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Abstract

Phenology, the timing of recurring life cycle events, controls numerous land surface
feedbacks to the climate systems through the regulation of exchanges of carbon, water
and energy between the biosphere and atmosphere. Land surface models, however,
are known to have systematic errors in the simulation of spring phenology, which po-5

tentially could propagate to uncertainty in modeled responses to future climate change.
Here, we analyzed the Harvard Forest phenology record to investigate and character-
ize the sources of uncertainty in phenological forecasts and the subsequent impacts
on model forecasts of carbon and water cycling in the future. Using a model-data fu-
sion approach, we combined information from 20 yr of phenological observations of 1110

North American woody species with 12 phenological models of different complexity to
predict leaf bud-burst.

The evaluation of different phenological models indicated support for spring warming
models with photoperiod limitations and, though to a lesser extent, to chilling models
based on the alternating model structure.15

We assessed three different sources of uncertainty in phenological forecasts: param-
eter uncertainty, model uncertainty, and driver uncertainty. The latter was characterized
running the models to 2099 using 2 different IPCC climate scenarios (A1fi vs. B1, i.e.
high CO2 emissions vs. low CO2 emissions scenario). Parameter uncertainty was the
smallest (average 95 % CI: 2.4 day century−1 for scenario B1 and 4.5 day century−1 for20

A1fi), whereas driver uncertainty was the largest (up to 8.4 day century−1 in the simu-
lated trends). The uncertainty related to model structure is also large and the predicted
bud-burst trends as well as the shape of the smoothed projections varied somewhat
among models (±7.7 day century−1 for A1fi, ±3.6 day century−1 for B1). The forecast
sensitivity of bud-burst to temperature (i.e. days bud-burst advanced per degree of25

warming) varied between 2.2 day ◦C−1 and 5.2 day ◦C−1 depending on model structure.
We quantified the impact of uncertainties in bud-burst forecasts on simulated carbon

and water fluxes using a process-based terrestrial biosphere model. Uncertainty in
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phenology model structure led to uncertainty in the description of the seasonality of
processes, which accumulated to uncertainty in annual model estimates of gross pri-
mary productivity (GPP) and evapotranspiration (ET) of 9.6 % and 2.9 % respectively.
A sensitivity analysis shows that a variation of ±10 days in bud-burst dates led to a
variation of ±5.0 % for annual GPP and about ±2.0 % for ET.5

For phenology models, differences among future climate scenarios represent the
largest source of uncertainty, followed by uncertainties related to model structure, and
finally, uncertainties related to model parameterization. The uncertainties we have
quantified will affect the description of the seasonality of processes and in particular the
simulation of carbon uptake by forest ecosystems, with a larger impact of uncertainties10

related to phenology model structure, followed by uncertainties related to phenological
model parameterization.

1 Introduction

Phenology is the study of the timing of recurrent biological events and the causes
of their temporal change in response to biotic and abiotic forces (Lieth and Radford,15

1971). As variability in the timing of phenology is tightly coupled to variability in cli-
mate, phenology can be considered as an important indicator of climate change (e.g.
IPCC, 2007; Menzel et al., 2006). Numerous studies have documented the impacts
of climate change on plant and tree phenology. For instance, the Fourth Assessment
Report (AR4) of the IPCC reported an overall trend towards earlier spring phenologi-20

cal events (e.g. bud-burst, leaf unfolding, flowering and pollen release) between 2 and
5 day decade−1. Menzel et al. (2006) estimated an average advance of spring phenol-
ogy in Europe of 2.5 day decade−1 while Schwartz et al. (2006) showed a similar ear-
lier bud-burst of 1.1 day decade−1 across most temperate Northern Hemisphere land
regions over the 1955–2002 period with different dynamics among major continental25

areas. Jeong et al. (2011) reported several trends of start of season at global and

881

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/879/2012/bgd-9-879-2012-print.pdf
http://www.biogeosciences-discuss.net/9/879/2012/bgd-9-879-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 879–926, 2012

Uncertainty of
phenological

responses to climate
change

M. Migliavacca et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

regional scale and suggested a reduction of the rate of advancement of the start of the
season in the period 2000–2008 (0.2 days) compared to the period 1982–1999 (5.2
days).

Although these studies highlighted that spring phenology has responded to recent
climate change, large uncertainties remain as to how phenology will respond to pro-5

jected future climate change. There are several conflicting reports in the literature
about the relative roles of different environmental factors such as chilling (i.e. amount
of accumulated cool temperature exposure required for breaking dormancy) and pho-
toperiod (daylight duration control of the induction or release from dormancy) in control-
ling tree phenology. Körner and Basler (2010) have argued that because of photope-10

riodic constraints, observed effects of temperature on spring life-cycle events cannot
be extrapolated to future temperature conditions without simultaneously accounting for
photoperiod. Other studies (e.g. Chuine et al., 2010; Morin et al., 2009; Vitasse et al.,
2011) suggest that photoperiod has not been shown to be more dominant than tem-
perature when predicting bud-burst or flowering. These latter studies argue that tem-15

perature has a more dominant role than photoperiod during both the endodormancy
phase (i.e. a non-growing -resting, quiescent or inactive- phase caused by conditions
or factor within a plant or seed itself) and the ecodormancy phase (i.e. the cessation
of growth induced by environmental factors) that controls spring phenology. Another
approach (Schleip et al., 2008) suggests the importance of weighting temperature forc-20

ing, in a sensitive time span, to determine the effective temperature which controls each
phenophase. These different hypotheses lead to different possible structures for phe-
nology models, but the associated uncertainties in forecast responses of phenology to
climate change have yet to be quantified.

Uncertainty in model projections can be classified in three categories: uncertainty25

due to (1) model parameters; (2) model structure; and (3) model drivers (i.e. uncertainty
of future climate). The evaluation of phenological model parameter uncertainty is nec-
essary in order to estimate the uncertainty in performance of a particular model struc-
ture and for parameter optimization; model structural uncertainty stems from different
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model assumptions and formulations, with different processes described by different
models (i.e. accumulation of degree-days, chilling requirement, photoperiod limitation);
model driver uncertainty is due to uncertainty in future climate scenarios used for eco-
logical forecasts (Cook et al., 2010).

Model-data fusion (e.g. Keenan et al., 2011; Wang et al., 2009) provides a promis-5

ing approach for assessing uncertainties in ecological forecasting. Also referred to
as model-data integration or data assimilation, model-data fusion relies on the com-
bination of models with observational constrains through an optimization approach
(e.g. simulating annealing, quasi-newton methods etc.). In this way, model parame-
ters, model states and their respective uncertainties can be estimated, conditional on10

the data (here: consistent phenological observations by a human observer). With a
model-data fusion approach it is possible to objectively incorporate data, along with
associated uncertainties, allowing for a full characterization of posterior distributions
of model parameters. In this way, confidence estimates of model projections can be
obtained, both for current climate conditions and for future climate change scenarios.15

Phenology, and in particular bud-burst, controls numerous land surface feedbacks to
the climate systems and ecological interactions through the regulation of exchanges
of carbon, water and energy between the biosphere and atmosphere (e.g. Richard-
son et al., 2009, 2010; Baldocchi, 2008; Morisette et al., 2009; Fitzjarrald et al., 2001).
Uncertainty in the prediction of spring phenology can therefore feed-forward to gen-20

erate uncertainty in estimates of carbon and water cycling from terrestrial biosphere
models. Several studies have shown the sensitivity of different biogeochemical and
terrestrial biosphere models to bud-burst and other phenological transitions (e.g. Ran-
derson et al., 2009; Levis and Bonan, 2004; White et al., 2000; Migliavacca et al.,
2009). Furthermore, a recent multi-model synthesis study has shown that spring phe-25

nology is poorly simulated by different terrestrial biosphere models, resulting in large bi-
ases in model estimates of carbon cycling, in particular for deciduous broadleaf forests
(Richardson et al., 2012). Hence, modeled future carbon, water and energy fluxes, as
well as many biosphere-climate interactions projected by terrestrial biosphere models,
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might be subject to uncertainty due to the uncertain representation of phenological
responses to climate change.

Here we present a phenological forecasting study using phenological data for 11
different North American tree species observed at Harvard Forest over the last 20 yr
(Richardson and O’Keefe, 2009). We advance beyond the recent work by Morin et al.5

(2009), by characterizing the sources of uncertainty in bud-burst forecasts for the 21st
century, and what these uncertainties mean for modeling forest-atmosphere fluxes of
carbon and water.

We combine phenological observations collected at the Harvard Forest with 12 dif-
ferent phenological models using a model-data fusion approach. With this analysis10

we characterize the uncertainty of model parameters and model structures. We then
project model estimates of phenology forward, along with the associated parameter
uncertainties, using statistically downscaled climate projections (Delworth et al., 2006;
Hayhoe et al., 2007) for two different IPCC climate change scenarios (A1fi, or high CO2
emissions scenario, and B1 or low CO2 emissions scenario). This allows us to explore15

how the uncertainty characterized using current phenological observations is propa-
gated in the future and to quantify how uncertainty in model parameters and model
structure interacts with uncertainty in climate scenarios.

Then, we analyze the impact of the uncertainty of future bud-burst in a widely used
terrestrial biosphere model (Boreal Ecosystems Productivity Simulator BEPS, Ju et al.20

(2006)). We evaluate the differences between gross primary productivity (GPP) and
evapotranspiration (ET) as simulated by BEPS with the native phenological model and
forced by the bud-burst forecasts obtained with the best model formulation selected
according to data. Finally, we evaluate the sensitivity of GPP and ET to different levels
of uncertainty in bud-burst (±10, ±1 days).25
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2 Materials and methods

2.1 Site description and phenological observations

The Harvard Forest (42.54◦ N, 72.18◦ W, el. 220 410 m a.s.l.) site used in this study is lo-
cated in central Massachusetts, about 100 km west of Boston, USA. The climate is clas-
sified as humid-continental, with a mean July temperature of 20 ◦C and mean January5

temperature of 7 ◦C. Mean annual precipitation is 1100 mm, and is distributed evenly
across the seasons. Forests are dominated by transition hardwoods: red oak (Quer-
cus rubra), red maple (Acer rubrum) black oak (Quercus velutina), white oak (Quer-
cus alba) and yellow birch (Betula alleghaniensis). Conifers include eastern hemlock
(Tsuga canadensis), red pine (Pinus resinosa) and white pine (Pinus strobus). Since10

1990, springtime phenology observations have been made at 37 day intervals. Leaf
development was monitored on three or more individuals (a total of 39 permanently
marked trees or shrubs) of 11 woody species (Table 1). Phenological observations
used here are available online (http://harvardforest.fas.harvard.edu).

In the present analysis we focus on bud-burst dates from 1990 to 2011. We define15

bud-burst as the date when 50 % of all buds on an individual tree had recognizable
leaves emerging (Richardson et al., 2009). Our analysis uses temperature and pho-
toperiod as drivers of phenology. Mean daily air temperatures were computed from
the maximum and minimum daily temperatures recorded for the period of study at the
Shaler (1964–2002) and Fisher (2001–2011) meteorological stations. Photoperiod was20

computed as described by a standard equation based on latitude and day of the year
(Monteith and Unsworth, 1990).

2.2 Phenological models

A large number of different models exist for the simulation of bud-burst for different
species (e.g. Chuine et al., 1999; Schaber and Badeck, 2003; Morin et al., 2009). The25

application of different models against different datasets of the same species, however,
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gave contrasting results about which modeling approach is best (Hunter and Lechow-
icz, 1992; Chuine et al., 1998, 1999). The models provide a context for interpreting
observed interannual and inter-specific variability in phenology and to assess which
model structure is best supported by the available data.

The models used in this study are largely based on those presented by Chuine5

et al. (1999) and updated in Richardson and O’Keefe (2009). We define two main
categories of models (Table 2). The model categories differ in their assumptions of
how warm and cold temperatures control developmental processes (Fig. 1). In the
spring warming models, temperatures above a base temperature accumulate until a
threshold (in degree-days) is reached, thus triggering bud-burst. In the chilling models,10

cold weather also plays a role. In the sequential chilling model, a chilling threshold must
be reached before warming is effective; in the alternating and parallel chilling models,
an increase in the amount of chilling experienced reduces the amount of warming that
is required. For all models, the rates of forcing (or Spring Warming) and chilling are
calculated based on the threshold approach (CF1) and on the Sarvas’ function (CF2)15

(Sarvas, 1972; Chuine et al., 1999).
Either in Spring Warming or Chilling models, photoperiod can be a factor by control-

ling the point in time (i.e. a day-length threshold) at which chilling and forcing begin to
have an effect.

For example, parameter t2 in Table 2 controls the date at which forcing and/or chilling20

begins to be accumulated in some models. We also compared versions of the model
with no photoperiod control; in this instance (models denoted by the suffix t0; see
Table 2) parameter t2 is fixed to 1 January, which is the value for onset of degree-day
accumulation most commonly used in other studies.
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2.3 Statistical analysis

2.3.1 Model parameters and uncertainty estimations

Model parameters (listed in Table 2) were estimated separately for each species and
model using bud-burst observations from Harvard Forest as constrains. This allowed
for the characterization of species-specific biological responses to environmental cues.5

Model optimization and uncertainty analysis was performed using a model-data fu-
sion platform based on simulated annealing-type routines and Monte Carlo techniques
(Metropolis et al., 1953) as described by Richardson et al. (2010). The cost func-
tion selected for this purpose was the sum of squared error between observed and
modeled data. Once the best parameter set was identified, the parameter space was10

further explored until 1000 parameter sets that gave statistically equivalent fits to the
data were accepted. A specific parameter set was accepted if passed a χ2 test (at
95 % confidence) for acceptance/rejection after a normalization of the variance based
on the minimum of the cost function (Franks et al., 1999).

The resulting posterior distributions defined the parameter space within which ap-15

proximately equally good agreement between data and model simulations can be ob-
tained. Uncertainty estimates for model parameters and model predictions were thus
provided directly by the model-data fusion framework, conditional on the data and the
cost function.

By running an ensemble of models, with parameter sets selected from the poste-20

rior distributions, we can characterize the uncertainty in model predictions (both under
current and future climate scenarios) that is attributed to parameter uncertainty.

2.3.2 Model selection and evaluation

We used the Akaike Information Criterion (AIC), a method based on information theory
(Akaike, 1973; Anderson et al., 2000) for model selection purposes. AIC is a mea-25

sure of the trade-off between the goodness-of-fit (model explanatory power) and model
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complexity (number of parameters). The small sample corrected criterion, AICc, devel-
oped for cases where the number of samples is small (Burnham and Anderson, 2002),
is calculated as in Eq. (1):

AICc=nlogσ2+2p+
2p(p+1)
n−p−1

(1)

where n is the number of samples (i.e. observation years), p is the number of model5

parameters and σ2 is the residual sum of square divided by n. The competing model
formulations proposed in Table 2 can be ranked from the best (i.e. lowest AICc) to
the less supported by data (i.e. highest AICc). To rank models for each species, the
absolute difference in AICc (∆AICc) between alternatives models and the best model
have been used (Burnham and Anderson, 2002): if the difference, ∆AICc, is zero or10

very small, both models are essentially equally likely to be the best model. If ∆AICc is
around 2.0, then the model with the lower AICc is almost three times more likely to be
best. If, however, ∆AICc is around 6.0, then the model with the lower AICc is about 20
times more likely to be best (Table 3).

Finally, for each species, we tested the best model selected by AIC using phenolog-15

ical observations from 2010 and 2011, which had not been used for model calibration.
This evaluation was conducted computing the R2, the slope of the linear regression
analysis (observed vs modeled) as well as the root mean square error (RMSE) be-
tween observed and modeled bud-burst dates (Pineiro et al., 2008).

2.3.3 Phenological forecast and propagation of model uncertainty20

With the aim of assessing the potential effects of climate change on phenology, we ran
the models from 1960 to 2099 using climate projections for Harvard forest. These were
generated by Hayhoe et al. (2007) using the NOAA Geophysical Fluid Dynamics Lab-
oratory (GFDL) CM2 global coupled climate model (Delworth et al., 2006), statistically
downscaled to approximately 10 km spatial resolution. The CM2 model was run using25

two scenarios of CO2 and other greenhouse gas emissions: the IPCC Special Report
888
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on Emission Scenarios (SRES) higher (A1fi) and lower (B1) scenarios (Nakicenovic
et al., 2000). Compared to a 1960–1990 baseline of 7.1 ◦C mean annual tempera-
ture and 1100 mm annual precipitation, corresponding values at the end of simula-
tion (mean 2070–2099) are 12.0 ◦C and 1270 mm for the A1fi scenario and 9.5 ◦C and
1240 mm for the B1 scenario (Fig. 2a).5

Uncertainty was propagated by running the models forward with the ensemble of
parameter sets that passed the χ−2 test at 95 % confidence (Sect. 2.3.1), yielding for
each year a range of model predictions (Fig. 2b).

The uncertainty in model parameters was analyzed by evaluating the propagation of
the uncertainty for each scenario and model structure independently. The ratio of the10

mean width of the 95 % confidence interval, computed for the last and the first decade
of the projections, was used to quantify the degree to which the parameter uncertainty
changes between current and future climate conditions.

The uncertainty related to the model structure was characterized by analyzing the
average smoothed projected trend across model formulations and climatic scenarios.15

The smoothed bud-burst projection was extracted from the time series by using a local
polynomial regression fitting (Cleveland and Devlin, 1988). The interannual variability
was computed as the standard deviation of the residual between the forecasted bud-
burst and its smoothed time-series.

The uncertainty related to future climate forcing was analyzed by computing, for the20

best model selected for each species, the trends in advancing bud-burst under the
two different climatic scenarios. Trends were characterized by using the Sen’s slope
estimator and the nonparametric Mann-Kendall test (Helsel and Hirsch, 2002).

2.4 Biogeochemical models

2.4.1 Description of BEPS25

The Boreal Ecosystem Productivity Simulator (BEPS) was originally developed to sim-
ulate the carbon and water fluxes of the Canadian landmass at daily time steps in a
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remote sensing framework (Liu et al., 1997, 2002). Derivatives of this original version
have been developed and tested at various boreal forest and peatland ecosystems (e.g.
Govind et al., 2009, 2011; Sonnentag et al., 2008; Parton et al., 2000; Ju and Chen,
2005; Ju et al., 2006). Spring phenological events such as bud-burst are modeled as
functions of air temperature (Ju et al., 2006), with a model structure classifiable as5

Spring Warming without photoperiod limitation. After bud-burst (accumulated growing-
degree days above 5 ◦C reach 75 ◦C), leaf area index keeps increasing linearly up to
growing-degree days of 500 ◦C when prescribed maximum growing season leaf area
index for understory and overstory are reached.

For this study, we used the version of BEPS described by Ju et al. (2006), param-10

eterizing the soil-vegetation continuum described by BEPS to consist of five soil and
two vegetation layers with site-specific information for Harvard Forest from the litera-
ture (Urbanski et al., 2007) and the Harvard Forest data archive. Spanning the period
1960–2099, the model was driven by half-hourly meteorological forcing data includ-
ing incoming shortwave radiation, air temperature, relative humidity, wind speed and15

precipitation.
For the future climate projection, we used downscaled data (Hayhoe et al., 2007)

from the regionalized projection of the GFDL-CM global coupled climate-land model
Delworth et al. (2006) driven with scenario A1fi IPCC (2007). For each run, the model
was initialized following the procedure outlined in Ju et al. (2006).20

2.4.2 Modeling strategy

Several model runs have been conducted over the period 1960–2099 with BEPS and
forced by different bud-burst forecasts. Due to the computational demand of running
BEPS with the full posterior distribution of uncertainty from each model, we designed
specific experiments to test both the BEPS native phenology model, and the sensitivity25

of carbon and water cycles estimated by BEPS to errors in simulated bud-burst dates.
The different runs are described below:
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– Run 1: BEPS with bud-burst simulated by the native phenological routine (Refer-
ence Run);

– Run 2: BEPS forced by bud-burst dates simulated by the best model formulation
selected according to the AICc as described in Sect. 2.3.1 and the optimized
parameters set;5

– Run 3: BEPS forced by 4 different bud-burst dates. The bud-burst forcing time se-
ries has been computed by adding to the bud-burst simulated with the Reference
Run ±1 and ±10 days. These runs are hereafter referred as BEPS+1; BEPS−1;
BEPS+10 and BEPS−10.

The differences in cumulated annual GPP and ET between Run 1 and Run 2 allow for10

the quantification of uncertainty in carbon and water fluxes associated with the BEPS
native bud-burst sub-model. The separate runs of Run 3 allow for the characterization
of the sensitivity of carbon and water fluxes in BEPS to variations (shift) in bud-burst
dates. In other words, after the characterization of the uncertainty around individual
future bud-burst dates, we look at the effect of constant “extra” days in spring along the15

simulation period in terms of carbon and water fluxes as described by BEPS. Hereafter
we referred to Run 3 as the “Sensitivity Runs”.

3 Results

3.1 Evaluation of phenological models

The AICc values, reported in Table 3, show that models belonging to the class Spring20

Warming with photoperiod control are overall better supported by the data than com-
peting model structures. In particular, the simple Spring Warming models (SW-CF2
plus SW-CF1) are more often (for 7 species) selected as best models (Tables 1 and 3).
For several species, however, AICc gave support for Chilling models. Among Chilling
class models, Alternating (Alt) is the class that is more often selected as the best (325
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times and 5 times with ∆AICc<2), while Sequential (Seq) models are selected once.
Spring Warming models without photoperiod control are never selected as the best
model. Moreover, Table 3 shows that the model SW-CF2 is the model with the lowest
AICc across species and then the most generalizable model, followed by Alt-CF1. The
time series of bud-burst dates (1960–2099) simulated for red oak with the best model5

selected (SW-CF2) is shown in Fig. 2b while simulations with different model structures
are reported in Fig. 2c.

The R2 and the slope of the linear regression between observed and predicted bud-
burst dates with the model selected as best for the period 1990–2009 (i.e. years used
for models calibration) and for each species are reported in Fig. 3a and b, respectively.10

Figure 3c shows that these calibrated models were able to successfully predict 2010
and 2011 bud-burst dates (R2 =0.79; RMSE=4.3 day).

3.2 Uncertainty of phenological forecasts

3.2.1 Uncertainty of model parameters

The impact of the uncertainty of model parameters has been evaluated by running the15

models forward with the 1000 realizations of model parameter sets accepted by the χ2

test. The uncertainty in individulal years results in an uncertainty in the projected bud-
burst trends. A summary of the resulting uncertainty in the magnitude of the projected
bud-burst trends simulated for each species with the best model selected as in Table 1
is represented in the violin plot in Fig. 4. The uncertainty in future trends varied across20

species and is larger for simulations conducted under the scenario A1fi. The average
uncertainty, computed as the average of the 95 % CI, is 2.4 day century−1 (ranging
from ±0.7 day century−1 for ACRU to ±4.1 day century−1 for BELE) for scenario B1 and
4.5 day century−1 (ranging from ±0.7 day century−1 for ACRU to ±9.2 day century−1 for
BELE) for A1fi.25

The average ratio of the mean width of the 95 % confidence interval, computed for
the last and the first decade of the projections with the best models is 1.2 (1sd: ±
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0.2) for both scenarios. For many models and many species, uncertainty at the end
of the simulation is similar to what it is with the present climate. For models without
photoperiod limitations (more often for SW-CF1t0 and SW-CF2t0) and some Chilling
models (Par and Par2 models), the uncertainty at the end of simulation doubles (ratio
between 2.0 and 5.3) and, in particular under scenario A1fi, there is a large increase5

in uncertainty.

3.2.2 Uncertainty of models structure

The smoothed trends computed for a selection of models, averaged across species,
for the two scenarios are reported in Fig. 5. The average of the model ensembles
(grey line in Fig. 5) and the average computed with the Akaike’s weights (black line in10

Fig. 5) according to Turkheimer et al. (2003) are also shown. Weighted averages and
the standard deviation of trends computed across the model structures are reported in
Table 1. The average standard deviation of the projected trends is a measure of the
uncertainty in trends related to model structure and varies between ±3.6 day century−1

for B1 and ±7.7 day century−1 for A1fi.15

Models more frequently selected as the best (i.e. Spring Warming limited by pho-
toperiod and Alternating models), predict a response to future warming in the middle of
the model ensemble. Spring Warming models without photoperiod limitations showed
a strong trend toward early bud-burst, particularly relevant under scenario A1fi, that
affect also the arithmetic average of multi-model ensemble (grey line in Fig. 5). By20

2099, differences in forecast bud-burst date across model structures could reach about
10 days for the A1fi scenario. Chilling models and Spring Warming models with pho-
toperiodic limitation show less steep projected trends. The trends simulated with these
two classes of models level-off around 2060 for scenario B1 while for scenario A1fi
a slow reduction of the slope in time is observed. For scenario B1, the leveling off25

reflects the projected decrease of the rate of temperature warming (Fig. 2a) while for
scenario A1fi the interaction between model structure, parameters and warm temper-
atures (see Discussion) contributed to reduce the rate of bud-burst advancing. The
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future sensitivity of bud-burst to temperature is variable across model structures as
depicted in the time series in Fig. 6. We observe a stronger sensitivity for Spring
Warming models without photoperiod limitation (e.g. SW-CF2t0: −5.3 day ◦C−1 for A1fi,
−5.0 day ◦C−1 for B1) compared with Spring Warming models limited by photoperiod
(SW-CF1: −2.5 day ◦C−1 for A1fi, −2.4 day ◦C−1 for B1; SW-CF2: −2.4 day ◦C−1 for A5

A1fi 1, −2.2 day ◦C−1 for B1) and Chilling models (e.g. Alt, −2.2 day ◦C−1 for both sce-
narios). For these models (often selected as the best) and for both scenarios, sensitiv-
ity to temperature is stable or decrease in time and spans from −2.4 to −2.9 day ◦C−1 in
the 1960s to values ranging from −2.3 to −2.4 day ◦C−1 by the end of simulation. Under
the scenario B1, the average reduction of the bud-burst sensitivity to temperature for10

the best models selected is about 8.3 % compared to the sensitivity at the beginning
of the simulation. Models without photoperiod or chilling limitation show an increase
of the sensitivity of bud-burst to temperature by the end of simulation reaching about
−6.0 day ◦C−1 while Parallel models showed a quite variable and higher sensitivity to
temperature.15

The interannual variability predicted by all models and by all species is reported in
Fig. 7, where the blue histograms represent the year-to-year variations under climate
scenario B1 and the red histograms under the scenario A1fi. For Chilling models and
Spring Warming models without photoperiod limitations, the future interannual variabil-
ity predicted is larger than the one predicted by Spring Warming models with photope-20

riod limitation and Alternating models. Within different species we do not observe large
differences, except for black cherry. Interannual variability under the scenario A1fi is
slightly larger as shown by the differences in red and blue histograms in Fig. 7. How-
ever, differences within the 2 scenarios are not statistically significant.

3.2.3 Uncertainty of model drivers25

The uncertainty of model drivers is related to the uncertainty in future climate scenarios
used for ecological forecasts and here we analyzed the differences in phenological
forecasts obtained using the scenarios A1fi and B1.
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The uncertainty of trends for each species was assessed by computing the Sen’s
slope estimator for the 1000 projected bud-burst time series and reported for the best
model for each species (Fig. 4). Projected trends computed for the best model selected
for each species for the two scenarios are reported in Table 1. A larger uncertainty in
bud-burst trends was evident for scenario A1fi compared to scenario B1.5

Among the significant trends according to the Mann-Kendall test, we have found
an average advance in bud-burst across species of 9.4 (1sd: ±3.4, minimum: 5.0,
maximum: 14.9) day century−1 and 4.3 (1sd: ±1.7, minimum: 1.7, maximum: 7.0) day
century−1 for scenario A1fi and B1, respectively.

3.3 Uncertainty in Gross Primary Productivity and Evapotranspiration10

simulated with BEPS

A summary of the differences in ET and GPP simulated with the runs conducted with
BEPS are reported in Table 4. On average the BEPS native phenology model simu-
lates an earlier bud-burst of about 17 days (up to a maximum of 59 days) compared
to that simulated with the best model formulation selected for the Harvard forest (i.e.15

SW-CF2). An example of the time series of bud-burst simulated with BEPS, SW-
CF2 and SW-CF2t0 are shown in Fig. 2c. Differences between the Reference Run
and BEPSSW−CF2 represent the impact of uncertainty in model structure on carbon
and water fluxes modeled. We observe an average overestimation of the Reference
Run of 136.0 (±59.2, 1 sd) gCm−2 day−1 yr for GPP (±9.6 % of the annual GPP) and20

1.38 (±0.77, 1 sd) cm yr−1 for ET. The correlation between the differences in fluxes
(∆GPP and ∆ET) and in bud-burst (∆BB) computed between the Reference Run and
BEPSSW−CF2 is stronger for GPP (r =−0.85 p< 0.001, slope=−6.49 gCm−2 day−1)
than for ET (r =−0.55, p< 0.001, slope=−0.055 cm day−1). Figure 8 shows that ∆ET
and ∆BB are strongly negatively correlated (r =−0.82, p< 0.001) when the bud-burst25

occur late (bud-burst>115) while are poorly correlated (r =−0.38, p< 0.01) when the
bud-burst occur early (bud-burst<115). This highlights that year-to-year variations in
GPP are well correlated to year-to-year variations of bud-burst dates, while year-to-year
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variations of ET depend on variations in bud-burst in years with late bud-burst but not
in years with early bud-burst, suggesting the role of others meteorological factors con-
trolling ET late in the season when the bud-burst occurs early.

The results of the sensitivity runs (i.e. differences between the Reference Run and
BEPS−1, BEPS+1, BEPS−10 and BEPS+10) are reported in Table 4 and represent the5

sensitivity of annual GPP and ET to the uncertainty in bud-burst dates due to model
parameters uncertainty (reported as sensitivity of fluxes as consequence of ±1 day of
bud-burst uncertainty). The time series of the residuals (∆GPP, ∆ET) to the Refer-
ence Run are reported in Fig. 9. We observe an average increase in annual GPP of
4.3 % (67.3±16.4 (1 sd) gCm−2) for 10 days of advance in bud-burst and a decrease10

−5.1 % (−80.5±20.3 (1 sd) gCm−2) for 10 days of delay in bud-burst. The sensitiv-
ity runs confirm that ET respond less to variations of bud-burst than GPP: ET varies
of 0.92 % (0.42±0.25 (1 sd) cm) and −1.6 % (−0.76±0.38 (1 sd) cm) for variation in
bud-burst of −10 and +10 days, respectively. The average sensitivity of annual GPP to
±1 day of variation of bud-burst simulated by BEPS is 8.15 gCm−2 day−1, while for ET15

is 0.07 cm day−1. The sensitivity of ET to ±10 days of variations in bud-burst is asym-
metric (green and grey boxes in Fig. 9) and larger for +10 days of bud-burst variations.
Moreover, the year-to-year variations of ∆ET is larger compared to ∆GPP.

A schematic representation of the within-year sensitivity of ∆GPP and ∆ET to vari-
ations in ∆BB is reported in Fig. 10a, b and confirms that the sensitivity of GPP is20

similar both for early and late bud-burst, while the sensitivity of ET is less pronounced
for the run BEPS−10 and in particular for the years with earlier bud-burst (Blue line in
Fig. 10b). Within-years sensitivity of the average soil moisture in summer to ∆BB and
the within-years sensitivity of the percentage of variations of summer soil moisture to
∆BB are shown in Fig. 10c, d. The average soil moisture in summer is lower for years25

with earlier bud-burst and the sensitivity of summertime soil moisture to variations in
bud-burst dates is lower for seasons with earlier bud-burst.
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Table 5 summarizes the correlation and the slopes of the linear regression computed
between ∆GPP and ∆ET simulated with the different sensitivity runs and different me-
teorological and environmental conditions. Year-to-year variations in ∆GPP are corre-
lated with the bud-burst dates, spring and mean annual temperature and the sensitivity
(i.e. slope of the linear regression analysis) is stronger for the run BEPS−10. The inter-5

annual variability of ∆ET is poorly correlated with environmental conditions except for
temperature and snow depth for the run BEPS−10. The interannual variability of sum-
mer ∆ET is more correlated with the main meteorological variables (Table 5) compared
to annual ∆ET.

4 Discussion10

4.1 Sources of uncertainty of phenological forecasts

Our analysis has characterized different sources of uncertainty in phenological fore-
casts. Here we have explicitly accounted for: uncertainty in estimated model param-
eters (parameter uncertainty), uncertainty due to model structure (model uncertainty)
and uncertainty due to the forcing drivers (driver uncertainty).15

Our analysis suggests that, once model parameters are optimized according to the
data, parameter uncertainty is the smallest (average 95 % CI: ±2.4 day century−1 for
scenario B1 and ±4.5 day century−1 for A1fi) and the most straightforward to quantify
by using a model-data fusion framework (model-data-optimization routine), whereas
driver uncertainty is the largest (up to 8.4 day century−1 of difference in trends com-20

puted with the two scenarios and the best models), and the most complicated to quan-
tify given the uncertainty in the future climate. Model uncertainty is also large and
comparable with the driver uncertainty: the predicted bud-burst trends, as well as the
shape of the smoothed projections (Fig. 5), showed a large variability across models
(1sd: ±3.6 day century−1 for B1 and ±7.7 day century−1 for A1fi).25

897

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/879/2012/bgd-9-879-2012-print.pdf
http://www.biogeosciences-discuss.net/9/879/2012/bgd-9-879-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 879–926, 2012

Uncertainty of
phenological

responses to climate
change

M. Migliavacca et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

With the best model selected for each species and its optimized parameters set, an
average trend towards earlier spring by 4.4 day (scenario B1) and 8.8 day (scenario
A1fi) over the coming century is predicted.

Although the parameter uncertainty is smaller than other sources of uncertainty, we
observe that in some species (such as yellow birch, white oak, red oak and sugar5

maple), forecasted bud-burst trends vary greatly depending on the parameters set used
in some models.

Forecast uncertainty due to parameter uncertainty scales with time although does
not increase for all the model structures. Increasing uncertainty by the end of simulation
is model-dependent and it is expected mainly for those model structures less supported10

by data (e.g. Spring Warming without photoperiodic limitation and Parallel models).
Whether these models are used for long-term forecast of spring phenology, the non-
stationary of uncertainty in time should be carefully considered.

The above considerations suggest an interaction between the parameter uncertainty
and the driver uncertainty. More in detail, the parameter uncertainty scales depend-15

ing on the climate scenario used, with higher uncertainty for the high CO2 emissions
scenario (Fig. 4). The expansion of the propagated uncertainty under A1fi scenario
necessitates efforts toward the reduction of the uncertainty in model parameters and,
more important, in the driver uncertainty (i.e. climate scenario).

The driver uncertainty is related to uncertainty in future climate scenarios used to20

run the phenological models. The driver uncertainty is enhanced for models less sup-
ported by data (e.g. up to 2 weeks for Spring Warming class models without photope-
riod limitation and for some versions of Parallel and Sequential models). The mean
temperature increases expected with the scenario A1fi is about 3 times larger than the
one expected for B1. However, some models predict an adjustment of the apparent25

sensitivity of bud-burst to temperature over the next century (Fig. 6). In general, there
is a reduction in the amount that bud-burst advances for a given increase in tempera-
ture. We note that this should not be seen as an adaptation of trees to climate change.
Rather, we believe this reflects photoperiod and/or chilling constrains (according to
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the species), which effectively limit the degree to which the bud-burst can advance in
spring.

Here, we focused on the uncertainty related to the socio-economic scenario used
(A1fi vs B1). However, regarding climate data, other uncertainties can also be ex-
plored. Cook et al. (2010), showed the impact of the temporal and spatial resolution5

of climate scenario in phenological modeling, as well as the uncertainty related to the
use of different general circulation models (GCM). This uncertainty could be assessed
by reporting the ensemble spread obtained by running one phenological model with
climate drivers from different GCMs.

The model uncertainty is comparable to driver uncertainty and both the predicted10

bud-burst trends, and the shape of the smoothed projections, show a large variability
across models (Fig. 5). In this regard, the importance of photoperiod limitation is high-
lighted by (1) the large difference (up to 10 days by the end of our simulations) between
Spring Warming models with and without photoperiod limitation, and (2) by the simi-
larity of the sensitivity of bud-burst to temperature for models that feature photoperiod15

limitation.
For some Chilling class models (e.g. Parallel Models) with specific set of parameters

we observe that in some years the predicted bud-burst dates were highly uncertain and
unrealistic (e.g. no bud-burst predicted). This effect, already noted in an earlier study
(Morin et al., 2009), might be related to interactions between parameter uncertainty20

and model structural uncertainty. Thus, in anomalous years (i.e. winter very warm), for
certain extreme parameter sets, the winter chilling requirements were not fulfilled and
models failed to predict bud-burst in spring (i.e. no bud-burst predicted). This occurred
more often for scenario A1fi than scenario B1, highlighting the need to reduce this
source of uncertainty by either reformulating the model structure or better constraining25

model parameters by increasing the number of available observational datasets.
To summarize, certain model structures and parameterizations resulted in predicted

bud-burst dates that are not sensitive to warm temperatures during winter and early
spring, which limits the degree to which modeled bud-burst can advance under future
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climate scenarios. Up to a certain level of projected warming in climate, different model
structures predict a different absolute value of bud-burst but a similar behavior of the
shape and trend of the projections. In these condition, spring temperature is the main
driver, while photoperiod and chilling are less limiting. For high CO2 emissions scenar-
ios, instead, photoperiod and chilling become important as additional limiting factors5

leading to a different shape of projected spring phenology. Our model selection (Spring
Warming with photoperiodic limitation have been selected more frequently than Chill-
ing models) supports the position of Körner and Basler (2010) in the current debate
about the interactions between warm temperatures in spring, cold temperatures during
dormancy and photoperiod and the degree at which they will control phenology under10

climate warming scenario. However, it should be considered that, although this study
is conducted over a relatively long time series, it includes only one site, which may limit
our ability to effectively constrain the photoperiod parameter. Moreover, one of the ma-
jor limitations related to currently available observational datasets is that these might
be too short to span a wide range of climatic conditions needed to constrain more com-15

plex models (Richardson et al., 2012). For this reason exploiting, in a model-data fu-
sion framework, data from warming experiments or common garden experiments (e.g.
Morin et al., 2010) as well as new long-term dataset of consistent phenological obser-
vations from across a wide geographic range and climatic conditions, would of great
value for constraining model parameterization (i.e. to reduce parameters uncertainty)20

and for testing and developing phenology models (i.e. to reduce model uncertainty).
Finally, the uncertainty described above and multi-model trends reported in Fig. 5

suggest that when constructing a multi-model ensemble, not all model structures
should be weighted equally. More weight should be given to those models that are
better supported by the data, and less weight to those that are not supported by the25

data. Akaike weights Turkheimer et al. (2003) can be used for this.
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4.2 Impacts of uncertainty in bud-burst forecasts on carbon and water cycle
modelling

The uncertainties of phenological forecasts might have important implications for the
land surface energy budget and for carbon and water cycling modeling because of
the sensitivity of biogeochemical models to bud-burst dates (Levis and Bonan, 2004;5

White et al., 2000). The prognostic routine in commonly used terrestrial biosphere
models (e.g. Thornton et al., 2002; White et al., 1997; Lawrence et al., 2011; Ju et al.,
2006) is often based on the heat sums or growing degree-day assumption (i.e. roughly
similar to models SW-CF1 t0 and SW2-CF2 t0) and model parameters are not opti-
mized for the application on different species. Model structures relying only on the10

degree-days description at the Harvard Forest (as in other studies) are the least sup-
ported by data being the Spring Warming models with photoperiodic control or some
Chilling class models selected as best models. This might lead to a poor description
of spring phenology either in terms of bud-burst or seasonal development of leaf area
index (Richardson et al., 2012; Lawrence et al., 2011). Hence, the seasonality of car-15

bon, water and energy fluxes projected by these models are likely incorrect as well
(Richardson et al., 2012).

In our modeling exercise with BEPS we explored the effects on water and carbon
cycling due first to the uncertainty in phenological model routines not optimized em-
bedded in the model (i.e. differences between the Reference Run and BEPSSW−CF2)20

and second to the uncertainty in model parameters (i.e. sensitivity runs: BEPS−10,
BEPS−1, BEPS+1, BEPS+10).

Model uncertainty (i.e. differences in GPP and ET obtained with the Reference Run
and the BEPSSW−CF2) lead to biases of 9.6 % for annual GPP and 2.9 % for annual ET
indicating the importance of improving phenological routines.25

Beside the uncertainty related to model structure, phenological forecasts for future
climate scenarios are uncertain because of the uncertainty in phenological model pa-
rameters that can be considered, conservatively, as maximum ±10 days. The impact
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of this uncertainty on terrestrial biosphere models has been explored with the sensi-
tivity analysis and showed (Table 4) that a variation of ±10 and ±1 day in bud-burst
dates lead to a variation of about ±5 % on annual GPP (8.15 gCm−2 day−1, i.e. sensi-
tivity of annual GPP to 1 day of variation in bud-burst) and about ±2 % on annual ET
(0.07 cm−1 day−1, i.e. sensitivity of annual ET to 1 day of variation in bud-burst).5

About the sensitivity of GPP to bud-burst uncertainty, values found here are compa-
rable with recent empirical estimates of the sensitivity of gross productivity to phenol-
ogy: Richardson et al. (2010) found a relationships between interannual phenological
anomalies in spring onset and interannual CO2 flux anomalies ranging from 1.20 (se:
±6.20) to 20.2 (se: ±2.90) gCm−2 day−1 (Supplementary Table 5 in Richardson et al.,10

2010); Richardson et al. (2009a), in an empirical studies in two different North Ameri-
can forests (Harvard Forest and Howland) indicated that a one-day advance in spring
onset date was associated with an increase in GPP of 12.30 (se: ±2.50) gCm−2 day−1.
Although the impact on GPP of uncertainty in model parameters is lower than uncer-
tainty due to phenological model structure, this is of the same magnitude (or slightly15

lower) of the sensitivity of GPP to anomalies in bud-burst reported in empirical stud-
ies. This emphasizes the importance of correctly modeling phenological transition
dates in order to successfully predict annual CO2 uptake, as well as other biosphere-
atmosphere interactions and climate system feedbacks.

As shown in Fig. 10a, b the sensitivity of GPP to bud-burst is rather constant while20

the sensitivity of ET to variations in bud-burst decreases substantially for the runs
BEPS−10, in particular in years with earlier bud-burst. We observe that an earlier bud-
burst of 10 days in spring it is not always associated to an increase of ET given the
reduction of soil moisture and its sensitivity to variations in bud-burst (Fig. 10b, c, d).
The effect is a reduction of ET (and of its sensitivity) and might be associated to a late25

summer water deficit due to a depletion of the soil water reservoir (Fig. 10d) due to
the long growing season. As shown in Fig. 10c, according to the BEPS structure, the
earlier is the bud-burst the lower is the average soil moisture in summer. Moreover, the
sensitivity of summer soil moisture to variations of ±10 days in bud-burst (Fig. 10d) is
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very little in years with early bud-burst, increasing in years with late bud-burst. A similar
behavior has been found in boreal forest stands (Kljun et al., 2006) and in broadleaved
forest in Central Europe (Leuzinger et al., 2005) where an earlier spring phenology
increased transpiration rates, leaving less moisture in the soil in summer. However, in
these studies was reported a reduction of summer (and annual) productivity which is5

not observed with BEPS.
The carbon cycle is therefore more affected by, and sensitive to, uncertainty in phe-

nology than the water cycle (Figs. 8, 9 and 10). Regarding water cycling, Lawrence and
Slingo (2004) and White et al. (1999), showed that the three primary components of
evapotranspiration, namely, transpiration, soil evaporation and canopy evaporation re-10

spond in a opposite direction to changes in phenology. For instance, a certain amount
of soil evaporation can occur independently of the seasonal development of leaves in
years with late bud-burst. Or, while bud-burst and spring leaf development enhances
transpiration, it may limit surface soil evaporation because of the lower amount of trans-
mitted solar radiation below the canopy. Moreover, in years with early bud-burst, the15

enhancement of evapotranspiration in spring might lead to lower soil moisture in sum-
mer limiting the increase of transpiration in summer and then buffering the sensitivity
of total ET to bud-burst. However, these considerations are based on modeling stud-
ies and empirical studies would be useful to better understand the sensitivity of ET to
spring phenology.20

Although the uncertainty forced in BEPS was kept constant (i.e. ±10 days), a large
interannual variability of the sensitivity of carbon and water fluxes to bud-burst has been
observed (Fig. 10). The interannual variability of GPP depends on environmental con-
ditions such as springtime and annual temperature and snow-depth, which is related
to water availability during the spring growth. The same amount of uncertainty (e.g.25

10 days) might have different effects in terms of carbon and water cycle depending on
the timing of bud-burst. In models with a tight link between water and carbon cycle the
earlier bud-burst and its associated uncertainty can lead to an increase of the proba-
bility of summer water deficit and a consequently reduction of carbon uptake. Thus,
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the description of the feedbacks between spring phenology and carbon cycle under a
warming scenario might be hampered.

5 Conclusions

The evaluation of different models with a model-data fusion approach and the long-term
Harvard Forest phenology record indicate support for Spring Warming models with5

photoperiod limitation and to a less extent Chilling models with alternating description
of chilling accumulation. Models without the explicit description of the photoperiod
limitation are never supported by data.

We characterize and quantify the three different sources of uncertainty in phenologi-
cal forecasts: parameter uncertainty, model uncertainty, and driver uncertainty. Param-10

eter uncertainty is the smallest, and most readily quantified whereas driver uncertainty
is larger and the most unquantifiable. Model structure uncertainty is comparable with
driver uncertainty, but can be quantified by combining models with different complexity
and observational data. The uncertainty in model structure affects the sensitivity of
bud-burst to temperature simulated by phenology models.15

Phenology regulates many ecosystem feedbacks to climate, and here we quantify
the impact of uncertainties in bud-burst forecasts to simulated carbon and water cy-
cling. We conclude that the structure and the optimization of parameters of the phe-
nological routine is a relevant source of uncertainty for the simulation conducted by
terrestrial biosphere models. This highlights the importance of developing better phe-20

nological routines. The carbon cycle is more sensitive to uncertainty in phenology than
the water cycle, and the impact of uncertainty in phenological model parameters on
carbon cycling is of the same magnitude of the sensitivity of productivity to year-to-
year variations of bud-burst. For evapotranspiration, the impact of this uncertainty is
more relevant in years with late bud-burst for evapotranspiration given the asymmetric25

response of water cycling to variations of bud-burst observed with our model.
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To reduce model uncertainties it is necessary to continuously strive to re-evaluate
model predictions against new observational datasets. Of particular value would be
data from diverse populations (i.e. including genetic variability) growing under as diver-
gent environmental conditions as possible. To push models to their limits, these data
should include variations in both temperature (data from transplant or warming exper-5

iments would be particularly valuable) and, to the fullest extent possible, photoperiod.
These data will permit the development of better phenological routines, and the reduc-
tion of uncertainties in forecasts of ecosystem responses to climate change that are
mediated by phenology.
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Table 1. List of the 11 species used in the analysis, species number (Spec), Species identifier
(Species ID), species Latin and common name, average bud-burst date (BB), best model ac-
cording to data (Best Model), determination coefficient of fitting (R2), root mean square error
(RMSE, day), Sen’s slope trend estimated for Scenario A1fi and Scenario B1 with the best
model, with the Akaike Weigthed average (Average wAICc) and the standard deviation. All
trends are expressed in day century−1

Species ID Latin name Common name BB Best Model R2 RMSE A1fi A1fi A1fi B1 B1 B1
Best wAICc sd Best wAICc sd

ACRU Acer rubrum Red maple 126.2 Alt-CF1 0.77 2.20 −8.7 −8.7 7.2 −3.9 −3.9 3.5
ACSA Acer saccharum Sugar maple 121.5 Par2-CF2 0.82 2.09 −7.1 −8.7 5.7 −3.5 −4.3 2.9
BEAL Betula alleghaniensis Yellow birch 126.2 Alt-CF1 0.63 3.44 −9.1 −8.8 8.5 −3.9 −3.8 4.5
BELE Betula lenta Black birch 129.5 SW-CF2 0.32 4.91 −5.0 −6.9 15.7 −1.7 −3.0 7.2
BEPA Betula Papyrifera Paper birch 122.9 Alt-CF1 0.56 3.31 −8.7 −6.4 7.7 −3.8 −2.8 3.6
FAGR Fagus grandifolia Beech 128.3 SW-CF1 0.67 2.22 −7.3 −5.3 8.1 −3.5 −2.4 4.2
FRAM Fraxinus americana White ash 130.2 SW-CF2 0.67 2.73 −5.6 −5.6 7.5 −2.3 −2.3 3.7
PRSE Prunus serotina Black cherry 111.2 SW-CF2 0.74 2.59 −9.3 −9.4 13.4 −5.4 −5.4 2.5
QUAL Quercus alba White oak 133.3 SW-CF2 0.73 3.21 −14.7 −14.0 3.9 −7 −6.7 1.6
QURU Quercus rubra Red oak 127.1 SW-CF2 0.74 2.94 −12.6 −10.6 5.5 −5.6 −4.7 3.0
QUVE Quercus velutina Black oak 130.6 SW-CF2 0.78 2.63 −14.9 −15.2 4.5 −6.8 −7.3 2.0

912

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/879/2012/bgd-9-879-2012-print.pdf
http://www.biogeosciences-discuss.net/9/879/2012/bgd-9-879-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 879–926, 2012

Uncertainty of
phenological

responses to climate
change

M. Migliavacca et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 2. List of phenology models fit to Harvard Forest phenology data, model identifier (Model
ID), models class (Chilling models or Spring Warming models) and fit parameters (number and
variables symbols). Spring Warming, Sequential, Alternating and Parallel model structures are
described in text and in Fig. 1. CF1 and CF2 refer to different functional forms for forcing and
chilling rates, as described in text. t1: time step at which accumulation of chilling units beings
(not used in Spring Warming models; fit parameter in all other models). C*: chilling state
at which transition from rest to quiescence occurs (fit parameter in Sequential and Parallel1
models; not used in other models). t2: time step at which accumulation of forcing units begins
(fit parameter in Spring Warming models; equal to t1 in Alternating and Parallel2 models; date
when cumulative chilling (Sc) is equal to C* in Sequential and Parallel1 models). F *: forcing
state at which transition from quiescence to bud-burst occurs (fit parameter in Spring warming
and Sequential models; function of Sc in Alternating, Parallel1 and Parallel2 models). Tc: critical
temperature for chilling function Rc(t) (not used in Spring Warming models; fit parameter in all
other models). Tf critical temperature for forcing function Rf(t) (fit parameter in all models). a,
b model constants (a > 0, b < 0) relating F * to Sc, i.e. F * = aexp(bSc(t)) at t = y . y is the
predicted budburst date (a, b not used in Spring Warming, Alternating or Sequential models; fit
parameter in all other models).

Model name Model ID Model Class Fit Parameters

Spring warming CF1 SW-CF1 Spring Warming 3 (t2, Tf, F *)
Spring warming CF2 SW-CF2 Spring Warming 2 (t2, F *)
Alternating CF1 Alt-CF1 Chilling 4 (t1, Tf, a, b); t2 = t1; Tc = Tf
Spring warming CF1 t0 fixed SW-CF1 t0 Spring Warming 2 (Tf, F *); t2 = 1st of January
Spring warming CF2 t0 fixed SW-CF2 t0 Spring Warming 1 (F *); t2 = 1st of January
Alternating CF1 t0 fixed Alt CF1 t0 Chilling 3 (Tf, a, b); t2 = t1 = 1st of January; Tc = Tf
Sequential CF1 Seq-CF1 Chilling 5 (t1, Tf, Tc, C*, F *)
Sequential CF2 Seq-CF2 Chilling 4 (t1, Tc, C*, F *)
Parallel1 CF1 Par1-CF1 Chilling 6 (t1, Tc, Tf, C*, a, b)
Parallel1 CF2 Par1-CF2 Chilling 5 (t1, Tc, Tf, C*, F *)
Parallel2 CF1 Par2-CF1 Chilling 5 (t1, Tc, C*, a, b); t2 = t1
Parallel2 CF2 Par2-CF2 Chilling 4 (t1, Tc, a, b); t2 = t1
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Table 3. ∆AICC values for a range of different models (see text and Tables 1, 2 for additional
information) fit to Harvard Forest bud-burst data. Species ID are as given in Table 1. The best
model, based on Akaikes Information Criterion corrected for small samples (AICc) has ∆AICc
= 0 and is indicated by bold type.

Species ID SW-CF1 SW-CF2 Alt-CF1 SW-CF1t0 SW-CF2t0 Alt-CF1t0 Seq-CF2 Seq-CF1 Par-CF2 Par-CF1 Par2-CF2 Par2-CF1

ACRU 11.49 16.24 0.00 28.93 31.59 15.48 35.49 14.51 39.07 13.20 14.51 19.73
ACSA 0.82 3.52 1.43 24.29 21.99 7.81 17.50 7.94 21.21 7.40 0.00 30.07
BEAL 9.19 7.35 0.00 20.16 22.41 11.41 25.03 13.36 28.65 13.32 11.85 19.04
BELE 2.93 0.00 0.12 15.78 15.82 5.66 19.46 11.23 23.08 10.79 51.97 12.20
BEPA 4.67 3.83 0.00 18.75 17.81 6.74 19.46 3.92 23.08 6.76 1.38 10.88
FAGR 0.00 7.25 6.00 27.34 31.55 10.43 29.89 11.25 32.27 7.40 1.60 11.60
FRAM 3.37 0.00 4.13 27.10 28.35 13.59 29.97 13.42 33.28 14.05 16.33 25.54
PRSE 3.56 0.00 3.47 22.44 23.23 7.63 12.56 11.51 12.88 7.37 64.97 17.84
QUAL 8.26 0.00 4.13 7.12 9.03 2.38 7.16 14.73 10.88 4.48 7.97 7.52
QURU 5.93 0.00 5.96 20.40 20.63 5.16 15.33 6.89 18.71 14.37 1.84 14.74
QUVE 3.91 0.00 6.10 14.29 15.03 7.71 1.50 8.70 4.94 7.81 4.39 14.46

MEDIAN 3.91 0.00 3.47 20.40 21.99 7.71 19.46 11.25 23.08 7.81 7.97 14.74
Best Model 1 6 3 0 0 0 0 0 0 0 1 0
∆AICc < 2 2 6 5 0 0 0 1 0 0 0 4 0
∆AICc < 6 8 8 10 0 0 4 1 1 1 1 5 0
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Table 4. Summary of BEPS simulation protocol. Bud-burst forcing represents the bud burst
dates used for model runs. GPP is the mean Gross Primary Productivity, ET is the mean evap-
otranspiration while GPP and ET sensitivity represent the average difference to the Reference
Run for annual GPP and annual ET expressed as variations of gCm−2 and cm of water per 1
day of variation of bud-burst. The Reference Run is the run conducted with BEPS and with
bud-burst simulated with its internal phenological routine.

Run ID Bud-burst forcing GPP ET GPP sensitivity ET sensitivity
run- reference run run- reference run

[gC m−2 yr−1] [cm yr−1] [gC m−2 day−1] [cm day−1]

BEPS [Reference Run] BEPS Native phenology 1569.34 46.53 Reference Reference
[1295.15÷1771.29] [40.27÷54.57]

BEPSSW−CF2 SW-CF2 1433.30 45.13 8.03 0.08
[1167.22÷1680.88] [39.98÷52.35] [−1.97÷19.16] [−0.01÷0.25]

BEPS−10 BEPS Native phenology − 10 days 1636.65 46.94 6.73 0.04
[1343.45÷1855.01] [40.69÷54.72] [2.85÷10.52] [−0.02÷0.11]

BEPS−1 BEPS Native phenology − 1 days 1578.78 46.59 9.44 0.07
[1301.54÷1784.08] [40.31÷54.65] [3.89÷21.94] [−0.04÷0.25]

BEPS+1 BEPS Native phenology + 1 days 1561.52 46.44 −8.40 −0.08
[1291.42÷1757.64] [40.21÷54.56] [−21.69÷−2.19] [−0.25÷0.03]

BEPS+10 BEPS Native phenology + 10 days 1488.87 45.76 –8.05 –0.08
[1214.80÷1702.30] [39.80÷53.64] [−13.71÷−0.97] [−0.19÷0.02]

915

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/879/2012/bgd-9-879-2012-print.pdf
http://www.biogeosciences-discuss.net/9/879/2012/bgd-9-879-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 879–926, 2012

Uncertainty of
phenological

responses to climate
change

M. Migliavacca et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 5. Slope of the linear regression analysis computed between ∆GPP, ∆ET and sum-
mertime ∆ET (from June to August) and different meteorological variables. In parentheses the
Pearson’s correlation coefficient is reported. The differences of GPP (∆GPP) and ET (∆ET) are
computed as the differences in annual GPP [gC m−2 yr−1] and ET [cm yr−1] between the runs
BEPS−10, BEPS−1, BEPS+1, BEPS+10 and the Reference Run (Table 3). Tann is the mean
annual temperature, Tspring is the springtime mean temperature (i.e. from March to May),
Tsoil is the mean soil temperature, Prec [mm] is the annual cumulated precipitation and Snow
[cm] is the average snow depth. Bold characters represent statistical significant correlations
(p<0.001).

∆GPP BEPS−10 BEPS−1 BEPS+1 BEPS+10

BB 0.70 (0.45) 0.07 (0.20) −0.08 (−0.23) −0.85 (−0.44)
Tann −4.76 (−0.57) −0.57 (−0.33) 0.63 (0.31) 3.85 (0.38)
Tspring −5.46 (−0.59) −0.75 (−0.38) 0.71 (0.32) 4.37 (0.38)
Tsoil −5.36 (−0.50) −0.70 (−0.31) 0.67 (0.26) 4.14 (0.31)
Prec −0.02 (−0.19) −0.003 (−0.16) −0.01 (0.26) 0.02 (0.17)
Snow 1.09 (0.36) −0.06 (0.10) −0.13 (−0.19) −0.76 (−0.20)

∆ET BEPS−10 BEPS−1 BEPS+1 BEPS+10

BB 0.010 (0.41) 0.001( 0.29) −0.001 (−0.18) −0.011 (−0.30)
Tann −0.042 (−0.33) −0.008 (−0.29) 0.005 (0.19) 0.040 (0.21)
Tspring −0.048 (−0.33) −0.008 (0.28) 0.006 (0.21) 0.049 (0.23)
Tsoil −0.032 (−0.19) −0.007 (−0.23) 0.005 (0.14) 0.029 (0.12)
Prec 2.14×10−4 (−0.14) −5.13×10−6 (−0.02) −2.78×10−5 (−0.08) −1.94×10−4 (−0.08)
Snow 0.020 (0.43) 0.002 (0.25) −0.002 (−0.21) −0.020 (−0.28)

∆ET (JJA) BEPS−10 BEPS−1 BEPS+1 BEPS+10

BB −0.011 (0.59) −0.002 (0.53) 0.002 (0.47) 0.019 (0.63)
Tann 0.056 (0.60) 0.009 (0.54) −0.009 (0.51) −0.087 (0.57)
Tspring 0.097 (0.59) 0.011 (0.55) −0.010 (0.48) −0.096 (0.55)
Tsoil 0.062 (0.51) 0.011 (0.49) −0.011 (0.44) −0.097 (0.48)
Prec 3.83×10−4 (0.33) 6.29×10−5 (0.30) −7.58×10−5 (0.33) −6.24×10−4 (0.33)
Snow −0.012 (0.34) −0.001 (0.23) 0.002 (0.27) 0.017 (0.29)
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Fig. 1. Model representation of the seasonal cycle of terrestrial ecosystems, from senescence
through dormancy (a period of rest, followed by quiescence) and then active growth. In temper-
ate and boreal systems, the transition through dormancy to active growth has been described
using a variety of approaches. Threshold points t0 and t1 may be triggered either by photope-
riod or temperature (i.e., various forms of chilling, e.g. sequential, alternating or parallel, as
indicated). At threshold point t2, bud-burst is triggered when accumulated forcing reaches a
critical state. The manner in which chilling and forcing accumulates varies among models.
Chilling models describe phenology as a combination of temperature forcing, photoperiod lim-
itation and chilling limitation; Forcing models describe phenology as function of temperature
forcing and photoperiod limitation (Tab. 2 for a list of model). Modified from Chuine (2000).

34

Fig. 1. Model representation of the seasonal cycle of terrestrial ecosystems, from senescence
through dormancy (a period of rest, followed by quiescence) and then active growth. In temper-
ate and boreal systems, the transition through dormancy to active growth has been described
using a variety of approaches. Threshold points t0 and t1 may be triggered either by pho-
toperiod or temperature (i.e. various forms of chilling, e.g. sequential, alternating or parallel,
as indicated). At threshold point t2, bud-burst is triggered when accumulated forcing reaches a
critical state. The manner in which chilling and forcing accumulates varies among models. Chill-
ing models describe phenology as a combination of temperature forcing, photoperiod limitation
and chilling limitation; Spring Warming models describe phenology as function of temperature
forcing and photoperiod limitation (Table 2 for a list of model). Modified from Chuine (2000).
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Fig. 2. a) Time-series of mean annual temperature projections (1960-2099) under the Scenario
A1 (orange line) and Scenario B1 (blue line); b) Time series of bud-burst date (BB) modeled
for red oak (Quercus rubra) with the best model selected (Tab 1). Blue line represents the BB
projected under the Scenario b1, orange line represents the BB projected under Scenario A1fi.
Grey area represents the uncertainty for the Scenario A1, while light purple area represents
the uncertainty for Scenario B1; c) Time series of bud-burst date (BB) modeled for red oak with
SW-CF2 (best model), SW-CF2t0 (as SW-CF2 but without photoperiod limitation) and with the
internal phenological routine in BEPS (green line). Grey crosses represent the phenological
observations collected at the Harvard Forest. Models are forced by temperatures from the
scenario A1.

35

Fig. 2. (a) Time-series of mean annual temperature projections (1960–2099) under the Sce-
nario A1fi (orange line) and Scenario B1 (blue line); (b) time series of bud-burst dates (BB)
modeled for red oak (Quercus rubra) with the best model selected (Table 1). Blue line repre-
sents the BB projected under the Scenario B1, orange line represents the BB projected under
Scenario A1fi. Grey area represents the uncertainty for the Scenario A1fi, while light purple
area represents the uncertainty for Scenario B1; (c) time series of bud-burst date (BB) mod-
eled for red oak with SW-CF2 (best model), SW-CF2t0 (as SW-CF2 but without photoperiod
limitation) and with the internal phenological routine in BEPS (green line). Grey crosses rep-
resent the phenological observations collected at the Harvard Forest. Models in Fig. 2c are
forced by temperatures from the scenario A1fi.
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Fig. 3. Determination coefficient (R2) and slope of the linear regression between observed and
predicted bud-burst with the best model selected (Table 1) for each year (a), for each species
(b). Vertical lines represent the average bud-burst day of the year in each year (a) and for each
species (b). Predicted versus Observed bud-burst dates for the years 2010-2011 simulated
for the 12 species and the best model selected as described in Table 1 (c). Error bars for the
predictions represent the propagated uncertainty of model parameters while for the observed
dates is the minimum and maximum bud-burst dates observed for each individual.
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Fig. 3. Determination coefficient (R2) and slope of the linear regression between observed and
predicted bud-burst with the best model selected (Table 1) for each year (a), for each species
(b). Vertical lines represent the average bud-burst day of the year in each year (a) and for each
species (b). Predicted versus Observed bud-burst dates for the years 2010–2011 simulated
for the 12 species and the best model selected as described in Table 1 (c). Error bars for the
predictions represent the propagated uncertainty of model parameters while for the observed
dates is the minimum and maximum bud-burst dates observed for each individual.
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Fig. 4. Violin-plot of the trends computed with the Sens slope estimator for each species.
BB projections were modeled by using the best model selected and the parameters ensemble
(1000 parameter set) for each species (Table 1). The white circle represent the mean of the
distribution. Red violins represent the predictions under the Scenario A1fi, while blue violins
represent the predictions under the Scenario B1.
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Fig. 4. Violin-plot of the trends computed with the Sen’s slope estimator for each species.
Bud-burst dates (BB) BB projections were modeled by using the best model selected and the
parameters ensemble (1000 parameter set) for each species (Table 1). The white circle rep-
resent the mean of the distribution. Red violins represent the predictions under the Scenario
A1fi, while blue violins represent the predictions under the Scenario B1.
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Fig. 5. Smoothed bud-burst (BB) projected time series under the Scenario a1 (a) and the Sce-
nario b1 (b). Different lines represents different models listed in Tab 1. Orange lines represent
Spring Warming models with photoperiod limitations; green lines represent Spring Warming
models without photoperiod limitations (starting dates fixed at 1st January); blue lines repre-
sent some chilling class models with (Alternating, Alt) and without photoperiod limitation (Alt-
CF1t0 and Sequential, Seq-CF1). Black line represent the Akaike weighted average of model
ensembles wile grey line represent the average.
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Fig. 5. Smoothed bud-burst (BB) projected time series under the Scenario A1fi (a) and the
Scenario B1 (b). Different lines represents different models listed in Table 1. Orange lines
represent Spring Warming models with photoperiod limitations; green lines represent Spring
Warming models without photoperiod limitations (starting dates fixed at 1 January); blue lines
represent some chilling class models with (Alternating, Alt) and without photoperiod limitation
(Alt-CF1t0 and Sequential, Seq-CF1). Black line represent the Akaike weighted average of
model ensembles wile grey line represent the average.
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Fig. 6. Future sensitivity of bud-burst to temperature (dBB/dT) as projected by different pheno-
logical models under the Scenario A1fi (a) and the Scenario B1 (b). Different lines represents
some of the most representative models listed in Table 2.
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Fig. 6. Future sensitivity of bud-burst to temperature (dBB/dT ) as projected by different pheno-
logical models under the Scenario A1fi (a) and the Scenario B1 (b). Different lines represents
some of the most representative models listed in Table 2.
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Fig. 7. Histogram of the interannual variability predicted by all model structures reported in
Table 2 (left panel) and for all the species reported in Table 1 (right panel). Red histograms
represent the interannual variability under Scenario A1fi, blue histograms represent the inter-
annual variability under Scenario B1. The standard deviation (1 sd) of the interannual variability
is also reported
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Fig. 7. Histogram of the interannual variability predicted by all model structures reported in
Table 2 (left panel) and for all the species reported in Table 1 (right panel). Red histograms
represent the interannual variability under Scenario A1fi, blue histograms represent the inter-
annual variability under Scenario B1. The standard deviation (1 sd) of the interannual variability
is also reported.
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Fig. 8. Relationships between differences in BB (∆BB) simulated with the best model (SW-CF2
as described in Table 1) and the internal phenological routine of BEPS and the differences in
annual ET (a) and GPP (b) simulated with Reference Run and BEPSSW−CF2 (Table 4). In (a)
circles are represented with different colors according to the BB date simulated with the internal
routine of BEPS.
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Fig. 9. Barplot of the percentage of variations of annual cumulated GPP (a) and ET (b) sim-
ulated with the runs BEPS+10, BEPS−1, BEPS+1 and BEPS+10 (Table. 4) with respect to the
Reference Run.
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Fig. 9. Barplot of the percentage of variations of annual cumulated GPP (a) and ET (b) sim-
ulated with the runs BEPS+10, BEPS−1, BEPS+1 and BEPS+10 (Table 4) with respect to the
Reference Run.
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Fig. 10. (a) Within-years sensitivity of GPP (∆GPP) to variations of BB (∆BB); (b) within-years
sensitivity of ∆ET to ∆BB; (c) within-years sensitivity of the average soil moisture in summer
to ∆BB; (d) within-years sensitivity of the percentage of variations of summer soil moisture to
∆BB. Different lines represent the within-years sensitivity. Years are grouped according to the
distribution of the day of the year (DOY) of bud-burst (i.e. from years with early bud-burst to
years with late bud-burst as reported in the legend). The purple line represent the within-years
sensitivity computed using all data.
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