

Supporting Online Material for

An unknown respiration pathway substantially contributes to soil CO₂ emissions.

Vincent Maire, Gaël Alvarez, Jonathan Colombet, Aurélie Comby, Romain Despinasse, Eric Dubreucq, Muriel Joly, Anne-Catherine Lehours, Véronique Perrier, Tanvir Shahzad and Sébastien Fontaine

To whom correspondence should be addressed: E-mail: sebastien.fontaine@clermont.inra.fr

This file includes:

S1: STERILITY OF SOILS, YEAST EXTRACT AND MICROCOSMS.

S2: GENERALIZATION OF RESPIRATORY ENZYME STABILIZATION IN THE FOUR OTHER STUDIED SOILS

S3: KINETIC ACTIVITY OF G6PI IN THE IRRADIATED-SOIL OF THEIX.

S4: UNLABELLED AND LABELED CARBON RELEASED AS CO₂ IN WATER AND SOIL MICROCOSMS.

S5: EFFECT OF THE SECOND GLUCOSE DOSE ON MICROCOSM RESPIRATION.

References

22 **SUPPLEMENT 1: STERILITY OF SOILS, YEAST EXTRACT AND MICROCOSMS.**

23

24 Efficiency of γ -irradiation to kill soil organisms and maintenance of microcosm sterility were
25 analyzed in detail during the incubation of soil from Theix for 21 days (see the soil incubation
26 experiment described in section 2.4 of the main text for details). This analysis was based on
27 combination of complementary microbiological and molecular methods, simulation of
28 contamination and determination of method sensitivity. Results of this detailed analysis are
29 presented below in the “Main investigation” section. After efficiency of γ -irradiation and
30 maintenance of microcosm sterility were verified, we used a simplified approach to control
31 the absence of contamination for other incubation experiments (Incubation of the four other
32 studied soils, Yeast-extract incubation described in section 2.2 of the main text). Results of
33 these investigations are presented in the “Complementary investigations” section. The last
34 section of this supplementary information on sterility presents methods and sensibility
35 analysis of TSA FISH.

36

37 **A. MAIN INVESTIGATION**

38 **1. Description of experiments**

39 Several preliminary tests comparing various methods of sterilization (γ -irradiation, heating
40 and autoclaving) were carried out (data not shown) before selecting the method presented
41 here. The γ -irradiation was chosen as sterilizing method for its efficiency to kill soil micro-
42 organisms and for its moderate effect on soil enzymes. Preservation of soil enzymes was
43 particularly important to quantify EXOMET. Dose of γ -irradiation used in our experiments to
44 sterilize soils was 45 kGy. Typically, γ -irradiation at 20 kGy eliminates all cultivable bacteria,
45 actinomycetes and fungi (McNamara et al., 2003).

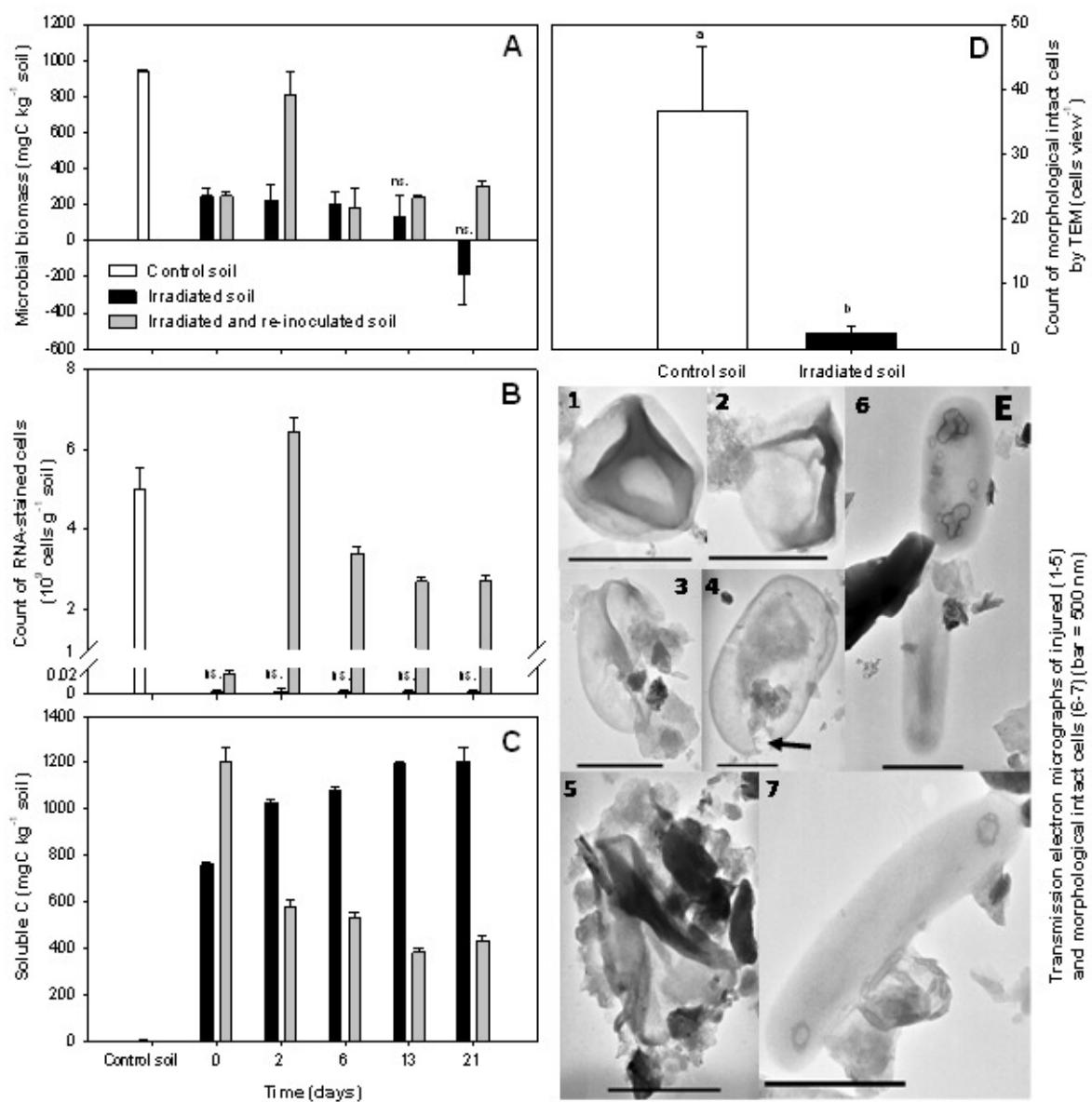
46 Here we present results of thorough investigations on efficiency of γ -irradiation to kill
47 soil micro-organisms and maintenance of sterility of microcosms throughout the incubation
48 period. These investigations were carried out on irradiated and non-irradiated soils from
49 Theix incubated for 21 days. Four complementary methods were applied to the soils: i)
50 Microscopic observations and enumeration of morphological intact cells by transmission
51 electron microscopy; ii) quantification of microbial biomass; iii) search for the presence of γ -
52 resistant cultivable microorganisms on three culture media (e.g. *Deinococcus radiodurans*,
53 Warcup, 1950); and iv) count of functional RNA-producing microorganisms in soils by using
54 fluorescence *in-situ* hybridization (TSA FISH). Moreover, we developed two complementary

55 approaches to quantify the power of our methods to detect a possible contamination of
56 microcosms. First, the minimum density of living microorganisms detectable by TSA-FISH
57 method was determined in soil. To understand significance of undetectable cells for soil CO₂
58 emission, we calculated the potential contribution of undetectable cells to CO₂ emission from
59 irradiated-soil by using specific respiration of microorganisms. Second, we experimentally
60 simulated a contamination of irradiated-soil by inoculating it with diluted soil inoculum. This
61 inoculum was prepared from the non-irradiated soil of Theix. The microbial biomass resulting
62 due to inoculation represented 1/1900 of the microbial biomass present in the non-irradiated-
63 soil.

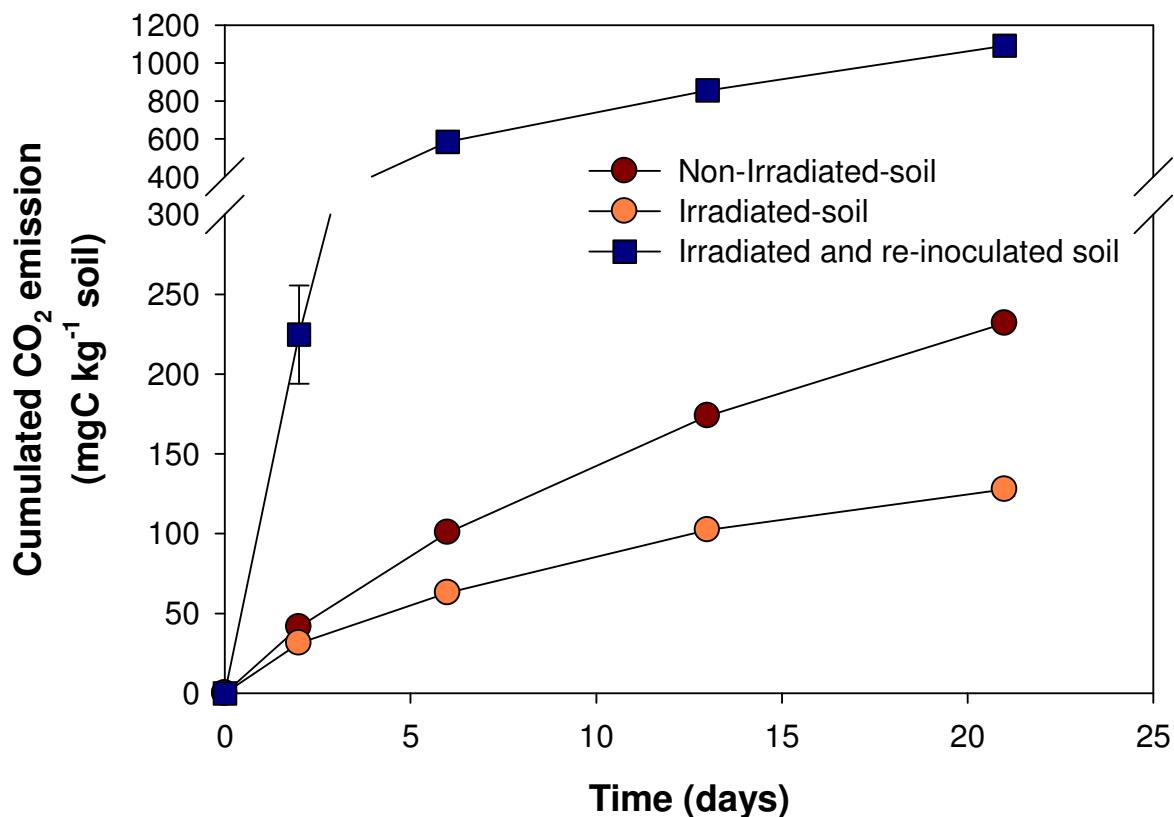
64

65 **2. Results**

66 Irradiation strongly reduced microbial biomass, from 933 in non-irradiated-soil to 247 mg C
67 kg⁻¹ in irradiated-soil (Fig. S1-1A). Transmission electron microscopy showed that irradiation
68 also caused many morphological damages to cells such as membrane disruption and loss of
69 cell turgescence (Fig. S1-1E). Morphologically intact cells were 16 times lower (Fig S1-1D)
70 whereas respiration rate was only 1.25 times lower in irradiated-soil as compared to non-
71 irradiated soil (incubation period 0-2 days, Fig S1-2). Our results also showed that remaining
72 cells were not viable or functional. Indeed, microbial biomass continuously decreased during
73 the incubation period reaching undetectable value at day 13 (Fig. S1-1A) indicating that
74 microbial biomass was lyzed. Furthermore, no micro-organism from any culture media was
75 detected, confirming the absence of cultivable micro-organisms in irradiated-soil (see section
76 B “Complementary investigations”). Finally, functional RNA-producing cells were not
77 detected in irradiated-soil irrespective of sampling date whereas 5.0x10⁹ RNA-producing cells
78 g⁻¹ soil were found in non-irradiated living soil (Fig. S1-1B). This showed that cells remaining
79 after irradiation did not provide RNA and hence respiratory enzymes anymore. Of course, we
80 cannot exclude the possibility that a few RNA-producing cells remained in irradiated-soil and
81 were undetected by our methods. However, based on the specific respiratory activity of soil
82 micro-organisms calculated in the non-irradiated soil (respiration per unit cell, Fig S1-1B and
83 S1-2 incubation period 0-2 days), respiration measured in irradiated-soil corresponded at least
84 to an activity of 4.10⁹ cells g⁻¹ soil. Given that TSA-FISH method was able to detect the
85 presence of as low as 10⁵ cells g⁻¹ soil (see section C “Methods”), we quantified that the
86 potential contribution of undetectable cells to CO₂ emission from irradiated-soil cannot
87 exceed 1/10,000. Consistently, the simulated contamination of irradiated-soil was
88 immediately detected by the TSA-FISH (Fig. S1-1B). This contamination was followed by a


89 flush of respiration and growth of microorganisms using the soluble C released by the killed
90 biomass (Figs. S1-1A-C, Fig. S1-2). The growth of microbial contaminants was detected by
91 all methods (microbial biomass, culture, TSA-FISH).

92


93 **3. Conclusions.**

94 Collectively, these results indicate that the γ -irradiation at 45 kGy is highly efficient to kill
95 soil organisms including the non cultivable micro-organisms. Although some cells can be
96 observed by electron microscopy in the irradiated-soil, they cannot explain the important CO_2
97 emissions measured in the irradiated-soil. Moreover, these cells are not viable and functional
98 since they cannot grow or produce the RNA required to synthesize proteins and enzymes. We
99 conclude that the γ -irradiation is an efficient method to stop the living respiration and quantify
100 the EXOMET using the model presented in the main text.

101 The results also indicate that microcosms could be maintained without microbial
102 contamination throughout the incubation period. This signifies that methods developed to
103 maintain microcosms under sterile conditions (manipulation under sterile hood, ventilation of
104 incubated microcosms with filtered air, etc) were efficient. Finally, in case of microcosm
105 contamination (simulated), presence of micro-organisms was immediately detected by the
106 TSA-FISH. Moreover, due to presence of large quantities of labile C in irradiated-soils
107 (released from the killed boil biomass), growth of microbial contaminants was rapid and
108 detected by all methods (microbial biomass, microscopy, TSA-FISH, culture, measurement of
109 flush of CO_2 production).

111
112 **Figure S1-1:** Dynamics of (A) microbial biomass, (B) RNA-stained cells and (C) Soluble C
113 in irradiated-soil, irradiated-and-re-inoculated-soil of Theix incubated during 21 days. The
114 non-irradiated soil at day 0 was used as control. Differences from zero of different variables
115 were tested with t-test at 5% *P*-level. ns: non significant. (D) Count of morphological intact
116 cells by transmission electron microscopy in irradiated and control (non-irradiated) soil of
117 Theix. Differences between control and irradiated soil were tested with t-tests at 5% *P*-level.
118 Number of cells in the irradiated-soil was not significantly different from zero (t-test, 5% *P*-
119 level). (E) Transmission electron micrographs of injured (graphs 1 to 5) and morphological
120 intact cells (graphs 6 to 7). The arrow on graph 4 indicates a membrane disruption. The scale
121 black bar corresponds to 500 nm length.
122

123

124 **Figure S1-2:** Cumulated CO₂ emission from non-irradiated-soil, irradiated-
 125 and-re-inoculated-soil incubated during 21 days.

126

127

128 **B. COMPLEMENTARY INVESTIGATIONS**

129

130 **Soil incubation experiment.** The absence of living micro-organisms in the five studied soils
 131 was verified after irradiation (45Gy) and at the end of incubation (21 days). This verification
 132 has been carried out through cultural method using three media. No micro-organism from any
 133 culture media was detected indicating that all soil microcosms were maintained under sterile
 134 conditions (Table S1-1).

135

136 **Table S1-1:** Counting of γ -resistant cultivable microbes in five studied soils after exposition
 137 to γ -irradiation (45kGy) and 21 days of incubation.

Counting after irradiation	Soil names				
	Theix	Laqueuille	Soro	Ponta Grossa	Bugac
Cultivable bacteria	0	0	0	0	0
Cultivable fungi	0	0	0	0	0
<i>D. radiodurans</i>	0	0	0	0	0

Counting after 21 days of incubation

Cultivable bacteria	0	0	0	0	0
Cultivable fungi	0	0	0	0	0
<i>D. radiodurans</i>	0	0	0	0	0

138

139 ***Yeast-extract incubation.*** Filtered (0.022 μm) yeast-extract was observed by
140 fluorescent microscopy (x 630, cells were stained by DAPI) to check the absence of cells. The
141 irradiated-soil of Theix used in this experiment was the same that was used for conducting the
142 in-depth investigations on sterility presented in the above section “Main investigation”. The
143 absence of contamination during the yeast-extract experiment was verified at days 13 and 53
144 of the incubation. To this end, aliquots of liquid were sampled in water+glucose+yeast-extract
145 treatment (W+G+YE) and were analyzed by TSA-FISH.

146 Microscopic observations of filtered yeast-extract confirmed the absence of cells. It
147 was interesting to note the presence of clusters of cellular debris like pieces of membrane. No
148 RNA-producing cells were detected by TSA-FISH confirming that microcosms were
149 maintained under sterile conditions throughout the incubation period (Table S1-2).

150

151 **Table S1-2:** Counting of RNA-stained cells in W+G+YE treatment by TSA-FISH method
152 after 13 and 53 days of incubation.

Incubation day	Count of RNA-stained cells
13	0
53	0

154

C. METHODS

155

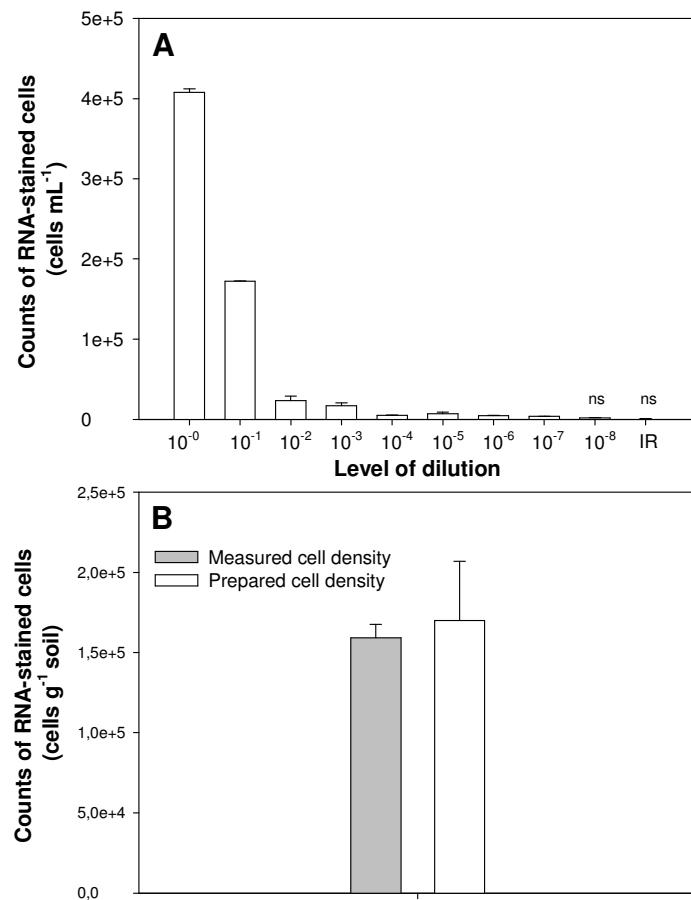
156 ***Microbial biomass.*** Microbial biomass was determined by the fumigation-extraction
157 technique (Vance et al., 1987).

158 ***Transmission electron microscopy.*** Cells were extracted from soils as recommended by
159 Danovaro *et al.* (2001) with some modifications as described below. An aliquot of 0.1g soil
160 was diluted in 5 ml of sodium pyrophosphate buffer (PPI, 0.01 M). Solution was shaken for
161 30 min and sonicated three times for 1 min each in a water bath (Bioblock Scientific 88156,
162 320W). Larger particles were removed by centrifugation at 2000 \times g for 1 min and cells
163 contained in the supernatant were fixed with glutaraldehyde (1 % final concentration).

164 Cells were harvested by centrifuging 200 μl of soil extract with 6 ml of sterile water at
165 35 000 \times g for 20 min onto 400 mesh Cu grids (Pelanne Instruments, Toulouse, France). Cells
166 were then stained for 30 s with uranyl acetate (2% wt/wt). Microscopic observations and

168 enumeration of morphological intact cells were performed at a magnification of 30,000 to
169 40,000 x using the JEM 1200 EX TEM (JEOL) operated at 80 kV.

170 **Cultivable microorganisms.** Gamma-resistant cultivable microorganisms were counted on
171 three different mediums: i) malt medium (10 g L^{-1} Malt extract, 14 g L^{-1} Agar) for fungi; ii)
172 lysogeny broth medium (25 g LB L^{-1} Broth) for bacteria; iii) TGY medium (10 g L^{-1} Tryptone,
173 1 g L^{-1} Glucose, 5 g L^{-1} baker Yeast) for *Deinococcus radiodurans*. Isolation plates were
174 prepared by transferring a small amount of soil ($\pm 250\text{ mg}$) into a sterilized Petri dish (Warcup,
175 1950). Ten repetitions per treatment and soil combination were incubated for one month.


176 **TSA-FISH.** Functional RNA-producing microorganisms were enumerated using fluorescence
177 *in-situ* hybridization combined to tyramide signal amplification (TSA-FISH). One gram soil
178 sample was extracted in 100 mL of sodium pyrophosphate buffer (PPI, 0.01M) according to
179 protocol described in Battin *et al.* (2001). TSA-FISH was performed as described in Biegala
180 *et al.* (2003) and Mary *et al.* (2006) with some modifications as described below. Soil extract
181 sample was fixed with 1% formaldehyde and harvested on $0.2\mu\text{m}$ (pore-size) polycarbonate
182 filters. Filters were cut in three parts forming pseudo-replications for each sample. They were
183 then dehydrated in ethanol series (50, 80, 100%, 3 min each) and dried. Before hybridization,
184 prokaryotic cells were partially lysed by placing the filters for 1h at 37°C in 1ml of $100\text{ }\mu\text{g mL}^{-1}$
185 lysozyme (47000 U mg^{-1} , Sigma-Aldrich). Enzymatic reaction was stopped by rinsing
186 the filter 3 times in 5mL of sterile water for 1min. Filters were then dehydrated in a second
187 ethanol series (50, 80, 100%, 3 min each) and dried. Hybridizations were performed with the
188 probes EUB338 according to hybridization conditions described by Mary *et al.* (2006). Prior
189 to the TSA reaction, cells were equilibrated in 5mL of TNT buffer at room temperature for
190 15min. For the TSA reaction, $20\mu\text{L}$ of TSA mix (40% [wt/vol] dextran sulfate stock solution,
191 mixed 1:1 with the amplification diluent of the TSA-Direct kit [NEN Life Science Products
192 Inc., Boston, Mass.], and added [50:1] to fluorescein-tyramide [TSA-Direct kit]) was added,
193 and the mixture was left to incubate for 30min at room temperature in the dark. The unlabeled
194 fluorochrome was then washed out by two subsequent rinses, of 20min in 5mL of TNT buffer
195 prewarmed at 55°C followed by one rinse of 10min in PBS buffer at room temperature.

196 The filter sections were labeled with $20\mu\text{L}$ of a mix of $800\mu\text{L}$ Citifluor, $200\mu\text{L}$
197 vectaShield and $1\mu\text{L}$ of DAPI (1 mg mL^{-1}). The filter sections were inspected and cells were
198 counted under a Leica DMIRB epifluorescence microscope equipped with excitation /
199 emission filters 360/420 nm for DAPI and 490/515 nm for FITC.

200 **Sensitivity of the TSA-FISH.** Sensitivity of TSA-FISH method was determined in two steps.
201 After extraction of microbial biomass from non-irradiated-soil of Theix with 100 mL of

202 sodium pyrophosphate buffer (PPI, 0.01M), soil extract was diluted serially from 10^{-1} to 10^{-8} .
203 Microbial biomass from all soil extracts was stained through TSA-FISH and number of RNA-
204 stained cells was counted. This counting provided first estimation of cell density threshold
205 from which TSA-FISH method was able to detect presence of living cells. However, this
206 estimation was made on diluted living soil extracts where cell/soil-particle ratio was always
207 identical. In contrast, irradiation caused a decrease in cell/soil-particle ratio of irradiated-soil.
208 Therefore, we set up a second experiment in order to determine effect of soil particles on the
209 quantification of cell density. Irradiated-soil of Theix was re-inoculated with diluted soil
210 inoculum prepared in the previous step to obtain 10^5 cell g^{-1} soil. Immediately after soil
211 inoculation, cell density in irradiated-reinoculated soil was quantified by TSA-FISH. If
212 measured density was lower than prepared density (10^5 cell g^{-1}), then soil particles had
213 detrimental effect on the quantification of cell density in the soil. Three replicates per
214 treatment were made.

215 The first experiment showed that the TSA-FISH method was able to significantly
216 detect presence of living cells from 10^3 cells mL^{-1} (10^{-7} level of dilution, Fig. S1-3A). This
217 number of cells in soil extract corresponded to 10^5 cells g^{-1} soil. In the second experiment,
218 measured cell density matched experimentally prepared cell density (1.6 vs 1.7 10^5 cells g^{-1}
219 soil, respectively; Fig S1-3B), indicating that quantification of cell density in soil was not
220 affected by soil particles. We conclude that TSA-FISH applied to our soil was able to detect
221 10^5 cells g^{-1} soil.

222

223 **Figure S1-3:** A) Count of RNA-stained cells in pure and diluted soil extracts and B) Prepared
 224 vs measured cell density in the irradiated-re-inoculated-soil. Differences from zero were
 225 tested with t-test at 5% P-level (ns: non significant).

226

227 **SUPPLEMENT 2: GENERALIZATION OF RESPIRATORY ENZYME STABILIZATION**
228 **IN THE FOUR OTHER STUDIED SOILS**

229 The incubation of three enzymes involved in glycolysis (GHK: glucose hexokinase, G6PI:
230 glucose-6-phosphate isomerase) and the Krebs cycle (MDH: malate dehydrogenase) in non-
231 irradiated-soil of Theix showed that 5-14% of initial enzymatic activity was retained in a
232 highly stable form. Here we tested whether the protective role of soil on respiratory enzymes
233 can occur in other soil types. To this end, we incubated G6PI in non-irradiated soil from four
234 other studied sites (Ponta Grossa, Laqueuille, Bugac and Soro) for 13 days. This enzyme was
235 selected because it showed the lowest stabilization rate (Table 2 of the main text). However,
236 spectrometric measurement of G6PI activity at pH=8.5 was not possible in soil from Soro.
237 This soil released huge quantity of humic acids at pH 8.5 hampering measurement of NADPH
238 since humic acids and NADPH both absorbs at 340 nm. To demonstrate the ability of soil
239 from Soro to stabilize respiratory enzymes, G6PI was replaced by MDH. MDH was measured
240 at pH = 6.7, which limited solubilization of humic acids and allowed measurement of NADH
241 concentration.

242 Activity of G6PI in the soils of Ponta Grossa, Laqueuille and Bugac decreased
243 strongly after one hour of incubation and then moderately till day 6 of incubation (Table S2-
244 1). From day 6 to the end of incubation, activity of G6PI was constant indicating that
245 remaining enzymes were retained in a stable pool. These results are consistent with the fast
246 and intermediate cycling pools of enzymes identified in soil of Theix (Table 2 of the main
247 text). Percentage of enzymatic activity stabilized in soil depended on soil type and represented
248 3.3% for Ponta Grossa, 0.8% for Laqueuille and 2.5% for Bugac (Table S2-1). Activity of
249 MDH in soil from Soro followed the same kinetics as for G6PI but it stabilized at higher
250 percentage ($\pm 27\%$). Collectively, these results indicate that the soil stabilization of respiratory
251 enzymes is common in soils.

252 **Table S2-1:** Activity of glucose-6-phosphate isomerase (G6PI) and malate dehydrogenase
253 (MDH) after their addition in the non-irradiated-soils of Ponta Grossa, Laqueuille, Bugac and
254 Soro. Enzyme activity with time is expressed as % of the initial activity of enzymatic solution
255 applied to the soil.

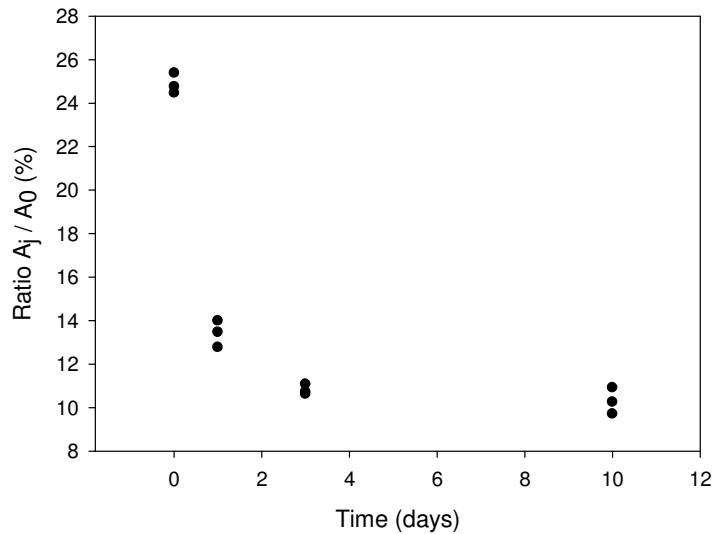
256

<i>Incubation time</i>	G6PI			MDH
	Ponta Grossa	Laqueuille	Bugac	Soro
1 hour	7.85 \pm 0.96	1.49 \pm 0.18	10.4 \pm 0.2	42.4 \pm 6.2
6 days	3.51 \pm 0.36	0.81 \pm 0.06	2.31 \pm 0.36	28.2 \pm 2.4
13 days	3.32 \pm 0.07	0.76 \pm 0.05	2.52 \pm 0.16	26.9 \pm 1.8

257

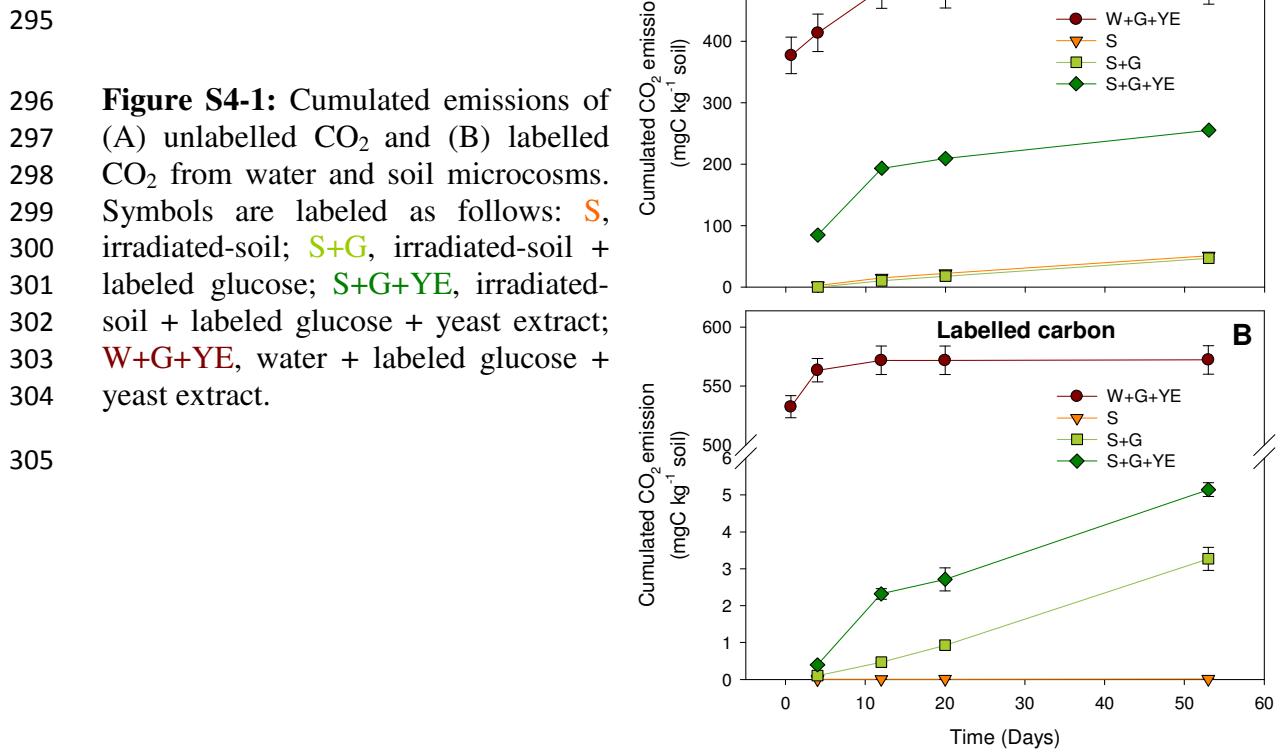
258 **SUPPLEMENT 3: KINETIC ACTIVITY OF G6PI IN THE IRRADIATED-SOIL OF**
259 **THEIX.**

260


261

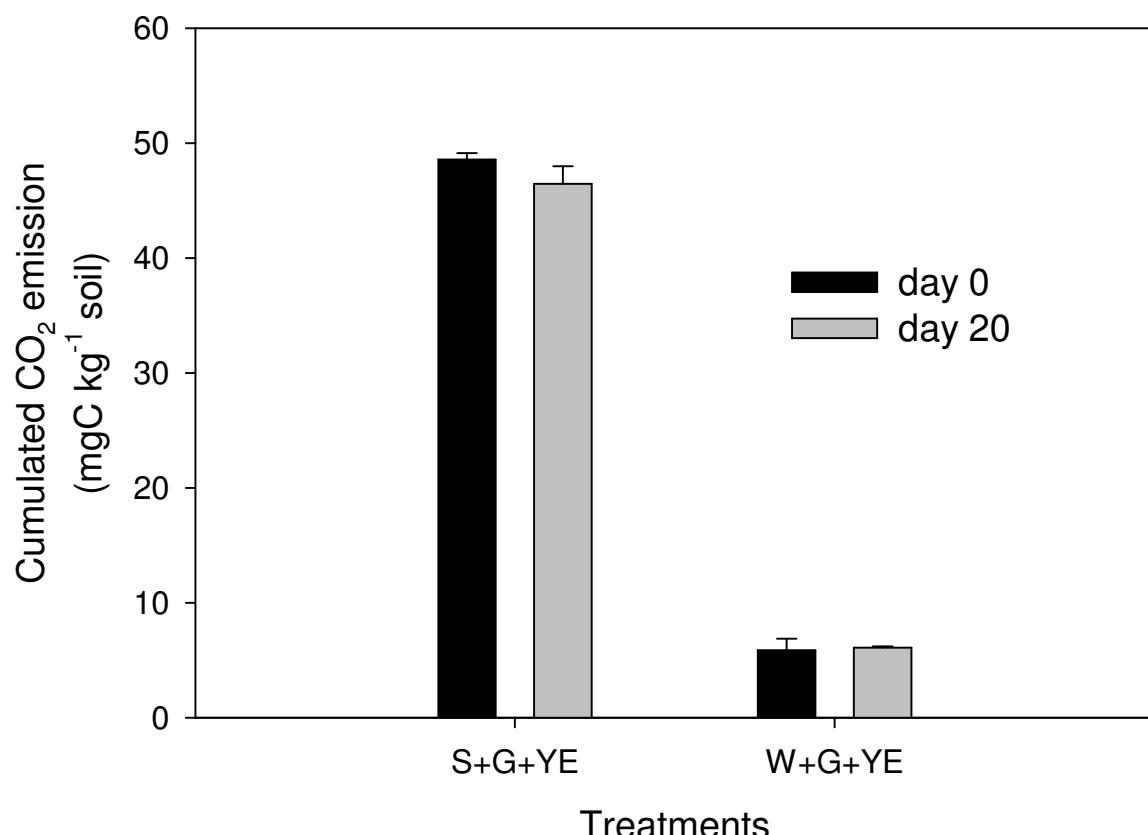
262

263 **Figure S3-1:** Activity of glucose-6-phosphate isomerase (G6PI) following its addition in the
264 irradiated-soil of Theix. Enzyme activity with time is expressed as % of the initial activity of
265 enzymatic solution applied to the soil.


266

267

276 **SUPPLEMENT 4: UNLABELED AND LABELED CARBON RELEASED AS CO₂ IN**
 277 **WATER AND SOIL MICROCOSMS.**


278
 279 The ¹³C labeling of glucose allowed separating mineralization of added glucose from that of
 280 unlabelled substrates present in yeast extract and soil. Fig S4-1 shows that labeled glucose (G)
 281 was oxidized in CO₂ in water (W) and soil (S) microcosms with yeast extract (YE)
 282 (W+G+YE and S+G+YE treatments, respectively). Moreover, labeled CO₂ emission was
 283 greater in S+G+YE than in S+G treatment. These results indicate that an equivalent of
 284 glycolysis and the Krebs cycle was reconstituted by enzymes released from dead yeast cells in
 285 water and soil. It is interesting to note that emitted CO₂ was equally composed of labeled and
 286 unlabelled carbon in water microcosms whereas it was dominated by unlabelled carbon in soil
 287 microcosms. This dominance of unlabelled CO₂ in soil microcosms probably reflected
 288 dominance of unlabelled substrates over labeled glucose since irradiation released huge
 289 quantities of soluble C from killed biomass (Fig. S1-1C). Moreover, these unlabelled
 290 substrates released from killed biomass contained many intermediary compounds that could
 291 be decarboxylated faster than glucose. These intermediary compounds may also inhibit
 292 glucose oxidation since many enzymatic reactions involved in glycolysis and the Krebs cycle
 293 are inhibited by presence of reaction
 294 products.

306 **SUPPLEMENT 5: EFFECT OF THE SECOND GLUCOSE DOSE ON MICROCOISM**
307 **RESPIRATION.**

308 To determine the long-term (>20 days) metabolic capabilities of enzymes from yeast-extract
309 in water and soil (W+G+YE and S+G+YE treatments), two sets of microcosms were
310 prepared. First set received glucose application at the beginning of experiment (results from
311 this set are presented in the main text of manuscript) whereas second set received glucose
312 after 20 days of incubation. Emission of CO_2 from the two sets of microcosms were similar
313 (Fig S5-1) indicating that respiratory activity in microcosms after 20 days was limited by
314 activity of yeast-extract enzymes and not by availability of C-substrate. The higher respiratory
315 activity in S+G+YE than in W+G+YE treatment illustrated the role of soil particles in the
316 stabilization of enzymes and the EXOMET.

317

318

319 **Figure S5-1:** Cumulated CO_2 emissions from water and soil microcosms that received the
320 glucose supply at the beginning or after 20 days of incubation. The cumulated emissions
321 corresponded to the incubation period 20-58 days.

322

323 **REFERENCES**

324 Battin, T. J., Wille, A., Sattler, B., and Psenner, R.: Phylogenetic and functional heterogeneity
325 of sediment biofilms along environmental gradients in a glacial stream, *Appl. Environ.*
326 *Microbiol.*, 67, 799-807, 2001.

327 Biegala, I. C., Not, F., Vaulot, D. & Simon, N. Quantitative assessment of pico-eukaryotes in
328 the natural environment by using Taxon-specific oligonucleotide probes in association
329 with tyramide signal amplification-fluorescence, *in situ* hybridization and flow
330 cytometry. *Appl. Environ. Microbiol.* **69**, 5519-5529 (2003).

331 Danovaro, R., Dell'Anno, A., Trucco, A., Serresi, M., and Vanucci, S.: Determination of virus
332 abundance in marine sediments, *Appl. Environ. Microbiol.*, 67, 1384-1387,
333 10.1128/aem.67.3.1384-1387.2001, 2001.

334 Mary, I., Cummings, D. G., Biegala, I. C., Burkhill, P. H., Archer, S. D., and Zubkov, M. V.:
335 Seasonal dynamics of bacterioplankton community structure at a coastal station in the
336 western English Channel, *Aquat. Microb. Ecol.*, 42, 119-126, 2006.

337 McNamara, N. P., Black, H. I. J., Beresford, N. A., and Parekh, N. R.: Effects of acute
338 gamma irradiation on chemical, physical and biological properties of soils, *Appl. Soil*
339 *Ecol.*, 24, 117-132, 2003.

340 Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An extraction method for measuring soil
341 microbial biomass-C, *Soil Biol. Biochem.*, 19, 703-707, 1987.

342 Warcup, J. H.: The soil plate method for isolation of fungi from soil, *Nature*, 166, 117-117,
343 1950.