4): 637-641.
- Christensen, T. R., T. Friborg, et al. (2000). "Trace gas exchange in a high-arctic valley 1.
 Variations in CO₂ and CH₄ flux between tundra vegetation types." <u>Global</u> <u>Biogeochemical Cycles</u> 14(3): 701-713.
- Corradi, C., Kolle, O., Walter, K., Zimov, S.A. and Schulze, E.D. (2005). Carbon dioxide and methane exchange of a north-eat Siberian tussock tundra. <u>Global</u> <u>Change Biology</u> **11**: 1910-1925.
- Coyne, P. I. & Kelley, J. J. (1975). CO₂ exchange over the Alaskan arctic tundra: meteorological assessment by an aerodynamic method. <u>J. Appl. Ecol.</u> 12, 587-611.
- Dolman, A. J., T. C. Maximov, et al. (2004). "Net ecosystem exchange of carbon dioxide and water of far eastern Siberian Larch (Larix cajanderii) on permafrost." <u>Biogeosciences</u> 1(2): 133-146.
- Eugster, W., J. P. McFadden, et al. (2005). "Differences in surface roughness, energy, and CO2 fluxes in two moist tundra vegetation types, Kuparuk watershed, Alaska, USA." <u>Arctic Antarctic and Alpine Research</u> 37(1): 61-67.
- Eugster, W., Kling, G., Jonas, T., McFadden, J.P., Wuest, A., MacIntyre, S., and Chapin, F.S. (2003). CO₂ exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing. <u>Journal of</u> <u>Geophysical Research-Atmospheres</u> 108.
- Fahnestock, J.T., Jones, M.H., and Welker, J.M. (1999). Wintertime CO₂ efflux from arctic soils: Implications for annual carbon budgets. <u>Global</u> <u>Biogeochemical Cycles</u> 13: 775-779.

- Fahnestock, J.T., Jones, M.H., Brooks, P.D., Walker, D.A., and Welker, J.M. (1998). Winter and early spring CO₂ efflux from tundra communities of northern Alaska. <u>Journal of Geophysical Research-Atmosphe</u>res 103: 29023-29027.
- Fan, S. M., S. C. Wofsy, et al. (1992). "Micrometeorological measurements of CH₄ and CO₂ exchange between the atmosphere and sub-arctic tundra." <u>Journal of</u> <u>Geophysical Research-Atmospheres</u> 97(D15): 16627-16643.
- Flessa, H., A. Rodionov, et al. (2008). "Landscape controls of CH₄ fluxes in a catchment of the forest tundra ecotone in northern Siberia." <u>Global Change Biology</u> 14(9): 2040-2056.
- Fox, A. M., B. Huntley, et al. (2008). "Net ecosystem exchange over heterogeneous Arctic tundra: Scaling between chamber and eddy covariance measurements." <u>Global Biogeochemical Cycles</u> 22(2): 15.
- Friborg, T., H. Soegaard, et al. (2003). "Siberian wetlands: Where a sink is a source." <u>Geophysical Research Letters</u> **30**(21): 4.
- Friborg, T., T. R. Christensen, et al. (2000). "Trace gas exchange in a high-arctic valley 2. Landscape CH₄ fluxes measured and modeled using eddy correlation data." <u>Global Biogeochemical Cycles</u> 14(3): 715-723.
- Friborg, T., Christensen, T.R., and Sogaard, H. (1997). Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micrometeorological techniques. <u>Geophysical Research Letters</u> 24: 3061-3064.
- Grant, R.F., Oechel, W.C. and Ping, C-L. (2003). Modelling carbon balances of coastal arctic tundra under changing climate. <u>Global Change Biology</u> **9**: 16-32.
- Griffis, T. J., W. R. Rouse, et al. (2000). "Scaling net ecosystem CO2 exchange from the community to landscape-level at a subarctic fen." <u>Global Change Biology</u> 6(4): 459-473.
- Groendahl, L, Friborg, T. and Soegaard, H. (2007). Temperature and snow-melt controls on interannual variability in carbon exchange in the High Arctic. <u>Theoretical and Applied Climatology 88: 111-125.</u>

- Groendahl, L, Tamstorf, M., Friborg, T., Soegaard, H., Illeris, L., Hansen, B.U., Albert, K., Arndal, M., Pedersen, M.R. and Michelsen, A. (Submitted). Scaling CO₂ fluxes from plot- and field-level to landscape-level in a high arctic ecosystem using a footprint model and satellite images.
- Harazono,Y., Mano,M., Miyata,A., Zulueta,R.C., and Oechel,W.C. (2003). Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic. Tellus Series B-Chemical and Physical Meteorology 55: 215-231.
- Hargreaves, K. J., D. Fowler, et al. (2001). "Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements." <u>Theoretical and</u> <u>Applied Climatology</u> **70**(1-4): 203-213.
- Heikkinen, J. E. P., Virtanen, P. T, Huttunen, J. T., Elsakov, V., and Martikainen, P. J. (2004). Carbon balance in East European tundra. Global Biogeochemical Cycles 18: 10.1029/2003GB002054.
- Heikkinen, J.E-P. (2003). Carbon balance of the Arctic wetlands in Europe- PhD thesis. Kuopio University Publications C. Natural and Environmental Sciences 153, Kuopio, Finland.
- Heikkinen, J.E.P., Elsakov, V., and Martikainen, P.J. (2002a). Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. <u>Global Biogeochemical Cycles</u> 16: art-1115.
- Heikkinen, J.E.P., Maijanen, M., Aurela, M., Hargreaves, K.J., and Martikainen, P.J. (2002b). Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland. <u>Polar Research</u> 21: 49-62.
- Heyer, J., U. Berger, et al. (2002). "Methane emissions from different ecosystem structures of the subarctic tundra in Western Siberia during midsummer and during the thawing period." <u>Tellus Series B-Chemical and Physical</u> <u>Meteorology</u> 54(3): 231-249.
- Jackowicz-Korczynski, M., T. R. Christensen, et al. (2010). "Annual cycle of methane emission from a subarctic peatland." <u>Journal of Geophysical</u> <u>Research-Biogeosciences</u> **115**: 10.

- Johnson, P. L. & Kelley, J. J. (1970). Dynamics of carbon dioxide and productivity in an arctic biosphere. Ecology 51, 73-80.
- Kim, Y., M. Ueyama, et al. (2007). "Assessment of winter fluxes of CO₂ and CH₄ in boreal forest soils of central Alaska estimated by the profile method and the chamber method: a diagnosis of methane emission and implications for the regional carbon budget." <u>Tellus Series B-Chemical and Physical Meteorology</u> 59(2): 223-233.
- King, A. W., R. V. O'Neill, et al. (1989). "Using ecosystem models to predict regional carbon dioxide exchange between the atmosphere and the terrestrial biosphere." <u>Global Biogeochemical Cycles</u> 3(4): 337-362.
- King, J. Y., W. S. Reeburgh, et al. (1998). "Methane emission and transport by arctic sedges in Alaska: Results of a vegetation removal experiment." <u>Journal of</u> <u>Geophysical Research-Atmospheres</u> 103(D22): 29083-29092.
- King, J. Y., W. S. Reeburgh, et al. (2002). "Pulse-labeling studies of carbon cycling in Arctic tundra ecosystems: The contribution of photosynthates to methane emission." Global Biogeochemical Cycles 16(4): 8.
- Kutzbach, L., C. Wille, et al. (2007). "The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia." <u>Biogeosciences</u> 4(5): 869-890.
- Kutzbach, L., D. Wagner, et al. (2004). "Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia." <u>Biogeochemistry</u> 69(3): 341-362.
- Kwon, H. J., W. C. Oechel, et al. (2006). "Effects of climate variability on carbon sequestration among adjacent wet sedge tundra and moist tussock tundra ecosystems." Journal of Geophysical Research-Biogeosciences 111(G3): 18.
- Lafleur, P. M. and E. R. Humphreys (2008). "Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada." <u>Global Change</u> <u>Biology</u> 14(4): 740-756.

- Lafleur, P. M., T. J. Griffis, et al. (2001). "Interannual variability in net ecosystem CO₂ exchange at the arctic treeline." <u>Arctic Antarctic and Alpine Research</u> 33(2): 149-157.
- Laurion, I., W. F. Vincent, et al. (2010). "Variability in greenhouse gas emissions from permafrost thaw ponds." Limnology and Oceanography **55**(1): 115-133.
- Lloyd, C.R. (2001a). On the physical controls of the carbon dioxide balance at a high Arctic site in Svalbard. Theoretical and Applied Climatology **70**: 167-182.
- Lloyd, C.R.(2001b). The measurement and modelling of the carbon dioxide exchange at a high Arctic site in Svalbard. <u>Global Change Biology</u> **7**: 405-426.
- Lopez, M. L., E. Gerasimov, et al. (2008). "Comparison of carbon and water vapor exchange of forest and grassland in permafrost regions, Central Yakutia, Russia." <u>Agricultural and Forest Meteorology</u> 148(12): 1968-1977.
- Lund, M., T. R. Christensen, et al. (2009). "Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates." <u>Biogeosciences</u> 6(10): 2135-2144.
- Mastepanov, M., C. Sigsgaard, et al. (2008). "Large tundra methane burst during onset of freezing." <u>Nature</u> **456**(7222): 628-630.
- Merbold, L., W. L. Kutsch, et al. (2009). "Artificial drainage and associated carbon fluxes (CO₂/CH₄) in a tundra ecosystem." <u>Global Change Biology</u> **15**(11): 2599-2614.
- Morrissey, L. A. and G. P. Livingston (1992). "Methane emissions from Alaska Arctic tundra: an assessment of local spatial variability." <u>Journal of Geophysical</u> <u>Research</u> 97(D15): 16,661-16,670.
- Nakai, Y., Y. Matsuura, et al. (2008). "Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost in Central Siberia during a growing Summer." <u>Theoretical and Applied Climatology</u> 93(3-4): 133-147.

- Nakano, T., W. Takeuchi, et al. (2000). "Temporal variations in soil-atmosphere methane exchange after fire in a peat swamp forest in West Siberia." <u>Soil Science</u> <u>and Plant Nutrition</u> 52(1): 77-88.
- Nobrega, S. and P. Grogan (2008). "Landscape and ecosystem-level controls on net carbon dioxide exchange along a natural moisture gradient in Canadian low arctic tundra." <u>Ecosystems</u> 11(3): 377-396.
- Nordstroem, C., Soegaard, H., Christensen, T.R., Friborg, T., and Hansen, B.U. (2001). Summeral carbon dioxide balance and respiration of a high- arctic fen ecosystem in NE-Greenland. <u>Theoretical and Applied Climatology</u> **70**: 149-166.
- Nykanen, H., Heikkinen, J.E.P., Pirinen, L., Tiilikainen, K., and Martikainen, P.J. (2003). Annual CO₂ exchange and CH₄ fluxes on a subarctic palsa mire during climatically different years. <u>Global Biogeochemical Cycles</u> 17: art-1018.
- Oberbauer, S. F., G. Starr, et al. (1998). "Effects of extended growing season and soil warming on carbon dioxide and methane exchange of tussock tundra in Alaska." <u>Journal of Geophysical Research-Atmospheres</u> 103(D22): 29075-29082.
- Oechel, W. C. et al. (1993). Recent change of arctic tundra ecosystems from a carbon sink to a source. <u>Nature</u> 361, 520-523.
- Oechel,W. C.& Vourlitis G. L. (1995). in Advances in Soil Science: Soils and Global Change (eds Lal, R., Kimbel, J., Levine, E. & Stewart, B. A.) 117±129 (Lewis, Boca Raton).
- Oechel W.C., Vourlitis, G.L., Hastings, S.J. (1997). Cold Summer CO₂ emission from arctic soil. <u>Global Biogeochemical Cycles</u> **11**: 163-172.
- Oechel, W. C., Vourlitis, G. L., Hastings, S. J., Ault, R. P. & Pryant, P. (1998). The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems. <u>Glob.Change Biol.</u> 4, 77-90.

- Oechel, W.C., Vourlitis, G.L., Hastings, S.J., Zulueta, R.C., Hinzman, L., and Kane, D. (2000a). Acclimation of ecosystem CO₂ exchange in the Alaskan Arctic in response to decadal climate warming. Nature **406**: 978-981.
- Oechel, W.C., Vourlitis, G.L., Verfaillie, J., Crawford, T., Brooks, S., Dumas, E., Hope, A., Stow, D., Boynton, B., Nosov, V., and Zulueta, R. (2000b). A scaling approach for quantifying the net CO₂ flux of the Kuparuk River Basin, Alaska. <u>Global Change Biol.</u> 6: 160-173.
- Oquist, M. G. and B. H. Svensson (2002). "Vascular plants as regulators of methane emissions from a subarctic mire ecosystem." <u>Journal of Geophysical</u> <u>Research-Atmospheres</u> 107(D21): 10.
- Panikov, N. S. and S. N. Dedysh (2000). "Cold Summer CH₄ and CO₂ emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics." <u>Global Biogeochemical Cycles</u> 14(4): 1071-1080.
- Parmentier, F.J.W., J. van Huissteden, M.K. van der Molen, G. Schaepman-Strub, S.A. Karsanaev, T.C. Maximov, A.J. (2011). Dolman. Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in Northeastern Siberia. <u>Journal of Geophysical Research - Biogeosciences</u>, 116, G03016, doi:10.1029/2010JG001637.
- Petrescu, A. M. R., J. van Huissteden, et al. (2008). "Modelling CH₄ emissions from arctic wetlands: effects of hydrological parameterization." <u>Biogeosciences</u> 5(1): 111-121.
- Reeburgh, W. S., J. Y. King, et al. (1998). "A CH₄ emission estimate for the Kuparuk River basin, Alaska." <u>Journal of Geophysical Research-Atmospheres</u> 103(D22): 29005-29013.
- Rennermalm AK, Soegaard H, Nordstroem C. (2005). Interannual Variability in Carbon Dioxide Exchange from a High Arctic Fen Estimated by Measurements and Modeling. <u>Arctic, Antarctic, and Alpine Research</u>, **37**: 545-556.

- Rinne, J., T. Riutta, et al. (2007). "Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique." <u>Tellus Series B-Chemical and</u> <u>Physical Meteorology</u> 59(3): 449-457.
- Ritter, J. A., J. D. W. Barrick, et al. (1992). "Airborne Flux Measurements of Trace Species in an Arctic Boundary Layer." J. Geophys. Res. 97(D15): 16601-16625.
- Sachs, T., C. Wille, et al. (2008). "Environmental controls on ecosystem-scale CH₄ emission from polygonal tundra in the Lena River Delta, Siberia." Journal <u>of Geophysical Research-Biogeosciences</u> 113: 12.
- Sachs, T., M. Giebels, et al. (2010). "Environmental controls on CH₄ emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia." <u>Global Change Biology</u> 16(11): 3096-3110.
- Schimel, J. P. (1995). "Plant-transport and methane production as controls on methane flux from arctic wet meadow tundra." <u>Biogeochemistry</u> **28**(3): 183-200.
- Schuur, E. A. G., J. G. Vogel, et al. (2009). "The effect of permafrost thaw on old carbon release and net carbon exchange from tundra." <u>Nature</u> **459**(7246): 556-559.
- Sebacher, D. I., R. C. Harriss, et al. (1986). "Atmospheric methane sources alaskan usa tundra bogs an alpine fen and a subarctic boreal marsh." <u>Tellus Series B</u> <u>Chemical and Physical Meteorology</u> 38(1): 1-10.
- Shaver, G. R., L. E. Street, et al. (2007). "Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden." <u>Journal of</u> <u>Ecology</u> 95(4): 802-817.
- Soegaard, H. and Nordstroem, C. (1999). Carbon dioxide exchange in a high-arctic fen estimated by eddy covariance measurements and modelling. <u>Global Change</u> <u>Biology</u> **5**: 547-562.
- Soegaard, H., Nordstroem, C., Friborg, T., Hansen, B.U., Christensen, T.R., and Bay, C. (2000). Trace gas exchange in a high-arctic valley 3. Integrating and scaling CO₂ fluxes from canopy to landscape using flux data, footprint modeling, and remote sensing. <u>Global Biogeochemical Cycles</u> 14: 725-744.

- Strom, L. and T. R. Christensen (2007). "Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland." <u>Soil Biology & Biochemistry</u> 39(7): 1689-1698.
- Svensson, B. H. (1980). <u>Carbon dioxide and methane fluxes from the ombrotrophic parts</u> of a subarctic mire. Stockholm Sweden, Swedish Natural Science Research Council.
- Svensson, B. H. (1976). Methane production in tundra peat. In: Schlegel, H. G., Gottschalk, G. and Pfennig, N. (eds), Production and utilization of gases (H2, CH4, CO). E. Klotze KG, Gbttingen, pp. 135-139.
- Svensson, B. H. and Rosswall, T. (1984). In situ methane production from acid peat in plant communities with dif-ferent moisture regimes in a subarctic mire. -<u>Oikos</u> 43: 341-350.
- Svensson, B. H., T. R. Christensen, et al. (1999). "Interdecadal changes in CO₂ and CH₄ fluxes of a subarctic mire: Stordalen revisited after 20 years." <u>Oikos</u> 85(1): 22-30.
- Tagesson T, M. M., M. P. Tamstorf, L. Eklundh, P. Schubert, and C. S. A. Ekberg, T. R. Christensen, and L. Ström. (2010). "Satellites reveal an increase in gross primary production in a greenlandic high arctic fen 1992–2008. <u>Biogeosciences</u> 7: 1101-1129.
- Takakai, F., A. R. Desyatkin, et al. (2008). "CH4 and N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia." Journal of Geophysical Research-Biogeosciences 113(G2): 16.
- Tieszen, L. L. (1975). CO₂ exchange in the Alaskan arctic tundra: Seasonal changes in the rate of photosynthesis of four species. <u>Photosynthetica</u> 9, 376-390
- Tsuyuzaki, S., T. Nakano, et al. (2001). "Methane flux in grassy marshlands near Kolyma River, north-eastern Siberia." <u>Soil Biology & Biochemistry</u> **33**(10): 1419-1423.
- Turetsky, M. R., R. K. Wieder, et al. (2002). "Boreal peatland C fluxes under varying permafrost regimes." <u>Soil Biology & Biochemistry</u> 34(7): 907-912.

- Ueyama, M., Y. Harazono, et al. (2010)."Satellite-Based Modeling of the Carbon Fluxes in Mature Black Spruce Forests in Alaska: A Synthesis of the Eddy Covariance Data and Satellite Remote Sensing Data." <u>Earth Interactions</u> 14: 27.
- Ueyama, M., Y. Harazono, et al. (2006). "Controlling factors on the interannual CO₂ budget at a subarctic black spruce forest in interior Alaska." <u>Tellus Series</u> <u>B-Chemical and Physical Meteorology</u> 58(5): 491-501.
- Ueyama, M., Y. Harazono, et al. (2010). "Response of the carbon cycle in sub-arctic black spruce forests to climate change: Reduction of a carbon sink related to the sensitivity of heterotrophic respiration." <u>Agricultural and Forest</u> <u>Meteorology</u> 149(3-4): 582-602.
- van der Molen, M. K., J. van Huissteden, et al. (2007). "The growing Summer greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia." <u>Biogeosciences</u> **4**(6): 985-1003.
- van Huissteden, J., T. C. Maximov, et al. (2008). "Summer soil CH4 emission and uptake in taiga forest near Yakutsk, Eastern Siberia." <u>Agricultural and Forest</u> <u>Meteorology</u> 148(12): 2006-2012.
- Vedrova, E. F., F. I. Pleshikov, et al. (2006). <u>Net ecosystem production of boreal larch ecosystems on the Yenisei Transect</u>. Boreal forests and environment. International Boreal Forest Research Association (IBFRA) conference, Krasnoyarsk, Russia, August 2002., Springer Science + Business Media.
- Verville, J. H., S. E. Hobbie, et al. (1998). "Response of tundra CH₄ and CO₂ flux to manipulation of temperature and vegetation." <u>Biogeochemistry</u> 41(3): 215-235.
- Vogel, J., E. A. G. Schuur, et al. (2009). "Response of CO₂ exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development." <u>Journal of</u> <u>Geophysical Research-Biogeosciences</u> 114: 14.
- von Fischer, J. C., R. C. Rhew, et al. (2010). "Vegetation height and other controls of spatial variability in methane emissions from the Arctic coastal tundra at

Barrow, Alaska." Journal of Geophysical Research-Biogeosciences 115: 11.

- Vourlitis, G. L., Oechel, W. C., Hastings, S. J. & Jenkins, M. A. (1993). A system for measuring in situ CO₂ and CH₄ flux in unmanaged ecosystems: An arctic example. Funct. Ecol. 7, 369-379.
- Vourlitis, G. L. and W. C. Oechel (1997). "Landscape-scale CO₂, H₂O vapour and energy flux of moist-wet coastal tundra ecosystems over two growing Summers." <u>Journal of Ecology</u> 85(5): 575-590.
- Vourlitis GL and Oechel WC. (1999). Eddy covariance measurements of CO₂ and energy fluxes of an Alaskan tussock tundra ecosystem. <u>Ecology</u> **80**: 686-701.
- Vourlitis GL, Harazono Y, Oechel WC, Yoshimoto M and Mano, M. (2000a). Spatial and temporal variations in hectare-scale net CO₂ flux, respiration and gross primary production of Arctic tundra ecosystems. <u>Functional Ecology</u> 14: 203-214.
- Vourlitis, G. L., W. C. Oechel, A. Hope, D. Stow, B. Boynton, J. Vergaillie Jr., R. Zulueta, and S. J. Hastings. (2000b). Physiological models for scaling plot measurements of CO₂ flux across an arctic tundra landscape. <u>Ecological Applications</u>, **10**: 60-72.
- Wagner, D., A. Lipski, et al. (2005). "Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality." <u>Environmental Microbiology</u> 7(10): 1582-1592.
- Wagner, D., S. Kobabe, et al. (2003). "Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia." <u>Permafrost and Periglacial</u> <u>Processes</u> 14(2): 173-185.
- Whalen, S. C. and W. S. Reeburgh (1988). "A methane flux time series for tundra environments." Global Biogeochem. Cycles **2**(4): 399-409.
- Whalen, S. C. and W. S. Reeburgh (1992). "Interannual variations in tundra methane emission a 4-year time series at fixed sites." <u>Global Biogeochemical Cycles</u> 6(2): 139-159.

- Wickland, K. P., R. G. Striegl, et al. (2006). "Effects of permafrost melting on CO₂ and CH4 exchange of a poorly drained black spruce lowland." <u>Journal of</u> <u>Geophysical Research-Biogeosciences</u> **111**(G2): 13.
- Wille, C., L. Kutzbach, et al. (2008). "Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling." <u>Global Change</u> <u>Biology</u> 14(6): 1395-1408.
- Zamolodchikov, D., Karelin, D., and Ivaschenko, A. (2000). Sensitivity of tundra carbon balance to ambient temperature. Water Air and Soil Pollution **119**: 157-169.
- Zamolodchikov,D.G. and Karelin,D.V. (2001). An empirical model of carbon fluxes in Russian tundra. Global Change Biology **7**: 147-161.
- Zamolodchikov, D.G., Kareling, D.V., Ivaschenko, A.I., Oechel, W.C. and Hastings, S.J. (2003). CO₂ flux measurements in Russian Far East tundra using eddy covariance and closed chamber techniques. Tellus 55B: 879-892.
- Zimov, S. A., G. M. Zimova, et al. (1993). "Winter biotic activity and production of CO₂ in siberian soils - a factor in the greenhouse-effect." <u>Journal of Geophysical</u> <u>Research-Atmospheres</u> 98(D3): 5017-5023.
- Zona, D., W. C. Oechel, et al. (2010). "Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain." <u>Global Change Biology</u> 16(6): 1870-1882.

Appendix B. Description of Regional Process-Based Model Applications in this Study

1. LPJ-Guess WHyMe

LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator - Smith et al. 2001) is a process-based model of biogeochemistry and vegetation dynamics. It is designed for both regional and global applications. Biophysical and physiological processes are represented mechanistically, based on the same formulations as the Lund-Potsdam-Jena

dynamic global vegetation model (LPJ-DGVM; Sitch et al. 2003; Gerten et al. 2004), but plant resource competition is more detailed that LPJ-DGVM, being based on the interactions of plant individuals (each belonging to one of a set of prescribed plant functional types (PFTs)) at the neighbourhood scale. LPJ-GUESS has been evaluated in numerous studies (see Hickler et al. 2012 and references therein).

LPJ-GUESS has now been developed to model upland and peatland ecosystems at high latitudes by incorporating recent developments to LPJ-DGVM by Wania et al. (LPJ WHyMe v1.3.1 - Wania et al. 2009a, 2009b, 2010) that include soil freezing processes, peatland hydrology, peatland PFTs, and methane dynamics. This updated version of the LPJ-GUESS model has been used in this study and is referred to throughout as LPJ-Guess WHyMe. We have adopted the approach of Wania et al. (2009a, 2009b) by introducing a numerical solution of the heat diffusion equation to LPJ-GUESS. The model's soil column consists of four compartments: a snow layer of variable thickness, a litter layer of fixed thickness (5 cm), a soil column of depth 2 m (with sublayers of thickness 0.1 m), and finally a "padding" column of depth 48 m (with thicker sublayers) which is present to aid in the accurate simulation of temperatures in the overlying compartments. Soil temperatures in each sublayer are updated daily, in response to changing surface air temperature forcing and precipitation input, and taking into account both the insulating effects of snow and phase changes in the soil water.

For peatland fractions of each gridcell, we use the hydrology scheme of Wania et al. (2009a) and Granberg et al. (1999), in which the water table depth is updated daily in response to precipitation, snowmelt, evapotranspiration and surface runoff. Furthermore, the 2 m peatland soil column is subdivided into an upper 0.3 m acrotelm (within which the

water table is allowed to fluctuate) above a 1.7 m permanently saturated catotelm layer. The water table is also allowed to extend above the soil surface to a maximum depth of 0.1 m.

Thirteen PFTs are simulated by LPJ-Guess WHyMe in this study. These include five trees, namely shade tolerant and intolerant boreal needleaved, evergreen trees; a needleaved, summergreen tree; and both a boreal and temperate broadleaved summergreen tree. The remaining eight PFTs consist of four shrub (up to 2 m in height) and four open ground PFTs, as introduced to LPJ-GUESS by Wolf et al. (2008). The model allows the establishment of six plant functional types (PFT) on peatlands. Flood-tolerant graminoids (such as *Carex* spp.) and *Sphagnum* types dominate, and follow the treatment of Wania et al. (2009b) and Yurova et al. (2007), with minor modifications. We also include two low (<0.5 m) evergreen and summergreen shrub PFTs from Wolf et al. (2008), e.g. *Vaccinium* spp. Finally, PFTs of both the prostrate dwarf shrub tundra and cushion forbs, lichens mosses tundra types from Wolf et al. (2008) can exist on peatlands in the high Arctic. These PFTs differ in their tolerance of high water table positions in the acrotelm. For example, graminoids dominate at high water table levels, and shrubs only survive when the water table is low.

Modelled net ecosystem exchange (NEE) used in this study is the difference between net carbon dioxide taken up by the modelled PFTs (i.e. NPP) and soil carbon decomposition (heterotrophic respiration). For upland soils, soil carbon decomposition is treated as in the standard LPJ-GUESS model set-up (Smith et al. 2001): decomposition rates for the carbon pools increase exponentially with soil temperature at 25 cm depth in a modified Arrhenius relationship (Lloyd and Taylor, 2004), and are reduced linearly with

soil moisture content from field capacity to wilting point using the empirical relationship of Foley (1995). For peatland soils, however, we again follow Wania et al. (2009b), such that decomposition rates for the carbon pools increase exponentially with soil temperature at 25 cm depth, but are reduced uniformly by 60 % to account for reduced decomposition rates under inundated conditions typical of these ecosystems. Neither peatland fires nor DOC export are treated in LPJ-Guess WHyMe. The treatment of methane emission from peatlands follows Wania *et al.* (2010). Methane production, transport (via diffusion, plant-mediated and ebullition pathways) and oxidation are modelled on a daily timestep, and respond to changing soil temperatures and water table depths. Soil carbon emitted as methane does not contribute to NEE.

The model was run twice for the transient climate simulation; once for the standard upland hydrology, and once with the peatland hydrology. Gridcell-averaged carbon (CO₂ and CH₄) fluxes were then calculated by taking into account the peatland fraction of each gridcell. Using a similar procedure to TEM6 below, we derived carbon pools and vegetation in equilibrium with the conditions in the year 1901 by using a 500-year spin-up procedure for each 0.5° cell in the Arctic tundra region shown in Figure 1. Forcing for this spin-up period was taken from the CRU TS 3.0 dataset (Mitchell and Jones, 2005), and consisted of (detrended) monthly temperature, precipitation and cloudiness for the period 1901-30, repeated throughout the 500 year period. CO₂ concentration data for the spin-up period were held constant at the year 1901 level (296 ppm, approx.). Thereafter transient CRU forcing for the period 1901-2006 was applied to force the model, along with observed CO₂ concentrations. A similar procedure was adopted for the constant climate simulations,

though in that case the spin-up forcing was continued beyond the 500 initialisation period until 2006.

2. Orchidee

The version of Orchidee used in this study is based on that Krinner et al. (2005) and includes a detailed one-dimensional permafrost soil carbon model POPCARN [Khvorostyanov et al., 2008a, 2008b] into the global land surface/carbon cycle model Orchidee. Orchidee calculates the fluxes of carbon, water, and energy for terrestrial ecosystems. POPCARN is a soil carbon model, which calculates vertically-resolved input of soil organic matter (SOM) from litter, first-order decomposition processes at each model level, moisture-dependent diffusion of oxygen and methane in soils and anoxic decomposition processes. SOM is separated into three pools with different residence times, each a function of soil temperature and texture (active = 0.85 yr, slow = 31 yr, and passive = 1400 yr at 5 C). The model represents the effect of SOM on soil temperatures, using the prognostic soil carbon stocks in Orchidee to define the soil thermal conductivity and heat capacity. This creates the opportunity for a feedback in soil carbon accumulation, in which additions of soil carbon modify the soil thermal regime and thus the residence time of soil carbon, which leads to a new steady-state soil carbon stock. The model also includes a simplified vertical mixing scheme to account for the effects of cryoturbation on the redistribution of SOM. Cryoturbation is a physical mixing process driven by ice growth and soil density changes that accompany freeze-thaw cycles. This mixing allows the soil carbon, which is generated near the soil surface, to move downwards into colder regions of

the soil. The implementation of the model in this study was similar to region simulations described in Koven et al. (2009, 2011).

3. Terrestrial Carbon Flux (TCF) model

The TCF model is based on a simple 3-pool soil decomposition model with cascading decomposition rates scaled from a prescribed optimum rate for different biome types and reduced for unfavorable surface (<10 cm depth) soil moisture and soil temperature conditions. NEE is computed on a daily basis as a residual difference between vegetation GPP and ecosystem respiration (R_{eco}), defined as the summation of autotrophic and heterotrophic components. The TCF algorithm doesn't account for other carbon emission sources, including fire disturbance, so NEE is assumed approximately equivalent to NEP. The soil organic carbon (SOC) stock within the surface soil layer is estimated as the sum of three coupled SOC pools (\hat{C}) of declining litter quality and associated decomposition rates. Vegetation NPP is derived from GPP assuming a biome-specific constant autotrophic respiration fraction, while heterotrophic respiration ($R_{\rm h}$) is computed from \hat{C} and a soil decomposition rate determined from soil moisture (M_s) and soil temperature (T_s) conditions; SM and T_s are dimensionless scalars ranging from 0 (fully constrained) to 1 (no constraint) and derived from ancillary soil moisture and soil temperature inputs, and biome-specific response curves. A major assumption of the TCF model is dynamic (steady-state) equilibrium between NPP and surface SOC; soil decomposition and Rh processes are defined solely within the surface soil layer using ancillary soil moisture and temperature inputs, while Rh contributions from deeper soil layers are not represented. A detailed description of the TCF model framework is provided

elsewhere (Kimball et al., 2009). For this investigation the TCF model runs were driven by ancillary GPP inputs from the MODIS (MOD17) GPP product (Zhao and Running, 2010) and daily surface soil moisture and soil temperature inputs from the MERRA global reanalysis (Rienecker et al., 2008). The MERRA reanalysis provides reasonably accurate depictions of surface soil moisture and temperature conditions, including boreal forest and tundra areas, relative to similar observations from satellite remote sensing, model reanalysis and in situ measurement networks (Yi et al., 2011); however, the MERRA global database has relatively coarse (0.5°) spatial resolution and does not resolve sub-grid scale processes. For this investigation, the 1-km resolution MODIS 8-day cumulative GPP product series was linearly interpolated to a daily time step. The daily GPP and MERRA soil moisture and temperature fields were then re-projected to a 25 x 25 km modeling grid using a bi-linear interpolation scheme. The model simulations were conducted over the entire MODIS period of record (2000-2009).

4. Terrestrial Ecosystem Model version 6 (TEM6)

TEM6 was modified from Felzer et al. (2004), which simulated ozone pollution effects, to also include the influence of permafrost dynamics (Zhuang et al., 2003; Euskirchen et al., 2006), atmospheric nitrogen deposition, biological nitrogen fixation, DOC leaching, wildfire (Balshi et al., 2007), agricultural conversion and abandonment, and timber harvest on terrestrial C dynamics. C pools and associated fluxes are simulated at a monthly time-step for individual 'cohorts' of unique vegetation types and disturbance history organized within spatially explicit 0.5° latitude x 0.5° longitude grid cells. We used the methane dynamics module of Zhuang et al. (2004, 2007) to estimate biogenic

emissions of methane from Arctic tundra. To initialize the C, N and water pools for the beginning of the analysis period (1997 - 2006), in each model run we simulated dynamics since the year 1000 for each cohort among the half-degree grid cells covering the Arctic tundra region. The TEM simulations in this study were driven by temporally- and spatially-explicit data sets on atmospheric carbon dioxide concentration ([CO₂]), tropospheric ozone (O₃), N deposition, climate variability and change, and fire, forest harvest, and agricultural establishment and abandonment. Global annual atmospheric [CO₂] data are from the Mauna Loa station (Keeling and Whorf, 2005). [CO₂] data for the time period of years 1000 to 1900 are held constant at the year 1901 level (296.3 ppm). Monthly air temperature (°C), precipitation (mm), and incident short-wave solar radiation (Wm^{-2}) data derived from observations for the period 1901–2002, gridded at 0.5° resolution, were obtained from the Climate Research Unit (CRU; University of East Anglia, UK; Mitchell and Jones, 2005). The CRU climate variables were extended to 2006 with NCEP/NCAR Reanalysis 1 data sets (NOAA-ESRL Physical Sciences Division, Boulder CO) using a regression procedure based on data anomalies from a ten-year (1993 – 2002) mean for each variable (see Drobot et al., 2006). These data sets were hind-casted to year 1000 by a repeating 30-year cycle of the 1901 – 1930 monthly data to initialize the carbon pools with climate variability (except for the simulation without climate variability, where 1901 - 1930 monthly means were used to drive the model for each year). The ozone (O_3) pollution data set used in this study, represented by the AOT40 index (a measure of the accumulated hourly ozone levels above a threshold of 40 ppbv), is based on Felzer et al. (2005) and covers the time period from 1860 to 2006. Before 1860, the ozone level in each 0.5° grid cell was assumed to equal the AOT40 of 1860 (which is equal to zero). The

atmospheric N deposition data were based on van Drecht et al. (2003), extended from 2000 to 2006 by adding the difference in annual N deposition rate from 1999 to 2000 to succeeding years, for each 0.5° grid cell (e.g. 2001 N deposition rate = 2000 + (2000-1999), etc.). For years 1000 to 1859, annual N deposition was assumed to equal the per grid cell rates in 1860. More information on TEM6 can be found in McGuire et al. (2010) and Hayes et al. (2011).

References

- Balshi, M. S., McGuire, A. D., Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Kasischke,
 E. S., Wirth, C., Flannigan, M., Harden, J., Clein, J. S., Burnside, T., McAllister, J.,
 Kurz, W., Apps, M., and Shvidenko, A. 2007. The role of historical fire disturbance
 in the carbon dynamics of the pan-boreal region: A process-based analysis. *Journal of Geophysical Research Biogeosciences* 112, G02029,
 doi:10.1029/2006JG000380.
- Drobot, S., Maslanik, J., Herzfeld, U. C., Fowler, C., and Wu, W. 2006. Uncertainty in Temperature and Precipitation Datasets over Terrestrial Regions of the Western Arctic, *Earth Interactions* 10, Paper 23, 1-17.
- Euskirchen, E. S., McGuire, A. D., Kicklighter, D. W., Zhuang, Q., Clein, J. S., Dargaville,
 R. J., Dye, D. G., Kimball, J. S., McDonald, K. C., Melillo, J. M., Romanovsky, V.
 E., and Smith, N. V. 2006. Importance of recent shifts in soil thermal dynamics on growing season length, productivity and carbon sequestration in terrestrial high-latitude ecosystems. *Global Change Biology* 12, 731-750.

- Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., and Prinn, R. 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. *Tellus* 56B, 230-248.
- Felzer, B., Reilly, J., Melillo, J., Kicklighter, D., Sarofim, M., Wang, C., Prinn, R., and Zhuang, Q. 2005. Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. *Climatic Change* **73**, 345-373, doi: 10.1007/s10584-005-6776-4.
- Foley, J. A. 1995 An equilibrium model of the terrestrial carbon budget. *Tellus*, **47B**, 310-319.
- Gerten, D., S. Schabhoff, U. Haberlandt, W. Lucht, and S. Sitch. 2004. Terrestrial vegetation and water balance – hydrological evaluation of a dynamic global vegetation model. *Journal of Hydrology*, **286**, 249-270.
- Granberg, G., H. Grip, M.O. Loefvenius, I. Sundh, B.H. Svensson, and M. Nilsson. 1999.
 A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires. *Water Resour. Res.*, 35(12), 3771-3782.
- Hayes, D.J., A.D. McGuire, D.W. Kicklighter, K.R. Gurney, T.J. Burnside, and J.M.
 Melillo. 2011. Is the northern high latitude land-based CO₂ sink weakening? *Global Biogeochemical Cycles*, 25, GB3018, 14 pages,
 doi:10.1029/2010GB003813.
- Hickler, T., K. Vohland, J. Feehan, P.A. Miller, S. Fronzek, T. Giesecke, I. Kuehn, T.
 Carter, B. Smith, and M. Sykes. 2012. Projecting tree species-based climate-driven changes in European potential natural vegetation with a generalized dynamic vegetation model. *Global Ecology & Biogeography*, in press.

- Keeling, C. D., and Whorf, T. P. 2005. Atmospheric CO₂ records from sites in the SIO air sampling network. Carbon Dioxide Information Analysis Center, Oak Ridge, TN.
- Kimball, J.S., L.A. Jones, K. Zhang, F.A. Heinsch, K.C. McDonald, and W.C. Oechel, 2009. A satellite approach to estimate land-atmosphere CO2 exchange for Boreal and Arctic biomes using MODIS and AMSR-E. *IEEE Transactions on Geoscience and Remote Sensing*, 47(2), 569-587, 10.1109/TGRS.2008.2003248.
- Khvorostyanov, D., P. Ciais, G. Krinner, S. Zimov, C. Corradi, and G. Guggenberger (2008a), Vulnerability of permafrost carbon to global warming. Part II: Sensitivity of permafrost carbon stock to global warming, Tellus, Ser. B, 60, 265–275.
- Khvorostyanov, D., G. Krinner, P. Ciais, M. Heimann, and S. Zimov (2008b),
 Vulnerability of permafrost carbon to global warming. Part I: Model description and role of heat generated by organic matter decomposition, Tellus, Ser. B, 60, 250–264.
- Koven, C., P. Friedlingstein, P. Ciais, D. Khvorostyanov, G. Krinner, and C. Tarnocai.
 2009. On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insultation by organic matter in a land surface model. Geophysical Research Letters 36, L21501, 5 pages, doi:10.1029/2009GL040150.
- Koven, C.D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai. 2011. Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Science 108:14769-14774, doi:10.1073/pnas.1103910108.
- Krinner, G., N. Viovy, N. de Noblet-Ducoudre', J. Oge'e, J. Polcher, P. Friedlingstein, P.Ciais, S. Sitch, and I. C. Prentice (2005), A dynamic global vegetation model for

studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.

Lloyd, J., and J.A. Taylor. 1994. On the temperature dependence of soil respiration. *Functional Ecology* **8**: 315-323.

McGuire, A.D., D.J. Hayes, D.W. Kicklighter, M. Manizza, Q. Zhuang, M. Chen, M.J.
Follows, K.R. Gurney, J.W. McClelland, J.M. Melillo, B.J. Peterson, and R. Prinn.
2010. An analysis of the carbon balance of the Arctic Basin from 1997 to 2006. *Tellus* 62B:455-474, doi:10.1111/j.1600-0889.2010.00497.x.

- Mitchell, T. D., and Jones, P. D. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. *Int. J. Climatol.* 25, 693-712.
- Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System -Documentation of Versions 5.0.1 and 5.1.0. NASA GSFC Technical Report Series on Global Modeling and Data Assimilation. NASA/TM-2007-104606, 27, 95pp.
- Sitch, S., B. Smith, I.C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. Kaplan, S. Levis,
 W. Lucht, M. Sykes, K. Thonicke, and S. Venevsky. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. *Global Change Biology*, 9, 161–185.
- Smith, B., I.C. Prentice, and M.T. Sykes. 2001. Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. *Global Ecology and Biogeography*, 10, 621–637.
- van Drecht, G., Bouwman, A. F., Knoop, J. M., Beusen, A. H. W., and Meinardi, C. R. 2003. Global modeling of the fate of nitrogen from point and nonpoint sources in

soils, groundwater, and surface water. *Global Biogeochem. Cycles* **17**, 1115, doi:10.1029/2003GB002060.

- Wania, R., I. Ross, and I.C. Prentice. 2009a. Integrating peatlands and permafrost into a dynamic global vegetation model: I. Evaluation and sensitivity of physical land surface processes. *Global Biogeochemical Cycles*, 23, GB3014, doi:10.1029/2008GB003412
- Wania, R., I. Ross, and I.C. Prentice. 2009b. Integrating peatlands and permafrost into a dynamic global vegetation model: II. Evaluation and sensitivity of vegetation and carbon cycle processes. *Global Biogeochemical Cycles*, 23, GB015, doi:10.1029/2008GB003413
- Wania, R., I. Ross, and I.C. Prentice. 2010. Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WhyMe v1.3.1, *Geoscientific Model Development* 3, 565–584.
- Wolf, A., T.V. Callaghan, and K. Larson. 2008 Future changes in vegetation and ecosystem function of the Barents Region. *Climatic Change*, 87:51–73. DOI 10.1007/s10584-007-9342-4Yi, Y., J.S. Kimball, L.A. Jones, R.H. Reichle, and K.C. Mcdonald, 2011. Evaluation of MERRA land surface estimates in preparation for the Soil Moisture Active Passive mission. *Journal of Climate* 24 (15), 3797-3816.
- Yi, Y., J.S. Kimball, L.A. Jones, R.H. Reichle, and K.C. Mcdonald, 2011. Evaluation of MERRA land surface estimates in preparation for the Soil Moisture Active Passive mission. *Journal of Climate* (in press).

Yurova, A., A. Wolf, J. Sagerfors, and M. Nilsson. 2007. Variations in net ecosystem exchange of carbon dioxide in a boreal mire: Modeling mechanisms linked to water table position, *Journal of Geophysical Research*, **112**, art. no. G02025, doi:10.1029/2006JG000342.

- Zhao, M. and S.W. Running, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. *Science* **20**, 329 (5994), 940-943.
- Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J., Kicklighter, D. W., Myneni, R. B., Dong, J., Romanovsky, V. E., Harden J., and Hobbie, J. E. 2003. Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: A modeling analysis of the influences of soil thermal dynamics. *Tellus* 55B, 751-776.
- Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., Felzer, B. S., and Hu, S. 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. *Global Biogeochemical Cycles* 18, GB3010, doi:10.1029/2004GB002239.
- Zhuang, Q., Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Prinn, R. G., Steudler, P. A., Felzer, B. S., and Hu, S. 2007. Net emissions of CH₄ and CO₂ in Alaska:
 Implications for the region's greenhouse gas budget. *Ecological Applications* 17, 203–212.

Appendix C. Estimation of Central Estimate and Uncertainty Ranges of CO₂-C and CH₄-C exchange from Arctic Tundra to Atmosphere for Observations, Process-Models, and Inversion Models.

1. CO₂-C Exchange

For the observations, the central estimate for CO₂-C exchange was developed as an area-weighted mean of mean estimates for North America, North Atlantic, Northern Europe, and Eurasia sub-regions. The mean per area estimate for North America and Northern Europe are based on the annual estimates for 1990-2009, 2000-2009, and 1990-2009 reported in Table 3. The mean per area estimate for the North Atlantic sub-region was developed by adding a winter flux of 33 g C m^{-2} yr⁻¹ (the mean winter flux among North America, Northern Europe, and Eurasia) to the North Atlantic sub-region mean summer estimates for each time period. The mean per area estimate for Eurasia for 1990-1999 was developed by adding summer 1990-1999 and the Eurasia winter. The mean per area estimate for Eurasia 2000-2009 and 1999-2009 was developed by adding the summer estimate to a winter flux of 33 g C m⁻² yr⁻¹ (the mean winter flux among North America, Northern Europe, and Eurasia) since the winter estimate for Eurasia was based on studies for the 1990-1999 period. The lower and higher per area estimates of the uncertainty range were developed in a similar way as the mean, but were based on the lower and upper values of the confidence intervals reported in Table 3. The areas used to develop a central estimate were 4,265,569, 108,065, 166,436, and 4,627,247 km² for the North America, North Atlantic, Northern Europe, and Eurasia sub-regions, respectively.

The central estimate for the regional and global process-based models was developed by taking the mean NEE of regional and global estimates in the lower half of Tables 5 and 6, for the time periods 1990-1999 and 2000-2006, respectively. The uncertainty range was developed as the maximum and minimum NEE estimates of the regional and global estimates in the lower half of Tables 5 and 6, for the time periods 1990-1999 and 2000-2006, respectively. The central estimate for the inversion models was developed by taking the mean of 1990-1999 and 2000-2006 estimates in the left half of Table 8. The uncertainty range was developed as the maximum and minimum estimates of the 1990-1999 and 2000-2006 estimates in the left half of Table 8.

2. CH₄-C Exchange

For the observations, the central estimate for CH_4 -C exchange was developed as an area-weighted mean of mean estimates for the area of wetlands in the tundra regions of North America, North Atlantic, Northern Europe, and Eurasia sub-regions. The mean per area estimate for North America and Northern Europe are based on the annual estimates for 1990-1999 and 2000-2009 reported in Table 3. The mean per area estimate for the North Atlantic is assumed to be intermediate between the North America and Northern Europe estimates. The mean per area estimate for Eurasia uses the annual estimate for the 2000-2009 period in Table 3 for all three time periods. The lower and higher per area estimates of the uncertainty range were developed in a similar way as the mean, but were based on the lower and upper values of the confidence intervals reported in Table 3. The wetland areas used to develop a central estimate were 772,076, 7,540, 18,139, and 812,969

km² for the North America, North Atlantic, Northern Europe, and Eurasia sub-regions, respectively.

The central estimate for the regional process-based models was developed by taking the mean BIOCH4 of the regional estimates in the lower half of Tables 5 and 6, for the time periods 1990-1999 and 2000-2006, respectively. The uncertainty range was developed as the maximum and minimum BIOCH4 estimates of the regional estimates in the lower half of Tables 5 and 6, for the time periods 1990-1999 and 2000-2006, respectively.