

Interactive comment on “Biological productivity in the Mauritanian upwelling estimated with a triple gas approach” by T. Steinhoff et al.

Anonymous Referee #1

Received and published: 4 May 2012

General Comments The authors present a novel approach for calculating net community production (NCP) in eastern boundary upwelling systems using data from the Mauritanian Upwelling as a case study. Their calculations rely on a triple gas approach (N₂O; CO₂ and O₂), though O₂ is primarily used to validate the results derived for CO₂. Briefly, N₂O is used as a quasi-inert tracer of recently upwelled water to calculate the time since upwelling (τ). This is used to assign τ_i values to concurrent DIC data. The latter are corrected for sea-air gas exchange over $\tau_{i+1}-\tau_i$ and the resulting value is subtracted from the observed DIC for τ_{i+1} to derive NCP. The authors show that NCP from three cruises is strongly correlated with the upwelling index (UI) derived from model predictions. This could be a particularly attractive and cost-effective way of quantifying NCP under different upwelling conditions. The paper addresses pertinent scientific questions and is within the scope of BG. To my knowledge, this is a novel

C1010

and, in my opinion, elegant approach, which leads to important findings. The paper is clearly presented with appropriate equations, tables and figures. However, the authors have not discussed or propagated critical uncertainties in their calculations. These uncertainties could have a large impact on the magnitude of NCP and bring the predictive utility of the NCP-UI relationship into question. Nevertheless, I like the concept and would like to see the paper in BG, once the authors have addressed my concerns. My main concern is that the authors have not attempted to propagate uncertainty from their various data sources. Although calculated NCP carries error bars, the source of this uncertainty is not given. Firstly, the authors do not discuss uncertainty over the value of the mixed layer depth (MLD) which is derived from a model rather than in situ data (see also comments 3 and 14 below). A reference to the model skill is given (Steinhoff et al., 2010), but this publication did not examine model skill in highly dynamic upwelling systems where it may not perform as well. Steinhoff et al. (2010) found a difference of 24 m between model MLD and observations which is of the same magnitude or greater than the MLD calculated for the Mauritanian upwelling. Furthermore, the model itself has a resolution of 1/6° which may be insufficient for dynamic upwelling systems. Secondly, a potential source of uncertainty is the assignment of τ values to DIC samples where there are no concurrent N₂O data (see also comment 10 below). The authors use a fit for DIC against τ for this purpose. This appears to be some exponential asymptotic decrease, though the function is not given. According to this fit a DIC sample around 2150 $\mu\text{mol/kg}$ would have a τ value around 8 days. Yet the data in Figure 3B show that τ for such DIC could be anything between 5 and 14 days. The situation is worse as one approaches the limit of the function. What proportion of DIC samples did not have concurrent N₂O? Did the authors use any criteria other than the fit to assign τ to DIC? Thirdly, I am concerned about the use of average TA for the calculation of DIC (see also comment 6 below). TA variability translates into DIC uncertainty of $\pm 9 \mu\text{mol/kg}$. Yet the threshold for the biological drawdown of DIC is set at 2 $\mu\text{mol/kg}$, i.e. at undetectable DIC change. I'd like the authors to clarify these uncertainties and propagate them through to their NCP calculation. Specific comments

C1011

follow below.

Specific Comments 1. P4856; Line 15-16: '..accuracy...' for what? I presume the authors mean the CO₂ concentration of their standards. Please specify. 2. P4857; Line 10: Please give original reference for nitrate analysis: Brewer, P.G., Riley, J.P., 1965. The automatic determination of nitrate in sea water. Deep-Sea Research 12, 765-772. 3. P4857; Line 18-22: Steinhoff et al. (2010) did not validate the Mercator model in upwelling systems. The 1/6 o resolution may be too coarse for highly dynamic systems such as upwellings. pCO₂ and O₂ in Figure 2 shows variability at much shorter length scales than 1/6 o. Is this critical? Why not use in situ data to validate the Mercator model and estimate its uncertainty for the Mauritanian upwelling? 4. P4859; Line 1-3: Please also refer to Rees, A.P., Brown, I.J., Clark, D.R., Torres, R., 2011. The Lagrangian progression of nitrous oxide within filaments formed in the Mauritanian upwelling. Geophysical Research Letters 38, L21606, 21610.21029/22011gl049322. 5. P4859; Line 4: Please define the abbreviation ASE. I presume this refers to Air Sea Exchange (?). 6. P4859; Line 19: TA variability from Table 2 ($\pm 11 \mu\text{mol/kg}$) translates into DIC variability around $\pm 9 \mu\text{mol/kg}$ for DIC in CO2SYS (pCO₂=450ppm;S=35,T=15). This uncertainty over DIC is $\times 4.5$ larger than the DICbio threshold of $2 \mu\text{mol/kg}$ used to detect the end of upwelling mediated productivity (P4862; line 1). This implies that the authors can't actually detect this threshold with any certainty. 7. P4860; Line 9: Please specify where the 'red marker' is. I'm guessing Figure 3. 8. P4860; Line 9-10: How was the location of highest N₂O_{sw} confirmed to be in core upwelling? Remote sensing? Climatology? SST? Geographic location? 9. P4860; Line 22-23: What type of function was fitted to the data? Please give equation in brackets. 10. P4861; Line 3-4: How did τ from the fit match up with τ from concurrent N₂O? From Figure 3B, it looks like a sample with DIC around 2150 $\mu\text{mol/kg}$ could have a value of τ between 5 and 14 days measurements and 8 days from the fit. At 2125 $\mu\text{mol/kg}$, τ from the fit could be anything between 12 and 36 days! Did the authors use any other criteria to assign τ to DIC samples where there were no concurrent N₂O measurements? For example, manual inspection - proximity to nearest N₂O, interpolation

C1012

between neighbouring DIC values. I think it's necessary to quantify and propagate these errors through to NCP. 11. P4861; Line 6-8: I presume the inventories I refer to the mixed layer. Please specify. 12. P4862; Line 1: Why did the authors use a threshold of $2 \mu\text{mol/kg}$? What does it represent? Analytical uncertainty is much greater (see comment 6 above). 13. P4862; Line 9-10: What does the NCP uncertainty in Table 3 represent? How was it calculated? 14. P4862; Line 12: Perhaps the calculations do depend critically on the parameterization of k, but there are other potential errors which have not been propagated or discussed (see comments 3, 6 and 10 above). For example, the Lohrbacher-Mercator model mismatch of -24 m in Steinhoff et al. (2010) is of the same magnitude or larger than average MLD in Table 2 for the 3 cruises. I would guess that this will affect the calculations much more than the uncertainty over k.

Interactive comment on Biogeosciences Discuss., 9, 4853, 2012.

C1013