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Abstract

We evaluate spatial structure in North American CO, flux observations using a sim-
ple diagnostic land surface model. The Vegetation Photosynthesis Respiration Model
(VPRM) calculates net ecosystem exchange (NEE) using locally observed temperature
and photosynthetically active radiation (PAR) along with satellite-derived phenology
and moisture. We use observed NEE from a group of 65 North American eddy co-
variance tower sites spanning North America to estimate VPRM parameters for these
sites. We investigate spatial coherence in regional CO, fluxes at several different time
scales by using geostatistical methods to examine the spatial structure of model data—
model residuals. We find that persistent spatial structure does exist in the data-model
residuals at a length scale of approximately 1000 km. This spatial structure defines
a flux-tower-based VPRM residual covariance matrix. The residual covariance matrix
is useful in constructing prior fluxes for atmospheric CO, concentration inversion cal-
culations, as well as for constructing a VPRM North American CO, flux map optimized
to eddy covariance observations. Finally, the estimated VPRM parameter values do not
separate clearly by plant functional type (PFT). This calls into question whether PFTs
partition ecosystems by carbon cycle participation when the viewing lens is a simple
model.

1 Introduction

The rapid carbon dioxide (CO,) accumulation in Earth’s atmosphere in the second half
of the 20th century (Conway et al., 2009) has been partially offset by natural biogeo-
chemical processes. Without these buffers, atmospheric CO, could accumulate twice
as fast: of the roughly 7 Pg of carbon humans release each year by burning fossil fuels,
only roughly half remains in the atmosphere as carbon dioxide (Denman et al., 2007).
The rest is absorbed by oceans through air-sea gas exchange or by terrestrial and
marine flora through net primary production (NPP; Denman et al., 2007). Terrestrial
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biological fluxes of CO, through photosynthesis and respiration constituted a net sink
from the atmosphere of two to three Pg C per year during the 1990s (Le Quéré et al.,
2009), and they exhibit higher interannual variability than oceanic fluxes (Bousquet
et al., 2000; Le Quéré et al., 2009). Understanding terrestrial fluxes is crucial to un-
derstanding and predicting the increase in atmospheric CO, caused by anthropogenic
emissions.

Though the net global flux of CO, to the atmosphere is well-constrained (Tans and
Conway, 2005), continental biological CO, fluxes are not well characterized, and their
drivers are, so far, poorly understood. Diagnostic skill at interannual timescales is poor:
land surface models consistently fail to capture observed CO, flux interannual variabil-
ity (e.g., Friend et al., 2007; Ricciuto et al., 2008; Prentice et al., 2000). Predictive skill
is also poor: a sampling of terrestrial flux models project terrestrial sink strengths for
the year 2100 that vary widely in magnitude and sign (Friedlingstein et al., 2006).

There are a number of sources of information available to constrain terrestrial fluxes.
These include direct eddy covariance flux observations, observed atmospheric CO,
concentrations coupled with atmospheric transport models, and land surface models.

Land surface models integrate ecological and meterological drivers into a quanti-
tative biological carbon flux estimate for some land region. They are useful because
they can be used to extrapolate over large scales. Direct observation footprints of even
the most spatially dense CO, flux observation networks cover only a tiny fraction of
the land areas they span. For example, even with seven eddy covariance (EC) towers
in a roughly 50 km by 75 km area, Goulden et al. (2006) estimate that they directly ob-
serve less than 0.01 % of that space. Land surface models estimate fluxes where direct
observations do not exist. Improving model diagnoses of the magnitudes and drivers
of terrestrial fluxes is a necessary step toward improving overall predictive skill.

Atmospheric inversion calculations (e.g., Rayner et al., 1999; Gurney et al., 2002;
Rodenbeck et al., 2003; Peters et al., 2005, 2007) offer one approach to use observed
atmospheric CO, concentrations coupled to an atmospheric transport model to further
constrain terrestrial CO, flux diagnoses. This approach usually divides the planet into
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regions, and within each region typically solves for a correction to a prior flux estimate
from a land surface model (e.g. Gurney et al., 2002). In regions of the world where CO,
concentration observations are scarce there is little information with which to correct
the prior flux, and the resulting flux estimations are therefore heavily dependent on the
prior. Rodenbeck et al. (2003) introduced a prescribed isotropic spatial covariance to
the prior, choosing a spatial correlation scale of 1275 km based on the average scale of
autocorrelation among four different land surface models examined by McGuire et al.
(2001). Peters et al. (2005, 2007) propagate inferred surface fluxes forward through
time instead of using a prior flux estimate calculated offline for each time step before
beginning the inversion calculations. They also use an ensemble Kalman filter to esti-
mate a surface flux spatial covariance matrix. This relies on the assumption that flux
errors are independent at weekly time scales and at spatial regions of 25 % to 50 % of
each continent (Peters et al., 2005), an assumption that is conventional, though most
likely not strictly accurate (Peters et al., 2005).

Jacobson et al. (2007a,b) describe an inversion approach that does not rely on prior
fluxes on the grounds that modeled regional prior fluxes must either be assumed to be
independent or treated as spatially correlated with an explicit spatial structure. In reality
they are often correlated, though the quantitative correlations are unknown (Jacobson
et al., 2007b, auxiliary materials). Jacobson et al. (2007b) show that this assumption
of independence results in overconfident flux estimates. By eschewing prior flux esti-
mates the Jacobson et al. (2007a,b) study avoids this pitfall, but at the cost of ignoring
the knowledge of ecosystem behavior encapsulated in the flux model: the resulting
posterior flux uncertainties are much larger than when modeled prior fluxes are in-
cluded. That is, removing the information provided by a land surface model removes
a significant constraint from the estimation.

Ideally, a flux diagnosis method would integrate all available sources of informa-
tion. Here we focus on extracting information from a land surface model, while min-
imizing the overconfidence-producing assumptions demonstrated by Jacobson et al.
(2007a,b). Model-data residuals are the combined effects of flux observation errors,
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model structural error, and natural variability uncaptured by the flux model. The spatial
behavior of model residuals sheds light on the processes that drive fluxes. In the fol-
lowing analyses we will use that information to produce a data-derived quantification of
the model-data residuals and their spatial structure that may be used to constrain the
fluxes.

Terrestrial flux drivers (meteorological and ecological) do not appreciably vary at
scales of, say, one centimeter; therefore model residuals should be correlated within
some distance, however small. That distance is an upper bound on the area that
a model result for a single spatial point can illuminate. Without a quantitative method
for determining a correlation structure for model residuals, it is convenient to assume
model residuals are independent and identically distributed (i.i.d.) in space and time.
For example, Pacala et al. (2001), Peylin et al. (2002), Gurney et al. (2002) and Pe-
ters et al. (2005) adopt this assumption in their inversions. In fact, inversions that solve
for corrections to regional prior fluxes intrinsically assume that prior flux residuals are
correlated within the time scale and spatial scale of the inversion (Rddenbeck et al.,
2003; Michalak et al., 2004). If they are not, the inversion applies a uniform correction
to a group of uncorrelated residuals, creating a source of error (Chevallier et al., 2006).
As noted, Rodenbeck et al. (2003) impose a prior flux uncertainty spatial correlation
length scale of 1275 km. They base that distance on the autocorrelation length scales
of the four models used by McGuire et al. (2001). This depends on the assumption that
the NEE range among those four models is representative of flux model uncertainty
(Rodenbeck et al., 2003). Furthermore, Michalak et al. (2004) point out that spatial
structure, if existent, contains information that constrains fluxes and suggests weights
for fluxes to identify and remove redundant information.

We can improve on existing flux diagnoses by deriving a residual covariance matrix
to characterize the spatial behavior of flux model residual correlation. A necessary (and
independently useful) prerequisite for estimating a model’s residual covariance matrix
is an estimation of the spatial scale at which the model’s residuals are correlated. Here
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we present an analysis of the residual covariance matrix of VPRM (Mahadevan et al.,
2008), a simple land surface model.

We test the hypothesis that VPRM model residuals are spatially correlated at length
scales smaller than the North American continent but larger than an individual EC
tower footprint. Analyzing the spatial scale of VPRM residual correlation will provide
that length scale. The Ameriflux and Fluxnet Canada networks of EC towers provide
observations that allow us to directly analyze the spatial behavior of VPRM residuals.
If that correlation length scale proves larger than the tower footprints, it will prove that
the network of EC flux towers in North America has sufficient spatial span and density
and has collected enough data across time to empirically define a flux model residual
covariance matrix.

2 Methods
2.1 Land surface model

The Vegetation Photosynthesis and Respiration Model (VPRM) of Mahadevan et al.
(2008) is a simple diagnostic terrestrial flux model. In spite of its simplicity, VPRM
captures daily and annual cycles in CO, fluxes reasonably well (Mahadevan et al.,
2008). VPRM structure and skill are described in great detail by Mahadevan et al.
(2008). Here we provide a brief overview of the model structure.

VPRM models net ecosystem exchange (NEE) as the sum of a photosynthetic com-
ponent (gross ecosystem exchange, GEE) and an ecosystem respiration component.
GEE is modeled via the equation:

1

GEE=2A-T. -P W, -EVI: ——-PAR
scale "7 scale scale 14 PAR/PARO

(1)

PAR is observed photosynthetically active radiation and EVI is the satellite-derived
enhanced vegetation index (Huete et al., 2002). Py, and Wy, are satellite-derived
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dimensionless scaling terms describing phenology and canopy moisture. The value of
the third dimensionless scaling term T, is taken from literature and describes the
relationship between photosynthesis and temperature. Py 0, Wecaies @and Tgeqe May
vary in both time and splace. PAR, and 1 are model parameters.

Respiration (R) is modeled as a linear function of observed air temperature (T):

R=a-T+p ()

with parameters a and .
NEE is the difference between the photosynthetic flux and the respiration flux:

NEE = R - GEE. (3)

Within Egs. (1), (2), and (3), 1 governs the slope of the light-response curve (the
relationship between photosynthetic CO, flux and PAR). a defines the slope of the res-
piration response to temperature. PAR, defines a half-saturation value for photosyn-
thesis. That is, it specifies a PAR value at which further increases in PAR no longer
enhance photosynthesis, as other limiting factors become dominant. VPRM places
a PFT-specific floor T\, 1°C < T,,,, < 5°C, on surface temperatures. Temperatures be-
low T,,,, are raised to T,,,, when calculating respiration. @ thus specifies a minimal level
of respiration that occurs regardless of air temperature.

In its simplicity, VPRM offers two important advantages over more complex models.
First, it has only four user-defined parameters and is computationally inexpensive. This
makes parameter estimation via data assimilation methods that do not require paramet-
ric assumptions computationally tractable. Second, as inputs, VPRM requires only air
temperature, photosynthetically active radiation (PAR), and satellite-derived vegetation
and moisture indices. It can thus be run globally, with no need to compile temporally-
filled meteorological driver data. These advantages make VPRM a useful tool both for
producing diagnostic regional flux maps, and also for evaluating spatial scales of model
residuals in the manner of Chevallier et al. (2006).
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2.2 Data

To constrain VPRM parameter values and examine NEE residuals we use data from
65 North American eddy covariance flux towers. Figure 1 shows the sites on a map,
and Table 1 lists the sites and dominant plant functional type (PFT). These data are
part of the 2007 Fluxnet Synthesis Dataset (http://www.fluxdata.org). For each site, this
dataset contains CO, flux, air temperature, and PAR observations at 30-min intervals,
as well as many other quantities not needed for VPRM.

The Fluxnet dataset contains gap-filled NEE, as well as non-filled NEE. Structurally,
VPRM does not consider driver data or flux results from previous time steps (Eq. 3).
VPRM simply does not report an NEE at timesteps where the required driver data are
not available. In light of this, and to reduce potential residuals due to gap filling, we use
the non-filled data.

The 65 observation sites cover nine of the 17 PFTs of the International Geosphere-
Biosphere Programme (IGBP) land cover classification scheme (Loveland and Bel-
ward, 1997): evergreen needleleaf forest (27 sites), deciduous broadleaf forest (8
sites), mixed forest (3 sites), closed shrublands (7 sites), open shrublands (2 sites),
woody savannas (1 site), grasslands (7 sites), permanent wetlands (4 sites), and crop-
lands (6 sites). The eight PFTs not represented are: deciduous needleleaf forest, ev-
ergreen broadleaf forest, savannas, water, cropland/natural vegetation mosaic, urban
and built-up, snow and ice, and barren or sparsely vegetated.

Site phenology, land surface water, enhanced vegetation index (Huete et al., 2002),
and land surface cover type are calculated from reflectances measured by the NOAA
MODIS instrument, orbiting with the NASA Terra satellite since 2000 and the NASA
Aqua satellite since 2002. Oak Ridge National Laboratory extracts MODIS data for
many Fluxnet tower sites and makes them available on the world wide web (ORNL
DAAC, 2007).

For the present study, we use MODIS Collection 5 data (ORNL DAAC, 2010). Collec-
tion 5 data offer improved processing algorithms from Collection 4 (Fried! et al., 2010;
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Didan and Huete, 2006). Site phenology is from dataset M*D12Q2 (Strahler et al.,
1999a), reflectances are from dataset M*D43A4 (Strahler et al., 1999b), vegetation in-
dices are from dataset M*D13A2 (Huete et al., 2002, 1999), and IGBP land surface
cover types are from dataset M*D12Q1 (Loveland and Belward, 1997; Strahler et al.,
1999a). The “*” in M*D is either “O”, representing the data from the Terra satellite, or
“Y” representing the data from the Aqua satellite. We considered only MODIS data of
“best” quality, as indicated by each MODIS product’s associated quality QA flags.

We examine the time period 2000 to 2006, bounded in 2000 by the MODIS instru-
ment launch and in 2006 by eddy covariance flux availability.

2.3 VPRM parameter estimation

VPRM has four user-estimated parameters that may depend on the location being
simulated: 1, PAR,, a, and 8. In this section we describe how we estimated these
parameter values.

We seek the parameter values that cause VPRM NEE to match observed NEE as
closely as possible. We chose to minimize the sum of squared errors (SSE; we de-
fine VPRM residuals as NEE,pgy minus NEE . veq)- If the residuals are normally
distributed with a constant standard deviation (i.e., homoskedastic), minimizing SSE is
equivalent to a maximum likelihood estimate (Hilborn and Mangel, 1997).

In reality, flux model residuals are neither independent nor identically distributed.
A double exponential distribution describes EC observation error better than the nor-
mal distribution (Richardson et al., 2006). EC observation error is also proportional
to NEE magnitude and wind speed (Richardson et al., 2006). Thus the strong daily
and seasonal cycles of NEE cause EC observation errors to be temporally autocorre-
lated as well as heteroskedastic. The combined impact of land surface model struc-
tural error, incorrect parameter values, and natural variability — microscale variations in
climate, ecosystem behavior, etc. — may also exhibit statistically significant autocorre-
lation (Ricciuto et al., 2008). We can approximate distributions for each of those error
sources from published literature; therefore the full likelihood function may be written
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out as the integrated product of likelihood functions for several different statistical dis-
tributions. Reducing that integral to an anlytical solution, however, is beyond the scope
of this study.

NEE varies on a number of different time scales (e.g. daily, annual) and space scales
(e.g. local land-use and PFT heterogeneity, larger regions that experience similar cli-
mate patterns). An ideal land surface model parameter estimation method would allow
parameter values to vary at space and time scales matching the ecological variations
in NEE. Optimizing parameter values in short time intervals and small spatial windows
would run the risk of overfitting as well as incur unnecessary computational cost. We
chose to examine three temporal and three spatial windows for SSE minimization —
in time: monthly, annual, and all available data; and, in space: individual sites, sites
grouped by PFT, and all sites together. This approach yields nine different parameter
sets, ranging from four to more than 21 000 parameter values. Table 2 summarizes the
nine parameter sets.

To search for parameter values that minimize SSE we used differential evolution
(DE) (Price et al., 2006). DE is a genetic optimization algorithm that is both fast and
more reliable in identifying a global optimum compared to gradient-based minimization
algorithms. We used the DEoptim package (Ardia and Mullen, 2009) for the R language
and platform for statistical computing (R Development Core Team, 2007).

2.4 Quantifying spatial structure

The spatial covariance structure quantifies the spatial structure (or lack thereof) for an
arbitrary function of space. The semivariogram offers a concise visual summary of the
covariance structure. The spatial functions of interest here are VPRM NEE residuals,
VPRM NEE, and observed NEE. This section defines the semivariogram and describes
its typical behavior for geophysical quantities.

The semivariogram (y) is generically defined (Cressie, 1993) as:

V() = gvar(Z(s) - 2(s)) @
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where s; and s; are two locations in space, h is the distance between s; and s;, var
denotes variance, and Z is some function of location—air temperature, VPRM NEE
residual, etc. If s; and s; are near one another, one might expect Z(s;) and Z(s;)
to have similar values, causing y to be correspondingly small. As h increases, Z(s;)
and Z(s;) typically diverge, and the value of y increases. At some sufficiently large h,
Z(s;) and Z(s;) can become independent, causing y to level off. The value of h where
the leveling-off occurs is known as the range, and the value of y at this leveling-off
is known as the sill. The range estimates the length scale of spatial correlation in Z.
These easily-visualized semivariogram features are formal parameters (range, @; sill
or variance, 02) of the covariance function.

In the same way that the population mean provides a statistical estimator for a pop-
ulation’s expected value, there is a statistical estimator to calculate an empirical semi-
variogram (y) from a set of observed data (Cressie, 1993):

1

.
V)= SN

D (Z(s)=2Z(s))), ()

N(h)

where N(h) is the number of location pairs separated by distance h and the y notation
distinguishes the estimated semivariogram from the theoretical definition of Eq. (4);
other terms are defined above. The separation distance A may be a precise distance
for a single pair of locations, or may be an aggregated separation distance for a number
of pairs of locations.

In this study we use the “robust” semivariogram estimator of Cressie and Hawkins
(1980). This estimator includes a correction term for non-normally distributed data, and
also reduces the impact of outlying data:

4
v(h) = (et Zwn (50 - 25)f*°) ©)

0.494
2 (0.457 + _|N(h)|>
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Purely mathematically, Eq. (4) requires the semivariogram to equal zero at h =0,
because Z(s;) — Z(s;) = 0. In practice, measurement errors cause repeated measure-
ments at a single location to differ. Moreover, measurements are not made at infinitesi-
mally small separation distances. There is no information about y(h) at distances below
the minimum separation distance h present in the data. This unknown behavior at small
h is sometimes called microscale variation. When microscale variation or measure-
ment error are present, y(h) does not approach zero as h approaches zero. The value
of y(h =0) is known as the semivariogram nugget, denoted by 72, Together, the sill,
range, and nugget characterize the semivariogram and yield much information about
the spatial structure of Z.

In addition to providing the length scale of spatial correlation for Z, the semivariogram
also specifies the spatial covariance of Z. Specifically,

COUZ(51),2(52)) = Var(Z(s,)) + Zvar(Z(sy) - ZvarZ(s;) - Z(s;) Y

with cov denoting covariance, expresses the spatial covariance of VPRM residuals in
terms of available quantities: the first two terms on the right side of Eq. (7) are the
variance within individual sites and the last term is the semivariogram.

Covariance parameters ¢, o?, and 72 may be estimated directly from spatial data via
maximum likelihood estimation (MLE) by maximizing the log-likelihood function (Diggle
and Ribeiro Jr., 2007):

L(B,7%,06%,¢)=-0.5 {nlog(21r) + Iog{ |6®R () + %1 | }
+W—quﬁﬁ@ﬂ4wqw—0m} (8)

with the covariance matrix 02R(¢) +7°1 expressed in terms of ¢ (range), o® (sill), and

72 (nugget). The residual matrix (y — DB) is the difference between observations y and

a model structure given by DB with model explanatory variables D and model param-

eters B. MLE is the preferred approach for formal covariance parameter estimation
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(Diggle and Ribeiro Jr., 2007) in large part because it considers the full set of available
data rather than relying on the summary provided by an empirical semivariogram.

Fitting a parametric covariance function to observed VPRM residuals provides three
key outcomes: (i) the range for VPRM NEE residuals; (ii) covariance of VPRM NEE
residuals at arbitrary separation distances — that is, a residual covariance matrix; and
(iii), via kriging, a VPRM NEE map that explicitly considers VPRM NEE residuals
(Cressie, 1993). Figure 2 shows semivariograms for two common parametric covari-
ance functions. When a spatial field has no spatial correlation, its semivariogram looks
like the pure nugget covariance function. The exponential covariance function is one
example of a model describing a spatial field that is correlated in space to a certain
distance and uncorrelated beyond that distance.

For the nine VPRM parameterizations of Sect. 2.3 we calculated seasonal mean
VPRM residuals. We defined seasons as December-January-February (DJF), March-
April-May (MAM), June-July-August (JJA), and September-October-November (SON).
Within each season we maximized the negative log likelihood (Eq. 8) to estimate covari-
ance parameters for both the pure nugget as well as exponential covariance functions
(Fig. 2). We then compared the pure nugget and exponential fits using AIC (Akaike,
1976). This experiment determines whether the observed VPRM NEE residuals are
better described as covarying in space at some length scale (the exponential covari-
ance model) or as spatially independent even at minimal distances (the pure nugget
model). We follow this experiment with two pseudodata experiments to assess the
tendency of 65 observation locations spread across North America and our AIC test
to choose the exponential covariance function when no spatial covariance is present,
or to choose the pure nugget covariance model when the underlying field was gen-
erated from an exponential covariance model. The rest of this paper describes our
parametrization of VPRM and our analysis of VPRM NEE residual spatial structure.
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3 Results
3.1 VPRM parametrization

As described in Sect. 2.3, we calculated VPRM parameter values for nine different
groupings of those sites in space and time (Table 2), conditioned on observations from
65 North American eddy covariance sites (Table 1, Fig. 1).

Figure 3 shows the distribution of VPRM parameter values when estimated monthly
within each PFT. Parameter distributions across PFTs for the other eight parameter
sets in Table 2 are nearly identical to Fig. 3. The parameter distributions are similar to
those of Mahadevan et al. (2008). Most striking in Fig. 3 is the failure of the parameter-
ization to distinguish among plant functional types.

It is perhaps unexpected that VPRM parameters do not cluster by plant functional
type. For example, one might expect that the model parameter estimates of a bo-
real needleleaf forest should be different from a cropland, for example. There is evi-
dence that light-use efficiency (LUE) is not consistent within PFTs (Ruimy et al., 1994;
Schwalm et al., 2006), particularly at daily timescales (Schwalm et al., 2006). Another
recent study assumes that maximum LUE is constant across PFTs (Yuan et al., 2007).
Schwalm et al. (2006) also suggest intra-PFT LUE varies less at annual time-scales
than at daily scales. The values of 1 (the VPRM LUE parameter) in Fig. 3, relatively
invariant across different PFTs, differ from the results of Schwalm et al. (2006). VPRM
respiration parameters @ and G also do not vary much across PFTs; this is consistent
with previous studies indicating that PFTs are not predictive of soil respiration (Raich
and Tufekciogul, 2000; Bond-Lamberty et al., 2004).

The similar parameter values in Fig. 3 could be a consequence of VPRM'’s simplicity;
perhaps a two-equation model which takes climatology and phenology from satellite
observations is only able to separate landscapes into “green — photosynthesizing” and
“brown — not photosynthesizing.” These results offer hints; investigating the question
rigorously would require parameter PDFs to ascertain whether the differences in Fig. 3
are significant. That investigation should also compare model fluxes across different
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parameterizations. It is possible, for example, that the remote sensing data that drive
VPRM are sufficient to separate the NEE of different plant functional types without
large parameter differences. The question is intriguing, however. If PFTs truly are not
important for NEE diagnosis and prediction, the task of estimating model parameters
becomes much simpler: land surfaces may then be simply classified as “green” and
“not-green.”

3.2 VPRM NEE residual spatial structure

Qualitatively inspecting the shape of an empirical semivariogram gives an intuitive
sense for a function’s spatial covariance. Figure 4 plots binned semivariograms for
June-July-August (JJA) mean VPRM NEE residuals. There is one curve for each of the
nine VPRM parameter sets considered (Table 2); each point shows the mean semivari-
ance within a 300 km bin.

The nugget is small for the site-specific parameter sets (black curves), and varies
from 1 to 3 (umol COzm‘2 s"1)2, for the other six parameter sets. In units of standard
deviation, these six nuggets equal roughly 2.0 umolCO, m=2s~'. The nugget repre-
sents the combined influence of variations at spatial scales smaller than the minimum
separation distance as well as the contributors to VPRM residuals (EC observation
error, VPRM structural error, natural variability; see Sect. 2.3).

In general, the semivariances for each parameter set increase from separation dis-
tances of 0 km to roughly 800 km, and level off or decrease thereafter. This suggests
that VPRM NEE residuals are correlated at distances up to 800 km. We quantify this in
the following results.

We are interested primarily in the parameters (range, sill, nugget) of the covariance
function that best describes the VPRM residuals. To estimate these parameters, we
employ maximum likelihood estimation (MLE, described by Eq. 8).

We fit both pure nugget and exponential covariance functions (whose characteris-
tic semivariograms are shown in Fig. 2) to each of the nine sets of VPRM residuals
summarized by the binned semivariograms in Fig. 4. Within each VPRM parameter
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set we selected either the best-fit pure nugget covariance function or the best-fit ex-
ponential covariance function using Akaike’s Information Criterion (Akaike, 1974). AIC
balances goodness of fit (more parameters) against parsimony (fewer parameters).
Table 3 shows seasonal range values for the covariance function that optimally fit the
observed VPRM NEE residuals. Blank entries show instances where the pure nugget
function optimally fit the observed residuals; this indicates that no spatial correlation is
present in the VPRM residuals. Among the 2000 to 2006 observed residuals, 92 of 252
(7yrx 4seasons x 9PFTs) were best described by the exponential covariance function.
Of those, the median range is 402 km.

To interpret this result, we must test the adequacy of 65 observation locations across
North America (Fig. 1) to detect spatial correlations across hundreds of kilometers.
The maximum distance between towers in this group of 65 is 6557 km (US-Atq — US-
KS1). To quantitatively test the detection capacity of the data set we generated 1000
Gaussian Random Fields (GRFs) on a 6500 by 6500 grid. Each GRF had an imposed
exponential covariance structure with a specified range of 402km (equal to the me-
dian VPRM NEE error seasonal covariance range reported in Table 3.) We sampled
each GRF at 65 randomly-generated locations and estimated exponential and pure
nugget covariance function parameters for each sample set using MLE in the same
manner that we estimated range values for the VPRM NEE residuals (Table 3). Of the
1000 GRFs, AIC chose the exponential covariance function for only 74. Of those 74,
the median estimated covariance range is 936 km; the median estimated covariance
range across all 1000 GRFs is 313 km. This distribution of estimated range values is
similar to the distribution estimated from the real VPRM NEE residual observations;
Fig. 5 plots the two distributions side by side. These results suggest that the estimated
range values for VPRM NEE residuals (Table 3) are consistent with a scenario where
VPRM NEE residuals have an exponential covariance structure with a range of roughly
400 km, and that 65 observation locations in the United States and Canada are mini-
mally adequate for detecting that structure.
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We also must consider the possibility of spurious MLE results: that the observed
VPRM NEE residual realization may occasionally be better fit by an exponential co-
variance structure when the complete spatial field has no true structure. We generated
another set of 1000 GRFs, each containing 65 points within a 6500 by 6500 grid, and
each specified to have a pure nugget covariance structure. We calculated MLE co-
variance function parameters for these 1000 fields. AIC chose the exponential function
over the pure nugget for only 25 of the 1000 fields, suggesting that we might expect
a data set like our VPRM NEE residuals to produce a spurious exponential covariance
structure in only a small minority of realizations considered.

These results suggest quantitatively that JUJA mean VPRM NEE residuals are spa-
tially correlated at a length scale on the order of 400 km.

Anomalies from the 2000 to 2006 means for annual cumulative VPRM NEE, annual
cumulative observed NEE, and annual cumulative VPRM NEE residuals displayed sim-
ilar spatial scales (Fig. 6). This analysis tests the hypothesis that while NEE itself varies
significantly at spatial scales on the order of 10km (e.g., Desai et al., 2008), NEE inter-
annual variability (IAV) is driven by phenomena that operate at much larger scales. If so,
then we should see spatial correlation in annual cumulative NEE, anomalies. If VPRM
is able to capture that large-scale variation, then annual cumulative NEE,;pg\, anoma-
lies will show similar spatial correlation. Any spatial structure that exists in NEE
anomalies that VPRM fails to capture should appear in VPRM NEE residual anomalies.

As with the VPRM NEE residual semivariograms, we chose optimal anomaly co-
variance structures by AIC. Of the seven years examined, NEE_,, anomalies show
correlation at scales of roughly 1000 km only for 2006 (Fig. 6). This rate of detection
is consistent with that of the pseudodata experiment (Fig. 5), in which we were able
to detect a known exponential covariance structure in only 62 of 1000 attempts. This
could indicate that large-scale structure does not consistently exist. It could also sug-
gest that NEE interannual variability could be shaped by larger-scale drivers than is
NEE itself, and that our flux tower spatial density is insufficient to consistently detect
it in a noisy NEE signal. This seems reasonable; land use, which influences NEE, is
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markedly diverse throughout the study area. Also, disturbance events that heavily in-
fluence NEE (e.qg. fire, insects, tree harvest) usually do not impact 500-km stretches
of land surface. VPRM is strongly driven by climate variables (Egs. 1, 2), so spatial
structure in VPRM NEE interannual variability could simply reflect large-scale spatial
structure in climatic interannual variability. Though VPRM no doubt contains structural
error, it is an attempt to combine climatic terms as ecological research suggests they
influence NEE. Therefore, we believe it makes sense to investigate this combined effect
of several climate terms (that is, VPRM NEE) rather than attempt to explain NEE inter-
annual variability by searching for spatial coherence in a number of climate variables
individually.

Because VPRM NEE residuals are simply the difference between NEE,, and
NEE\prum, the spatial behaviors of these three quantities are interrelated. Where spa-
tial structure exists in observations, we expect it to be partitioned among NEEpgu
and VPRM NEE residuals. Results in Fig. 6 from all nine VPRM parameter sets show
strong spatial structure in VPRM NEE residuals. This structure occurs at length scales
similar to the length scale exhibited by NEE,,.. Sill and nugget values for NEE,,pg\, and
VPRM NEE residuals are also of similar magnitude to the sill and nugget for NEE.
VPRM NEE residuals are the combination of NEE observation error, VPRM structural
error, and natural variability. Because of its correlation to NEE magnitude (Richardson
et al., 2006), we expect the NEE observation error component of VPRM residuals to
reflect whatever spatial structure is present in NEE itself. It therefore makes sense that
the spatial structure present in NEE,,¢ is not partitioned exclusively into NEE,,pry or
VPRM NEE residuals, but appears in both.

The covariance sill value provides an estimate of variance. The sill values (Fig. 7) for
the annual anomalies of annual cumulative VPRM NEE, annual cumulative observed
NEE, and annual cumulative VPRM NEE residuals display standard deviations (Fig. 7,
right-side axis) on the order of the annual cumulative NEE typically observed by an
eddy covariance site. This suggests that annual VPRM errors at a single location in
space are on the order of the flux at that point. If annual VPRM errors are indeed
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spatially correlated at length scales of 500 km to 1000 km, as suggested by Fig. 6,
then spatially aggregating VPRM NEE at that length scale should provide a method to
reduce the VPRM error variance.

4 Discussion

Our findings are relevant to both land surface model upscaling as well as atmospheric
inversion studies, though several important uncertainties should guide consideration of
our results.

4.1 Caveats

Several caveats accompany these implications. The structural simplicity of VPRM al-
lows us to conduct parameter estimations that use many thousands of model eval-
uations. The designers of VPRM achieve that simplicity by abstracting the broadest
drivers of NEE out of what is in reality a complex ecology and by considering only
short-term drivers of NEE. Longer-term drivers, such as carbon pools (e.g., Curtis
et al., 2002) and disturbance histories (e.g., Thornton et al., 2002), are known to be
first-order drivers as well. These simplifications caution us against attempting detailed
ecological interpretation of the VPRM NEE results and VPRM residuals.

In addition, the carbon cycle community’s understanding of the statistical properties
of land surface model NEE residuals remains rudimentary. Several studies have ex-
plored the distribution of NEE observation error (e.g., Richardson et al., 2008, 2006).
Richardson et al. (2006) find the observational error to exhibit a double exponential dis-
tribution Observation error, however, is but one component of NEE model residuals. In
the absence of a rigorous likelihood function that integrates all of the sources of uncer-
tainty that contribute to NEE model residuals, we have used the mathematically simple
sum of squared NEE residuals to estimate VPRM parameters. Implementing a statisti-
cally proper likelihood function is non-trivial and is the subject of ongoing research.
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Our spatial analysis of VPRM residuals compared a pure nugget model with no spa-
tial covariance to an isotropic exponential covariance function that treated all land sur-
face classifications as equal. It is possible that VPRM residuals covary differently in
the East-West direction than North-South, or that plant functional types, disturbance
history, or some other land surface descriptor is important. The present spatial density
of eddy covariance observations limits our ability to test these.

4.2 Implications

It is critically important to quantitatively tailor NEE model parameter estimates to the
domain in which the model is to be run; generic parameter values can reproduce ob-
served NEE poorly (Ricciuto, 2006). Good NEE simulation is crucial to calculating ac-
curate model errors, which are in turn crucial to detecting model error spatial structure.

Our finding that VPRM does not resolve different PFTs through its parameter values
can be viewed in at least two different lights. First, studies wishing to provide first-
order regional NEE estimates via a low-complexity land surface model may not need
to distinguish among PFTs for parameterization on pure statistical grounds. This could
lead to considerable savings in computation time and CPU resources. Second, PFTs
are commonly assumed to partition land into sections with functionally different par-
ticipations in the carbon cycle. Our results suggest that PFTs may not be the most
useful predictor of a land area’s carbon cycle dynamics, and that alternative partition-
ing schemes may be more skillful. Stand age and disturbance history are interesting
“land surface NEE descriptor” alternatives to PFTs. Thornton et al. (2002) used the
BiomeBGC model to explore the impacts of distubrance history, PFT, site climate, at-
mospheric CO, concentration, and nitrogen deposition on NEE variability among seven
evergreen sites spanning North America, and concluded that of those, disturbance his-
tory dominated. Goulden et al. (2006) examined seven eddy covariance sites within
50 km of each other that were recovering from burn disturbances that occurred 0, 5,
14,22, 39, ~ 73, and ~ 153 yr previously. They found that mid-growing season EVI and
CO, fluxes took roughly 50 yr following a burn disturbance to become approximately
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interannually constant. That 50-yr period included transition from primarily deciduous
species to primarily black spruce. These results and others suggest that disturbance
history could be at least important as climate and plant functional type to understanding
NEE for large areas.

The results of Goulden et al. (2006) suggest, at least for boreal evergreen forests,
a satellite record on the order of 50 to 100 yr or longer could be necessary before
stand age and recovery from disturbance can be widely and directly described by re-
mote sensing. Recent landsat products have begun to assemble landscape distur-
bance records beginning in the 1980s (Huang et al., 2010), offering an opportunity to
assess these influences at larger scales.

The spatial length scale of land surface model NEE residual covariance bears di-
rectly on atmospheric inversion calculations. Inversions seek to use observed atmo-
spheric CO, concentrations to refine estimated biological CO, fluxes within a region of
defined boundaries, with the estimated fluxes typically coming from models. Intrinsic
to the method is the assumption that prior flux errors are correlated within each region
treated as a separate unknown (Rodenbeck et al., 2003; Michalak et al., 2004). More-
over, this correlation must be assumed to exist at both the time scale of the inversion as
well as the spatial scale of the inversion regions. Our results indicate strongly that this
implicit assumption is valid at seasonal time scales (Table 3) and, for annual anomalies,
for annual time scales. The relevant spatial scale is approximately 400 km. This length
scale is smaller than the scale of 1275 km estimated by Rédenbeck et al. (2003), and
is based on eddy covariance flux measurements rather than land surface model com-
parison. Our length scale also contrasts starkly with the conclusion of minimal spatial
covariance presented by Chevallier et al. (2006). Potentially incorrect prior flux error
covariance assumptions are but one source of error that an inversion must consider.
Scarcity of well-calibrated CO, concentration observations, for example, pushes inver-
sion calculations toward regions larger than 1000 km (e.g., Butler et al., 2010). The
North American Carbon Program’s Mid-Continental Intensive (MCI) region is a notable
exception to this scarcity of CO, concentration observations (Lauvaux et al., 2011),
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and presents an opportunity to investigate the impacts of prior flux error covariance as-
sumptions more deeply. Solving for too many regions in an inversion (that is, too many
unknowns) risks overfitting the data, and solving for too few risks oversimplifying the
inversion and producing over-confident results. We suggest that inversion calculations
should optimally use regions with spatial scales on the order of 400 km.

5 Conclusions

Using observed NEE from 65 North American eddy covariance sites for the years 2000
through 2006, we make point estimates of parameter values for VPRM, a simple land
surface model. We then estimate and analyze covariance structures of VPRM NEE
residuals in the interest of quantifying spatial structure in the residuals.

PFTs demonstrate little skill as land surface classifications for model parameter esti-
mation. This may allow large-region model studies to partition land surfaces into a “pho-
tosynthetically active or not” dichotomy, thereby simplifying model parameterization.

The semivariogram analyses presented here demonstrate that VPRM NEE residuals
are spatially correlated at length scales well beyond individual tower footprints but well
short of continental scales. Depending on the model parameterization, that length scale
lies somewhere between 100 km and 900 km, with a median value of roughly 400 km.
This result is consistent at both seasonal and interannual time scales, and demon-
strates that the North American EC tower network is minimally sufficient to define
a VPRM residual covariance matrix. This information will allow us to construct a map
of VPRM North American CO, fluxes, optimized to eddy covariance observations.

Our estimated covariance functions for model NEE residuals prove that the North
American flux tower observation network is adequate for determining a land surface
model residual covariance matrix.
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Table 1. 65 North American eddy covariance sites used to parameterize VPRM and calculate
VPRM flux errors. PFTs are taken from the International Geosphere-Biosphere Programme
(IGBP) land cover classification scheme (Loveland and Belward, 1997). The PFT classifica-
tions are taken from literature citations or investigator descriptions where available, and other-
wise derived from MODIS 1-km land surface classifications. Data are from the 2007 Fluxnet
Synthesis Dataset.

Site Code  Site Name Latitude Longitude Land Cover Reference

CA-Cat British Columbia — Campbell River — Mature Forest Site 49.870 -125.340 1 — Evergreen Needleleaf Forest Humphreys et al. (2006)
CA-Ca2 British Columbia — Campbell River — Clearcut Site 49.870 -125.290 1 - Evergreen Needleleaf Forest Humphreys et al. (2006)
CA-Ca3 British Columbia — Campbell River — Young Plantation Site  49.520 -124.900 1 — Evergreen Needleleaf Forest Humphreys et al. (2006)
CA-Gro Ontario — Groundhog River-Mature Boreal Mixed Wood 48.220 -82.160 5 — Mixed Forest McCaughey et al. (2006)
CA-Let Lethbridge 49.710 -112.940 10 - Grasslands Flanagan et al. (2002)
CA-Mer Eastern Peatland — Mer Bleue 45.410 -75.520 11 — Permanent Wetlands Lafleur et al. (2003)
CA-NS2 UCI-1930 burn site 55.910 -98.520 1 - Evergreen Needleleaf Forest Goulden et al. (2006)
CA-NS3 UCI-1964 burn site 55.910 -98.380 1 - Evergreen Needleleaf Forest Goulden et al. (2006)
CA-NS4 UCI-1964 burn site wet 55.910 —-98.380 1 - Evergreen Needleleaf Forest Goulden et al. (2006)
CA-NS5 UCI-1981 burn site 55.860 —-98.490 1 - Evergreen Needleleaf Forest Goulden et al. (2006)
CA-NS6 UCI-1989 burn site 55.920 -98.960 1 — Evergreen Needleleaf Forest Goulden et al. (2006)
CA-NS7 UCI-1998 burn site 56.640 —-99.950 1 - Evergreen Needleleaf Forest Goulden et al. (2006)
CA-Oas Sask — SSA Old Aspen 53.630 -106.200 4 — Deciduous Broadleaf Forest  Black et al. (2000)
CA-Obs Sask — SSA Old Black Spruce 53.990 -105.120 1 — Evergreen Needleleaf Forest Bergeron et al. (2007)
CA-Ojp Sask — SSA Old Jack Pine 53.920 -104.690 1 - Evergreen Needleleaf Forest Howard et al. (2004)
CA-Qcu Quebec Boreal Cutover Site 49.270 —-74.040 7 — Open Shrublands Giasson et al. (2006)
CA-Qfo Quebec Mature Boreal Forest Site 49.690 —-74.340 1 - Evergreen Needleleaf Forest Bergeron et al. (2007)
CA-SF2 Sask — Fire 1989 54.250 -105.880 6 — Closed Shrublands Mkhabela et al. (2009)
CA-SF3 Sask — Fire 1998 54.090 -106.010 6 — Closed Shrublands Mkhabela et al. (2009)
CA-SJ1 Sask — 1994 Harv. Jack Pine 53.910 -104.660 1 — Evergreen Needleleaf Forest Zha et al. (2009)

CA-SJ2 Sask — 2002 Harvested Jack Pine 53.950 -104.650 1 — Evergreen Needleleaf Forest Zha et al. (2009)

CA-WP1 Western Peatland — LaBiche-Black Spruce/Larch Fen 54960 -112.460 11— Permanent Wetlands Syed et al. (2006)
US-ARM  ARM Southern Great Plains site — Lamont — Oklahoma 36.610 -97.490 12 - Croplands Fischer et al. (2007)
US-Atq Atqasuk — Alaska 70.470 -157.410 11— Permanent Wetlands Oechel et al. (2000)
US-Aud Audubon Research Ranch — Arizona 31590 -110.510 10— Grasslands Wilson and Meyers (2007)
US-Blo Blodgett Forest — California 38.900 -120.630 1 - Evergreen Needleleaf Forest Goldstein et al. (2000)
us-Bn1 Delta Junction 1920 Control site 63.920 -145.370 1 - Evergreen Needleleaf Forest Liu et al. (2005)

Us-Bn2 Delta Junction 1987 Burn site 63.920 -145.370 4 — Deciduous Broadleaf Forest  Liu et al. (2005)

US-Bn3 Delta Junction 1999 Burn site 63.920 -145.740 7 —Open Shrublands Liu et al. (2005)

US-Bo1 Bondville — lllinois 40.010 -88.290 12— Croplands Meyers and Hollinger (2004)
US-Bo2 Bondville — lllinois (companion site) 40.010 -88.290 12— Croplands Meyers and Hollinger (2004)
US-Brw Barrow — Alaska 71.320 -156.630 11— Permanent Wetlands Harazono et al. (2003)
USs-CaV Canaan Valley — West Virginia 39.060 —-79.420 10— Grasslands Wilson and Meyers (2007)
US-Dk1 Duke Forest-open field — North Carolina 35.970 -79.090 10— Grasslands Stoy et al. (2006)

US-Dk2 Duke Forest-hardwoods — North Carolina 35.970 —-79.100 4 - Deciduous Broadleaf Forest ~ Stoy et al. (2006)

US-Dk3 Duke Forest — loblolly pine — North Carolina 35.980 -79.090 1 - Evergreen Needleleaf Forest Stoy et al. (2006)

US-FPe Fort Peck — Montana 48.310 -105.100 10— Grasslands Wilson and Meyers (2007)
US-Goo Goodwin Creek — Mississippi 34.250 -89.970 10— Grasslands Wilson and Meyers (2007)
US-Hat Harvard Forest EMS Tower — Massachusetts (HFR1) 42.540 —-72.170 4 — Deciduous Broadleaf Forest ~ Urbanski et al. (2007)
US-Ha2 Harvard Forest Hemlock Site — Massachusetts 42.540 —-72.170 1 - Evergreen Needleleaf Forest Hadley and Schedlbauer (2002)
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Table 1. Continued.

Site Code  Site Name Latitude Longitude Land Cover Reference

US-Hot Howland Forest (main tower) — Maine 45.200 —68.740 1 - Evergreen Needleleaf Forest Hollinger et al. (1999)
US-Ho2 Howland Forest (west tower) — Maine 45210  -68.750 1 - Evergreen Needleleaf Forest Hollinger et al. (2004)
US-KS1 Florida-Kennedy Space Center (slash pine) 28.460 —80.670 1 - Evergreen Needleleaf Forest Bracho et al. (2008)
US-KS2 Florida-Kennedy Space Center (scrub oak) 28.610  -80.670 6 — Closed Shrublands Powell et al. (2006)
US-Los Lost Creek — Wisconsin 46.080 -89.980 6 — Closed Shrublands Sulman et al. (2009)
US-Me2 Metolius-intermediate aged ponderosa pine — Oregon 44.450 -121.560 1 - Evergreen Needleleaf Forest Thomas et al. (2009)
US-Me4 Metolius-old aged ponderosa pine — Oregon 44500 -121.620 1 - Evergreen Needleleaf Forest Anthoni et al. (2002)
US-MMS  Morgan Monroe State Forest — Indiana 39.320 —86.410 4 — Deciduous Broadleaf Forest ~ Schmid et al. (2000)
US-MOz  Missouri Ozark Site 38.740 —-92.200 4 - Deciduous Broadleaf Forest ~ Gu et al. (2006)
US-Net Mead - irrigated continuous maize site — Nebraska 41.100 -96.290 12— Croplands Verma et al. (2005)
US-Ne2 Mead — irrigated maize-soybean rotation site — Nebraska ~ 41.100 —96.280 12 — Croplands Verma et al. (2005)
US-Ne3 Mead - rainfed maize-soybean rotation site — Nebraska 41.180 -96.440 12— Croplands Verma et al. (2005)
US-NR1 Niwot Ridge Forest — Colorado (LTER NWT1) 40.030 -105.550 1 — Evergreen Needleleaf Forest Monson et al. (2002)
US-PFa Park Falls/WLEF — Wisconsin 45.950 -90.270 5 — Mixed Forest Davis et al. (2003)
US-SO2  Sky Oaks- Old Stand — California 33.370 -116.620 6 — Closed Shrublands Luo et al. (2007)
US-SO3 Sky Oaks- Young Stand — California 33.380 -116.620 6 — Closed Shrublands Luo et al. (2007)
US-SO4  Sky Oaks- California 33.370 -116.620 6 — Closed Shrublands Luo et al. (2007)
US-SP1 Slashpine-Austin Cary — 65yrs nat regen-FL 29.740 -82.220 1 — Evergreen Needleleaf Forest Powell et al. (2008)
USs-spP2 Slashpine-Mize-clearcut — 3yr-regen-FL 29.760  -82.240 1 - Evergreen Needleleaf Forest Bracho et al. (2012)
US-SP3 Slashpine-Donaldson-mid-rot — 12yrs-FL 29.750  -82.160 1 - Evergreen Needleleaf Forest Bracho et al. (2012)
US-Syv Sylvania Wilderness Area — Michigan 46.240 —89.350 5 — Mixed Forest Desai et al. (2005)
US-Ton Tonzi Ranch — California 38.430 -120.970 8- Woody Savannas Ma et al. (2007)
US-UMB  Univ. of Mich. Biological Station — Michigan 45.560 —84.710 4 — Deciduous Broadleaf Forest ~ Gough et al. (2008)
US-Var Vaira Ranch — lone — Callifornia 38.410 -120.950 10— Grasslands Ma et al. (2007)
US-WCr  Willow Creek — Wisconsin 45.810  -90.080 4 — Deciduous Broadleaf Forest ~ Cook et al. (2004)
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Table 2. Total number of parameters resulting from the nine different schemes used to group

observation sites for VPRM parameter estimation.

site groupings in time

monthly annual all available data,
intervals intervals 2000-2006
site groupings in space
individual sites (65) 21840 1820 260
PFTs (9) 3360 280 40
all sites together 336 28 4
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Table 3. Range parameter values (km) for VPRM flux error best-fit parametric variogram mod-
els. VPRM parameterizations are described in Table 2. Where a value is present, Akaike’s
information criterion (AIC) analysis concludes the exponential variogram model fit more par-
simoniously than the pure nugget model. Where the range is blank the pure nugget model fit

most parsimoniously, indicating no spatial correlation is present.

season VPRM Parameterization Year
space time 2000 2001 2002 2003 2004 2005 2006
DJF site monthly 1640 3051 4 1518 605
site annual 1299 368 772 3787
site all data 403 2382 115
PFT monthly
PFT annual 249 301 48
PFT all data 258 460 76
all sites  monthly 509
all sites annual 1 450
all sites  all data 1 461
MAM site monthly 285
site annual 207
site all data
PFT monthly
PFT annual 748
PFT all data 769
all sites  monthly 4
all sites annual 5
all sites  all data 6
JUA site monthly 4130 1617 24
site annual 267 631 1354
site all data 34 405 1 368 316
PFT monthly
PFT annual 30 461 323
PFT all data 734 407 287 8
all sites  monthly 401 537 289
all sites  annual 401 534 292
all sites  all data 404 534 296
SON site monthly 29 54 2059
site annual 227 314 840 4600 129
site all data 1004 2
PFT monthly 2689 710 56
PFT annual 406 1046 1466 70 77
PFT all data 1664 1183 89 35
all sites  monthly 787 2199 20
all sites annual 746 1032 2288 0 16
all sites  all data 649 1041 2086 0 19
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Fig. 1. The 65 eddy covariance flux tower sites from the Fluxnet network (http://www.fluxdata.
org) that provide observations for VPRM parametrization and VPRM flux residual calculation.
ENF: evergreen needleleaf forest, DBF: deciduous broadleaf forest, MF: mixed forest, CS:
closed shrubland, OS: open shrubland, WS: woody savanna, Gr: grassland, Wet: permanent

wetland, Crop: cropland.
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Fig. 2. Two examples of generic parametric variogram models. The parameter symbols corre-
spond to Sect. 2.4 and Eq. (8). Because these are purely illustrative, units for semivariance and

distance are irrelevant.
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Fig. 3. Box and whisker plots for values of VPRM parameters, estimated monthly by plant func-
tional type (PFT). Whiskers show 1.5 times the interquartile range. Units for parameters are:
A: pmol CO, m~2s™"/jumolPARm 25"

Cc™'; B: umolCO,m2s7"; PAR,:
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Fig. 4. June-July-August mean VPRM NEE residual empirical semivariograms. Each point rep-
resents the mean semivariance and mean separation distance from grouping pairs of towers
into 300 km bins. VPRM parametrizations are described in Table 2. The left vertical axis shows
units of semivariance (y), and the right vertical axis shows units of standard deviation (o). o is

related to y by o = (27)"/2.
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Fig. 6. Best-fit range values (km) for cumulative annual anomalies of observed NEE, VPRM
NEE, and VPRM NEE residuals. Best-fit values were determined by AIC as described in
Sect. 2.4. The number y plotted denotes the year 200y. Years where the pure nugget covari-
ance function fit more optimally than the exponential are shown in the shaded box. Anomalies
were calculated as the departure from the mean value of 2000 to 2006 annual mean cumulative
observed values.
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Fig. 7. As Fig. 6, but displaying semivariogram sill values.
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