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Abstract

Nitrous oxide emissions from a network of agricultural experiments in Europe and Zim-
babwe were used to explore the relative importance of site and management controls
of emissions. At each site, a selection of management interventions were compared
within replicated experimental designs in plot based experiments. Arable experiments5

were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården
in Sweden, Maulde in Belgium, Paulinenaue in Germany, Harare in Zimbabwe and
Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and
Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and
Theix in France. Nitrous oxide emissions were measured at each site over a period of10

at least two years using static chambers. Emissions varied widely between sites and
as a result of manipulation treatments. Average site emissions (throughout the study
period) varied between 0.04 and 21.21 kg N2O-N ha−1 yr−1, with the largest fluxes and
variability associated with the grassland sites. Total nitrogen addition was found to be
the single most important determinant of emissions, accounting for 15 % of the vari-15

ance (using linear regression) in the data from the arable sites (p < 0.0001), and 77 %
in the grassland sites. The annual emissions from arable sites were significantly greater
than those that would be predicted by IPCC default emission factors. Variability in N2O
within sites that occurred as a result of manipulation treatments was greater than that
resulting from site to site and year to year variation, highlighting the importance of20

management interventions in contributing to greenhouse gas mitigation.

1 Introduction

Terrestrial sources of nitrous oxide (N2O) make an important contribution to Europe’s
net emissions of greenhouse gases. A recent continental study identified N2O as the
single most important greenhouse gas emitted from land-based sources with emis-25

sions from Europe equivalent to 97 TgCyr−1 (Schulze et al., 2009). Agricultural soils
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used for grassland and arable production are a major source of N2O, and strategies
to reduce greenhouse gas emissions from the agricultural sector frequently highlight
the importance of management interventions (Mosier et al., 1998; Rees, 2011). How-
ever, the contribution of management to mitigation can be difficult to assess against
a background of fluxes that are highly variable in time and space, since emissions5

vary significantly in response to both climate and local environmental (particularly soil)
conditions (Abdalla et al., 2010; Flechard et al., 2007; Skiba and Ball, 2002).

We now have a good understanding of the importance of individual variables in de-
termining emissions, through their effect on the source processes of nitrification and
denitrification (Dobbie and Smith, 2001; Smith et al., 1998; Wrage et al., 2001). Meta10

analyses have shown that rates of fertiliser application, and soil properties, such as or-
ganic matter content, texture, drainage, pH, fertiliser timing and rate all influence emis-
sions (Bouwman et al., 2002). Within a farming system these factors interact with local
climatic conditions to determine overall rates of emission. Climate has been shown to
be particularly important in influencing emissions even under constant management.15

A study of European grasslands showed that the proportion of nitrogen (N) released
as N2O from fertilisers (emission factor) could vary from 0.01–3.6 % compared with the
IPCC default value of 1 % (Flechard et al., 2007). Applications of constant amounts of
fertiliser N to a grassland site in the UK over several years resulted in variation emis-
sion factors in different years of between 0.3–7 %, largely as a consequence of varying20

climatic conditions in different years (Smith and Dobbie, 2002). Variability in Emission
Factors used for cereals was smaller, but still showed a five fold variation.

Against such variability, it could be argued that management interventions make
a relatively small contribution to the mitigation of emissions. Furthermore such inter-
ventions are constrained by the societal needs to maintain food production, and the25

most attractive mitigation options are therefore those that increase utilisation of adding
nitrogen, and in so doing reducing losses.

In order to explore the relative importance of management, climate and site variabil-
ity in influencing N2O emissions we have used a network of 14 experimental sites (eight
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arable and six grassland) established as a part of the NitroEurope project, for the mea-
surement and reporting of N2O emissions and related environmental drivers. At each
site a range of management interventions were compared. Total annual emissions of
N2O from different treatment sites and years showed wide variability. Single variables
were often poor predictors of emissions, and so multivariate statistical techniques were5

used to explore the relationships between annual emissions and underlying driving
variables. The aim was to quantify the magnitude of changes in N2O emission that
could result from changes to agricultural management across a network of European
sites.

2 Materials and methods10

Manipulation experiments were established at sites across Europe in a co-ordinated
research programme (NitroEurope) designed to cover a wide range of climatic con-
ditions. At each site, a selection of management interventions were compared within
replicated experimental designs in plot based experiments. Each experiment was used
to determine how changes in agricultural management or land use could affect N2O15

emissions. Arable experiments were conducted at Beano in Italy, El Encin in Spain,
Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Ger-
many, Tulloch in the UK, and Harare in Zimbabwe. Grassland experiments were con-
ducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in
Poland, Zarnekow in Germany and Theix in France. At the arable sites the treatments20

included alternative tillage treatments, organic and conventional system management,
changes in nutrient management (including the amount and form of N added), land
use change and drainage treatments. On the grassland sites, treatments included vari-
ations in N inputs, wetting, and changes in temperature and atmospheric CO2 con-
centration (see Table 1 for further site and experimental manipulations and Table 2 for25

an overview of soil and climatic conditions). At each site N2O fluxes were measured
using closed static chambers over a period of two years or more, with a minimum of 20
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measurements per year (and often including more intensive measurements in periods
where fluxes were anticipated, for example following fertiliser applications). As far as
possible the methodology used for determining fluxes was standardised across sites
(NitroEurope, unpublished). A total of 590 yr of data from individual plot combinations
of treatments sites and years were compared in this analysis.5

Many of the different chambers used in this study were compared in order to un-
derstand the importance of chamber design in determining its ability to quantify a flux
(Pihlatie et al., 2009). Gas samples were collected in evacuated glass vials or flushed
through vials using a pump (Logarten) and analysed by gas chromatography at all
sites except the Belgian and French sites where photoacoustic infrared spectroscopy10

was used (Boeckx et al., 2011; Cantarel et al., 2011), and fluxes calculated according
to standard methodologies (Dobbie and Smith, 2003). One off site measurements of
soil carbon, nitrogen, pH, texture, and bulk density were made at each site (Table 2).
Records of biological N fixation where legumes were present (using the an empirical
approach, Hogh-Jensen et al., 2004), N deposition (EMEP, 2012), N removal by crops15

were also reported for each site. Annual N2O emissions were estimated cumulatively
by linear interpolation between individuals of events. The data were collated and N2O
data were log transformed (ln N2O+1) prior to graphical presentation and analysis us-
ing multiple linear regression in Genstat (14th edition) and Minitab (16th edition).

3 Results20

Nitrous oxide fluxes varied widely between sites and as a result of manipulation treat-
ments. Average site emissions (throughout the study period) varied between 0.04 and
21.21 kg N2O-N ha−1 yr−1 (Fig. 2, Tables 3 and 4), with largest fluxes and variability
associated with the grassland sites. Within the arable sites the fluxes varied between
0.6 and 5.3 kg N2O-N ha−1 yr−1, with the highest average fluxes observed from the25

Belgium tillage experiment at Maulde. The highest average grassland flux (21.2 kg
N2O-N ha−1 yr−1) was observed from Crichton, an experiment located on an intensive
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dairy farm (receiving high inputs of inorganic and organic N) in the south-west of Scot-
land.

Within each site there was considerable variability in N2O emissions resulting from
year to year changes in climatic conditions and the manipulation treatments applied. An
example of this variability is illustrated by considering fluxes from the Crichton grass-5

land site. The annual average emission was 21.2 kg N2O-N ha−1 yr−1, however, this var-
ied between 2.9 and 33.9 kg N2O-N ha−1 yr−1 in different treatments in 2007 (Fig. 2c,
Table 3). There was also an annual variability (expressed as the difference between
the mean emissions in each year) of 15.3 kg N2O-N ha−1 yr−1.

A comparison of treatment effects and annual climatic effects across different sites10

demonstrated that treatments applied to arable sites resulted in a range of emissions
between treatments that was greater than that observed between sites (Tables 3 and
4). At the Tulloch organic farming experiment for example, the range in treatment
emissions (averaged over years) was 0.5–13.2 kg N2O-N ha−1 yr−1, while the range
in the mean emission across all European arable sites was between 0.6–5.31 kg N2O-15

N ha−1 yr−1 (Table 3). The variability in annual flux data showed reasonable consis-
tency across sites with the annual average flux being of similar magnitude to the stan-
dard deviation (Table 3). Annual variability within sites was also important. The range
of emissions between years (averaged over all treatments) at the El Encin site was
0.31–0.97 kg N2O-N ha−1 yr−1, which was less than the range between sites 0.6–5.3 kg20

N2O-N ha−1 yr−1 (Table 4a). In grassland sites treatments there was a range between
treatments of 2.9–28.2 kg N2O-N ha−1 yr−1 at the Crichton site which was comparable
with the range of 0.04–21.21 kg N2O-N ha−1 yr−1 between sites (Table 4b).

An analysis of all annual data from across the different sites and years was used
to identify the importance of a range of driving variables. Within the arable sites total25

nitrogen input (in the form of organic N and/or synthetic N fertiliser) was the single
most important determinant of emissions, accounting for 14.6 % of the variance in the
data by linear regression (p < 0.0001; Fig. 3). Another notable feature of this regres-
sion analysis was the wide range of emissions (0–21 kg N2O-N ha−1) associated with
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sites receiving no added N (synthetic fertiliser or manure). Adding the additional terms
(deposition, average daily temperature, total water applied including precipitation and
irrigation, bulk density and SOC) to this regression against the natural log of the an-
nual N2O emission through a step-wise procedure increased the amount of variability
accounted for to 37.1 %. However, when site and year are included in the stepwise re-5

gression, the added terms included average daily temperature and total water applied,
49.1 % of the variability was explained. Therefore, there are features of the sites and
years (relating to soils and management) that impact on emissions. However, it was
noted that, soil organic carbon and bulk density were not significant factors. In the case
of the grassland sites, total nitrogen input explained 76.9 % of the variation (Fig. 4). The10

high N additions and N2O emissions from the Crichton grasslands were important in
contributing to the strength of this regression. Adding the total water applied and bulk
density to the regression improved the variability explained to 81.4 %.

The emissions data presented here can also be used to identify those systems with
the highest emissions (and therefore greatest mitigation potential). When the plots from15

all 438 site and treatment years from the arable experiments were compared, the ten
highest emissions were observed at just three sites when expressed on an emission
per unit area basis; these were Tulloch, Beano, and Maulde (Fig. 5a). When expressed
on an intensity basis the ten highest emissions were also observed at three sites;
Tulloch, Harare and Logården, with values ranging from 1.4–3.9 kg N2O-N kg total N20

added−1 (Fig. 5b). Emissions from the grassland sites were generally lower than those
from the arable sites with the exception of Crichton where emissions were approxi-
mately 2 orders of magnitude higher than other grassland sites (Fig. 6).

A three dimensional plot of N2O emissions against annual total rainfall and irrigation
and total annual N addition emphasises the combined affect of N addition and total25

water addition in determining, emissions. Under dry conditions with 500 mm of rainfall
or less, emissions remained below 3 kg N2O-N ha−1 at rates of N application of up to
450 kg ha−1, however, as the rainfall and irrigation increased to 1500 mm, emissions
rose to around 10 kg N2O-N ha−1 (Fig. 7).
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4 Discussion

We know from previous studies that emissions of N2O from landscapes are controlled
by site specific factors such as soil conditions and climate as well as the way in which
these systems are managed (e.g. fertiliser use and agronomy) (Dobbie et al., 1999;
Smith and Conen, 2004). This study has allowed us to compare the relative magnitude5

of these effects across a large number of sites, and has demonstrated that the changes
associated with management interventions are equal to or greater that those associ-
ated with differences between site and year. There was a large variability in fluxes
observed as a consequence of manipulation treatments introduced within each site
and between measurement years. Characterising the magnitude of potential mitiga-10

tion is an essential prerequisite for the implementation of policies designed at reducing
greenhouse gas emissions from the agricultural sector. It has been suggested that in-
terventions which include better nutrient use efficiency, improved soil management and
improved agronomy could achieve a reduction in emissions of 10–30 % (Mosier et al.,
1998; Smith et al., 1997). The results presented here are consistent with these esti-15

mates, and have highlighted the importance of reducing the N supply in contributing to
mitigation.

The change in emissions associated with increasing N inputs was not always con-
sistent with the emissions that would be estimated by default IPCC emissions factors
where 1 % of added N would be predicted to be lost as N2O (IPCC, 2006). In the arable20

sites emissions were 37 % greater than this value, and despite the large variability, this
was significantly greater (P < 0.0001) than 1 % of N inputs. The grassland sites did
not show a significant difference from the default emission factor, but relatively few of
these sites included N addition. The largest proportional changes in emissions were
associated with changes in the inputs of N and irrigation at the Spanish site, which25

contributed to a 26 fold change in emissions, and changes across the different phases
of an organic rotation (Tulloch) in the UK. The affects of reducing tillage treatments
resulted in a much smaller proportional change (increased N2O emissions) in Italy and
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Belgium (Alberti et al., 2010; Boeckx et al., 2011). However, it should be considered
that reducing tillage intensity also results in increased C storage, and so the affects
on net greenhouse gas emissions may be less than that indicated by N2O emissions.
There is also emerging evidence to suggest that in the longer term, N2O emissions
from reduced till systems may be lower than that from conventional tillage (Six et al.,5

2004).
There was a significant effect of N addition across all sites on N2O emissions, as

illustrated by the regression analysis, which is consistent with previous meta-analyses
of N2O emissions (Bouwman et al., 2002). However, it was not possible to explain
more than 23 % of the variability in emissions by N input from synthetic fertilisers and10

manures alone. The large range of emissions associated with sites receiving no N
as fertiliser or manure is of particular importance. Many of these sites would receive
N by biological fixation from leguminous crops sometimes over a period of several
years prior to flux measurements. Biological N fixation is assumed by IPCC not to be
directly associated with increased emissions of N2O (IPCC, 2006). Such systems may15

however generate increased emissions as a consequence of residue decomposition
by legumes. The magnitude of such emissions remains highly uncertain and is likely to
be highly site specific (Baggs et al., 2000; Rochette and Janzen, 2005).

Another factor potentially contributing to emissions from unfertilised sites and not
accounted for in this study would be the mineralisation of soil organic matter. Following20

land use change or within rotational systems there may be a release of mineral N from
the organic N pool due to tillage, providing a substrate for nitrification and denitrifica-
tion driven N2O release. In organic farming systems this build-up of organic N within
the grassland phase of a rotation is used to provide nutrients (particularly N) for subse-
quent arable crops (Stockdale et al., 2001; Watson et al., 2011). This can lead to some25

high emissions in individual years from organic farming systems, particularly where the
system exists in mild and wet climates such as that at Scottish organic site at Tulloch
(despite no apparent input of N in that year). However, high emissions from individual
years within an organic phase of an organic rotation are often offset by lower emissions
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during the grassland phase giving relatively low emissions from the system overall (Ball
et al., 2002). In this study the average emissions over the three cropped organic sites
was 1.58 kg N2O-N ha−1 compared with an overall mean of 2.37 kg N2O-N ha−1 from
the arable sites.

There is a trade-off between reducing N2O emissions by reduced N input and food5

production, since restricting N input can often lead to proportional decreases in crop
yields and an effective displacement of emissions, since reductions in emissions that
are achieved by lowering production can lead to an import of food which itself would be
associated with emissions (Godfray et al., 2011).

For this reason the emissions intensity provides a useful index of the effectiveness10

of mitigation. Some of the highest emission intensities were associated with individual
phases of organic rotations at Tulloch (4.0 g N2O-N Kg N uptake−1) and Logården (2.1 g
N2O-N Kg N uptake−1). This highlights the need to increase the utilisation efficiency
of N between different crop types within some production systems in order to lower
emission intensities.15

The implementation of mitigation measures to reduce N2O emissions from agricul-
ture is likely to depend on regionally specific changes in management practice that
take account of local soil and climatic conditions. We have shown that those locations
associated with high N inputs and high annual rainfall and irrigation (above 1000 mm)
are most prone to large emissions. El Encin is an example of such a site, and studies20

there have identified inorganic fertiliser N as being a particularly important contributor
to emissions. Studies at the Spanish site were able to demonstrate that replacement of
fertiliser by organic N substrates, or the combination of organic and synthetic fertiliser
was able to reduce emissions of N2O significantly (Meijide et al., 2009; Sanchez-Martin
et al., 2010).25

A number of sites reported a net annual uptake of N2O within individual plots of
a treatment. This included 12 plots at El Encin, 7 from Zimbabwe, 2 at Logården and
one at Maulde. Dry or well drained soil conditions together with low N availability appear
to favour net uptake. The mechanism responsible is uncertain, but is likely to involve
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the use of N2O as a terminal electron acceptor in circumstances where soil aggregation
allows uptake of N2O from the air into oxygen depleted sites where N2O can be used
instead of O2 (Neftel et al., 2007).

The grassland sites included in this study were very diverse, but included only one
highly intensive production system on a dairy farm in Scotland (Crichton). Here emis-5

sions were higher than any measured from elsewhere in the arable and grassland sites.
This was a reflection of the high N input (specifically in 2007 where total inputs in one
treatment exceeded 600 kg N ha−1 yr−1 in some treatments) and mild and wet condi-
tions that occur throughout the year and which are conducive to high N2O emissions
(Flechard et al., 2007). The remaining grassland sites received much lower N inputs10

and were generally associated with low N2O emissions, highlighting the importance of
N input in driving N2O emissions.

5 Conclusions

This study has allowed a wide ranging comparison of the relative importance of agri-
cultural management and site specific determinant of N2O emissions. The magnitude15

of emissions varies widely, and N input to systems was shown to be the principal driver
across sites and treatments. Grasslands with high N input showed the largest annual
emissions, but arable sites receiving high N and water inputs were also prone to large
emissions, thus illustrating the importance of restricting N supply in controlling N2O
emissions. There was a significantly greater emission of N2O from N added to arable20

sites than would be predicted from IPCC default emission factors. This study has also
demonstrated that while site (and climate) are important determinants of the mag-
nitude of N2O emissions, agricultural management practices are of equal or greater
importance.
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Table 1. A description of the experimental site network and manipulation experiments.

Site name Manipulation Treatments Reference

Beano
Italy

Crop rotation 1 CNT
2 CT
3 GT

Cropland tilled
Cropland no till
Grassland tilled

Alberti et al. (2010)

El Encin
Spain

Irrigation
nitrogen

1 A
2 CCR
3 DPS
4 MSW
5 OM
6 U
7 UPS

Ammonium sulphate
Composted crop residue
Digested pig slurry
Solid pig slurry
DMPP inhibitor
Digested pig slurry
Mixed organic waste

Meijide et al. (2009);
Sanchez-Martin
et al. (2010)

Foulum
Denmark

Organic
arable
rotation

1 C-CC+M
2 O+CC+M
3 O-CC+M

Conventional
Organic + catch crop
Organic – catch crop

Chirinda et al.
(2010)

Logården
Sweden

Organic and
integrated
rotations

1 Int
2 Org

Integrated
Organic

Nylinder et al.
(2011)

Maulde
Belgium

Tillage 1 NT
2 RT
3 CT

No tillage
Reduced tillage
Conventional tillage

Boeckx et al. (2011)

Paulinaue
Germany

Land use
change

1 AC
2 AG
3PeM

Arable
Arable to grass
Permanent grass

Bell et al. (2012)

Tulloch
UK

Organic
grass/arable
rotation

1 B
2 B us
3 LO
4 O
5 O us
6 Pot
7 S
8 W us
9 Y1G
10 Y2G
11 Y3G
12 Y4G
13 Pul
14 YGr

Barley
Barley undersown
Ley oats
Oats
Oats undersown
Potato
Swede
Wheat undersown
First year grass
Scond year grass
Third year grass
Fourth year grass
Pulses
Grass red clover

Ball et al. (2002)
Watson et al. (2011)
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Table 1. (Continued.)

Site name Manipulation Treatments Reference

Harare
Zimbabwe

Fertiliser addi-
tion

C
F1
F1M1
F2
M1
M2

Control (0N)
30 Kg N
N + manure N
60 kg N
30 kg manure-N
60 kg manure N

Mapanda et al.
(2010)

Crichton
UK

Nitrogen input
and grazing

F1
F2
F3
F4
FNS
NF1
NF4

Site 1 fertilised & grazed
Site 2 fertilised & grazed
Site 3 fertilised & grazed
Site 4 fertilised & grazed
Site 5 fertilsed & grazed
Site 6 slurry & grazed
Site 7 slurry & grazed

Gordon et al. (2011)

Gödöllö
Hungary

CO2, fertiliser,
wetness

C
CO2
F
W

Control Elevated CO2 Fer-
tilizer Wetted

Horvath et al. (2010)

Nafferton
UK

Flooding C
W

Control
Wetted

Reay Unpublished

Peakneaze
UK

Warming,
drought

C
D
T

Control
Drought
Warming

Levy et al. (2012)

Rzecin
Poland/
Zarnekow
Germany**

Flooding C
DW
RF

Control
Dry/wet grassland
Reflooded grassland

Chojnicki et al.
(2007); Juszczak
et al. (2012)

Theix
France

CO2, warming,
drying

C
T
DD
DCO2

Control
Increased temperature
Drought
Drought and elevated CO2

Cantarel et al.
(2011, 2012)

* The Crichton experiment involved the comparison of regionally typical management scenarios on adjacent
fields in different years.
** The Rzecin/Zarnekow experiment involved the comparison of a dying/wetting and flooding experiments in
Zarnekow (Germany), with a control site in Rzecin (Poland).
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Table 2. An overview of the soil and climatic conditions across the experimental network.

Site name Country Soil
texture*

Soil
organic
C g kg−1

0–20 cm

Bulk density
g cm−3

0–20 cm

Annual
average
temperature
◦C

Annual
average
rainfall
mm

Coordinate

Arable
Beano Italy L 17–20 1.2–1.4 13.2 1220 56◦30′ N

9◦34′ W
El Encin Spain CL 8–12 1.3–1.4 14.9 484 40◦32′ N

3◦37′ W
Foulum Denmark SL 22–23 1.3 9.3 660 56◦30′ N

9◦35′ E
Logården Sweden ZC 18–20 1.4 7.9 695 58◦20′ N

12◦38′ E
Maulde Belgium ZL 9–12 1.3–1.5 11.2 910 50◦37′ N,

3◦34′ E
Paulinaue Germany SL 80 0.5 9.7 694 52◦68′ N

12◦72′ E
Tulloch UK SL 50–66 1.2 8.9 940 57◦11′ N

2◦16′ W
Harare Zimbabwe S/C 5–8 1.7 19.1 940 17◦55′S

30◦55′ W
Grassland
Crichton UK SL 29 1.1 10.1 1183 55◦02′ N

3◦35′ W
Gödöllö Hungary SL 17–41 1.1 9.9 582 47◦60′ N

19◦37′ E
Nafferton UK NA NA 1.1 9.5 664 54◦51′ N

7◦36′ E
Peakneaze UK NA NA 0.18 9.2 875 53◦47′ N

13◦91′ W
Rzecin/

Zarnekow

Poland

Germany

Organic

Organic

NA

277

0.06

0.38

8.5

12.0

536

730

52◦76′ N
16◦31′ E
53◦88′ N
12◦88′ E

Theix France SL NA 1.1 7.8 704 45◦47′ N
3◦05′ E

* Textures: SL sandy loam, ZL silty loam, CL clay loam, L loam, NA, not available.
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Table 3. Nitrous oxide emissions in response to site and management conditions across the
experimental network classified by site and treatment.

(a) Arable sites Treatment Annual Standard
emission deviation

N2O-N kg ha−1 yr−1 N2O-N kg ha−1 yr−1

Beano Cropland no till 6.17 5.75
Cropland tilled 5.49 4.34
Grassland tilled 1.03 1.01

Beano Total 4.23 4.65
El Encin Control 0.21 0.22

CCR 0.41 0.15
Digested pig slurry 0.71 0.43
MSW 0.32 0.23
Organic manure 0.89 0.12
Urea 1.17 0.81
Untreated slurry 0.36 0.18

El Encin Total 0.63 0.59
Foulum Conventional + catch crops 1.24 0.82

Organic + catch crops 0.98 0.17
Organic + catch crops 0.83 0.25

Foulum Total 1.02 0.49
Logården Integrated 1.29 1.86

Organic 1.08 1.49
Logården Total 1.15 1.62
Maulde Conventional tillage 4.96 2.28

No tillage 5.68 2.69
Reduced tillage 5.28 3.39

Maulde Total 5.31 2.76
Pau Arable 2.83 2.17

Arable converted to grassland 0.39 0.36
Permanent grassland 1.15 1.99

Pau Total 1.46 1.95
Tulloch Barley 9.27 1.52

Barley undersown 13.21 10.21
Ley oats 5.99 3.98
Oats 0.50 0.46
Oats undersown 2.23 0.71
Potato 8.45 8.23
Swede 3.07 4.80
Wheat undersown 4.87 0.69
First year grass 0.72 0.34
Second year grass 1.12 0.80
Third year grass 1.90 1.25
Fourth year grass 1.34 0.43
Pulses 3.10 1.32
Grass red-clover 3.75 2.61

Tulloch Total 3.46 4.10
Harare Control 0.85 1.01

30 kg ammonium nitrate-N 0.48 0.88
30 kg AN + manure 0.48 0.61
60 kg ammonium nitrate-N 0.67 0.92
30 kg manure-N 0.25 0.27
60 kg ammonium nitrate-N 0.85 0.97

Harare Total 0.60 0.81
Grand Total 1.80 2.72
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Table 3. (Continued.)

(b) Grassland sites Treatment Average of Standard
total N2O-N deviation
kg ha−1 yr−1 of total N2O-N

kg ha−1 yr−1

Crichton Site 1 fertilised & grazed 11.68 11.63
Site 2 fertilised & grazed 28.21 34.89
Site 3 fertilised & grazed 51.27 44.28
Site 4 fertilised & grazed 33.90 13.86
Site 5 fertilised & grazed 9.89 6.10
Site 6 slurry & grazed 3.62 0.80
Site 7 slurry & grazed 2.88 1.59

Crichton Total 21.21 28.13
Gödöllö Control 0.38 0.19

Elevated CO2 0.23 0.17
Fertilizer 0.62 0.30
Wetted 0.40 0.12

Gödöllö total 0.41 0.23
Nafferton Control 0.55 0.66

Wetted 0.36 0.40
Nafferton total 0.45 0.46
Peaknaze Control 0.04 0.03

Drought 0.09 0.16
Warming 0.00 0.03

Peaknaze total 0.04 0.09
Rzecin/ Control 0.526
Zarnekow Dry/wet grassland 0.004 0.001

Re-flooded grassland 0.004 0.001
Rzecin/Zarnekow
total

0.04 0.13

Theix Control 0.52 0.43
Increased temperature 0.69 0.46
Increased temperature & drought 0.64 0.47
Inc. temperature, CO2 & drought 0.63 0.44

Theix total 0.62 0.44
Grand Total 7.00 18.45
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Table 4. Nitrous oxide emissions in response to site and management conditions across the
experimental network classified by site and year.

(a) Arable

Arable sites Year Average Standard
annual N2O-N deviation
kg ha−1 yr−1 N2O-N

kg ha−1 yr−1

Beano 2007 0.27 0.10
2008 6.62 5.06
2009 5.80 4.23

Beano Total 4.23 4.65
El Encin 2006 0.31 0.23

2007 0.71 0.64
2008 0.79 0.47
2009 0.97 1.00
2010 0.50 0.55

El Encin total 0.63 0.59
Foulum 2007 1.15 0.67

2008 0.89 0.19
Foulum total 1.02 0.49
Logården 2004 1.72 1.26

2005 1.76 1.60
2006 1.03 2.08
2007 0.19 0.13

Logården total 1.15 1.62
Maulde 2007 6.83 2.07

2008 3.78 2.54
Maulde total 5.31 3.00
Paulinaue 2007 2.73 2.80

2008 1.04 1.13
2009 0.59 0.56

Paulinaue total 1.46 1.95
Tulloch 2006 2.27 2.77

2007 4.56 4.83
Tulloch total 3.46 4.10
Harare 2007 0.58 0.84

2008 0.89 0.90
2009 0.33 0.60

Harare, total 0.60 0.81
Grand Total 1.80 2.72
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Table 4. (Continued.)

(b) Grassland

Grassland sites/year Average Standard
of total deviation
N2O-N of total N2O-N

kg ha−1 yr−1 kg ha−1 yr−1

Crichton 21.21 28.13
2006 28.86 35.96
2007 13.55 14.22
Gödollo Total 0.41 0.23
2007 0.35 0.19
2008 0.43 0.25
Nafferton Total 0.45 0.46
2008 0.83 0.26
2009 0.07 0.00
Peaknaze Total 0.04 0.09
2007 0.04 0.09
Rzecin Total 0.04 0.13
2007 0.05 0.16
2008 0.00 0.00
Theix Total 0.62 0.44
2007 0.62 0.23
2008 1.06 0.29
2009 0.18 0.26
Grand Total 7.00 18.45
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Figure 1.  Locations of the European experimental sites.  Circles represent arable sites and 
triangles grassland sites. 

Fig. 1. Locations of the European experimental sites. Circles represent arable sites and trian-
gles grassland sites.
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Figure 2.  Annual N2O emissions compared between sites.  Each bar represents the average 
emission from different treatments in different years. Each bar indicates the mean (central 
bar), upper and lower quartiles (outside bar) and 95% range (lines). Outliers are represented 
by asterisks. See Table 1 for a description of the detailed treatment codes. 
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(c)  The grassland site at Crichton. Treatments represent different fields. F = fertilised, 

NF = not fertilised. 
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Fig. 2. Annual N2O emissions compared between sites. Each bar represents the average emis-
sion from different treatments in different years. Each bar indicates the mean (central bar),
upper and lower quartiles (outside bar) and 95 % range (lines). Outliers are represented by
asterisks. See Table 1 for a description of the detailed treatment codes.
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Figure 3.  The relationship between N2O emissions and added N input (in the form of organic 
manures and synthetic N fertiliser) for arable sites. Ln(N2O) (Kg N2O-N ha-1) = 0.5750 + 
0.002602 Total N applied. 

5004003002001000

3

2

1

0

-1

S 0.614092
R-Sq 14.8%
R-Sq(adj) 14.6%

Regression
95% CI
95% PI

 

 

 

Annual total N Applied  Kg N ha-1  

A
nn

ua
l L

n 
N

2O
-N

 e
m

is
si

on
 K

g 
ha

-1
  

Fig. 3. The relationship between N2O emissions and added N input (in the form of organic ma-
nures and synthetic N fertiliser) for arable sites. ln(N2O) (kg N2O-N ha−1) = 0.5750+0.002602
total N applied.

9284

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/9259/2012/bgd-9-9259-2012-print.pdf
http://www.biogeosciences-discuss.net/9/9259/2012/bgd-9-9259-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 9259–9288, 2012

Nitrous oxide
emissions from

European agriculture

R. M. Rees et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 

Figure 4. The relationship between N2O emissions and added N input ( in the form of organic 
manures and synthetic N fertiliser) for grassland sites. Ln(N2O) (Kg N2O-N ha-1) =  0.3342 + 
0.007631 Total N applied. 
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Fig. 4. The relationship between N2O emissions and added N input ( in the form of organic
manures and synthetic N fertiliser) for grassland sites. ln(N2O) (kg N2O-N ha−1) = 0.3342+
0.007631 total N applied.
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Figure 5.Ranking of annual emissions data from individual arable plots.  The top 10 sites are 
ranked on emissions per unit area (a) and per unit of N2O per unit of N total input (synthetic 
fertiliser, manure and biological N fixation) (b). See Table 1 for a description of the treatment 
codes. 

(a) On an area basis 

 

(b) By intensity 

 

Fig. 5. Ranking of annual emissions data from individual arable plots. The top 10 sites are
ranked on emissions per unit area (a) and per unit of N2O per unit of N total input (synthetic
fertiliser, manure and biological N fixation) (b). See Table 1 for a description of the treatment
codes.
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Figure 6.Ranking of annual emissions data from individual grassland plots.  The top 10 sites 
are ranked on emissions per unit of N2O per unit of N total input (synthetic fertiliser, manure, 
deposition and biological N fixation). See Table 1 for a description of the treatment codes. 

(a) On an area basis 

 
 

(b) By intensity 

 

 
Fig. 6. Ranking of annual emissions data from individual grassland plots. The top 10 sites
are ranked on emissions per unit of N2O per unit of N total input (synthetic fertiliser, manure,
deposition and biological N fixation). See Table 1 for a description of the treatment codes.
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Figure 6. The relationship between N2O emissions and annual total rainfall plus irrigation 
and total N input across the arable site network. 
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Fig. 7. The relationship between N2O emissions and annual total rainfall plus irrigation and total
N input across the arable site network.
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