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Dear Editors,

We thank the two reviewers for their thoughtful and constructive comments. We have
addressed each point below, and have made updates to the paper to reflect our re-
sponses. As requested by reviewer 2, we also present two additional figures, both of
which will be contributed as part of the revised supplemental text, or added to the main
text at the editors’ discretion.

Best wishes, Gregory P. Asner and co-authors
First reviewer (Emilio Chuvieco):
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General comments: The paper includes an impressive amount of work and applies
innovative ideas that were developed in previous papers by the same research group.
It will greatly benefit carbon stocks inventories in remote areas.

Minor comments

Page 2448. The authors mention a universal Lidar equation to estimate ACD. However,
the samples used for this equation were all derived from Tropical forest. Any references
to Boreal or Temperate forests? Do you really mean "universal" for Tropical biomes?

Reply: We have clarified (revised line 107) that this is a universal tropical equation,
although in principle it could be applied to other broadleaf forests. Non-tropical data
would have to be ingested into the database to test its applicability there.

Page 2449. The authors do not mention potential problems of Lidar estimations de-
rived from cloud coverage. Are they problematic in Tropical regions? Lidar does not
penetrate clouds, and this is indeed a challenge in the humid tropics.

Reply: CAO makes a concerted effort to capture cloud-free imagery, and any cloud
cover that makes it into imagery is clipped. In addition, we often fly under clouds
during LiDAR mapping missions. Thus the extent of lidar coverage reported here is
cloud-free imagery only, and we have clarified this (revised line 189).

Page 2448-50. The authors do not mention in the literature review the potential interest
of discriminating between different fractions of aboveground biomass: foliar, branches,
trunks. Some Lidar-base studies (Garcia et al., 2010 RSE), have successfully explored
this possibility.

Reply: We have added a note that improved lidar analyses of forest structure may lead

to lower errors in large-scale carbon mapping, citing Garcia as an example (revised
lines 95-96).

Page 2451. Additionally to include full details in the supplement, here at least a brief
description of the Lidar data acquired would help the reader.
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Reply: We have moved the details on the LiDAR data to the main text, and have
maintained a reasonable word count for this section (revised lines 180-188).

Page 2457: Did the authors have soil maps of the region to account for its impact on
spatial variation of ACD? Why did they not use human-related variables (distances to
roads, populated areas)? Would it beneinAt the stratification/regression models?

Reply: One of our key goals was to utilize data that is available for most tropical regions
(i.e., elevation, terrain variation, etc) to attempt to capture carbon stock variation con-
trolled by soil type, etc for which data does not exist in most regions. The co-authors
agreed that soil maps of the region were too coarse to be of use in the stratification —
a problem common to many remote tropical regions.

Page 2463. The authors should include some ideas on how their work would benefit
carbon inventories in other Tropical regions, and what are the main limitations of Lidar
data to use it operationally within the REDD+ programs. My personal experience is
that researchers/managers in Tropical countries are reluctant toward this technique for
operational inventories.

Reply: We agree strongly with the reviewer, and we have noted several major advan-
tages of LiDAR-based carbon accounting throughout the paper. However, we feel it
important to keep advocacy in a policy forum, and have attempted to drive this mes-
sage elsewhere (see, e.g., Asner 2011 Environmental Research Letters).

Second reviewer (anonymous):

The paper follows the approach the first author has used in other publications as in their
work in Peru, Panama and Madagascar. The amount of data collection, processing,
and all the ancillary work to achieve the results are very impressive. However, given the
fact that the authors have published similar papers over other study areas, the paper
does not contribute significantly to the literature as an innovative scientific research
result. It seems as if they are reporting the results of a project similar to ones they have
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done before. We recognize that our group has conducted several carbon accounting
projects that are superficially similar to the present manuscript, however, our approach
and the study region differ in a number of important ways.

Having said this, | feel the community interested in REDD projects for assessing and
monitoring forest carbon would be interested to read the paper. | recommend the paper
for publication after major revisions. The following series of questions and suggestions
need to be considered while revising .

1. The authors discuss the design of the Lidar data collection based on a landscape
stratification using Landsat and SRTM data. However, what they show in Figure 1 is a
Landsat image colored based on PV, NPV, and soil signal from their TM end member
analysis. In Figure 2, they show a flowchart that is not at all interesting. It does not
say anything but just few boxes with names and no image to demonstrate the result of
implementing the flowchart.

Reply: We have clarified the caption of figure 2 to emphasize its importance (revised
lines 707-714). However, it seems contradictory to suggest removing the schematic
used to stratify the study area at each step of the project (i.e., figure 2), and later
suggest there is no proof of design (see below).

| think, the authors are really exaggerating the use of Landsat for unambiguously de-
tecting the age of forests and if they are secondary or degraded.

Reply: Both CLAS and CLASIite have an exceptional track record of delineating forest,
non-forest, and degraded areas of tropical forests, with more than 15 peer-reviewed
studies, applications in a variety of tropical countries, and a user base of more than 400
people in more than 170 institutions (http://claslite.ciw.edu). CLAS/CLASIite has proven
accurate for forest cover, deforestation, degradation and regrowth mapping when used
properly. However, the reviewer misstates what CLASIite does: it does not “detect”
the age of forests, it ingests Landsat or other satellite imagery across multiple years
to verifiably monitor deforestation or degradation from one image to the next. Forest
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that re-grows in previously deforested pixels is unambiguously secondary because the
window of study is a matter of decades. These issues are detailed in the manuscript.

| suggest, they remove their flowchart and instead show clear landscape stratification
with few classes distinctly related to topography, ruggedness, and some segmentation
of PV, NPV, and soil.

Reply: We have added a figure that characterizes key components of the stratification
process, both preliminary and final (Figure R1, below).

| think, this is an important part of their Lidar acquisition design and they need to
demonstrate the segmented landscape and the design of their Lidar data collection.
So far, it appears that the collection had nothing to do with the segmentation and the
gradients of landscape and vegetation features over the study area. There is no proof
of a rigorous design in the paper. Any future REDD projects following their footstep
need to know this.

Reply: As we noted originally (lines 2451.8-20), we designed the LiDAR data collection
to achieve at least 1% coverage of each stratum in the preliminary stratification, but not
surprisingly, other factors were found to influence those stocks once the LiDAR data
were in hand, and these were subsequently incorporated into our final stratification. As
we describe in the manuscript, the study area is one of many tropical forest regions
worldwide that is exceptionally poorly studied (lines 2450.15-18), but as further study
is applied (here, and elsewhere; e.g., Alvarez et al. 2012), future REDD projects will
incorporate this new information.

2. Regarding equations 1 and 2. If one follows the steps they describe, and if | have not
made a mistake, after substitutions, equation 2 will become ACD=1.931*MCH1.382. It
would be great, if the authors check and make sure the equation is correct.

Reply: The reviewer’s arithmetic is correct, and the issue is that the number of signifi-
cant digits used in equation coefficients differed from what appeared in text. We have
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modified the text and verified subsequent analyses to reflect this change.

| also suggest they do not use the title “universal” for this equation. First, it is only used
for tropics, even though it can be extended to other forests as well. Second, this is
as universal as any allometry. Chave’s allometry is more universal that this equation
because it is used without any changes for all tropical forests.

Reply: This is untrue — and is a fundamental misstatement of Chave allometry. The
Chave models all depend on knowledge of forest type (i.e., dry, moist, wet) as well as
each tree’s wood density; some also depend on knowledge of a tree’s height.

As the coefinAcients of this equation change all the time, there is no reason to call it
universal.

Reply: The equation coefficients do not change. The three variables put into the model
must be assessed in a new region, just as they must be assessed for a new tree with
the Chave model. As we noted originally (lines 2453.11-12), the equation is presented
in simplified form as a courtesy.

The form of the equation has also been around for ages. A power law relationship
between biomass and height has a history of almost a century and it has also been
used in metabolic scaling theory for decades. The importance of the equation is its
application on a plot or pixel instead of tree level and it was demonstrated in their
previous paper.

Reply: We agree that the form of the equation is based on allometric theory, as we
reviewed extensively in the previous paper. We do not see how this can be construed
as a shortcoming of the model itself or its application in the present study.

3. | do not understand how the authors claim the 11 plots to be their validation plots
when they used exactly the same plots to determine the coefficients and then to de-
velop equation (2). May be, this is the reason why Figure 3 looks so unbelievably
great! Using an independent validation data that is not used in calibration could’ve
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been a more realistic test of the model performance. If the validation data is different,
they need to clarify this in the paper.

Reply: We have clarified (revised lines 232-234) that the sample plots were used to val-
idate the universal approach, and we acknowledge in the manuscript that the difficulty
of placing vegetation plots in the study area was a limitation of our study. However, the
reviewer misunderstands what it is we are validating. The universal approach allows for
regional assessments of basal area and basal-area-weighted-wood-density to replace
exhaustive tree-specific measurements. This is a significant departure from traditional
inventory approaches to calibrate remote-sensing data. We have subsequently con-
ducted further validation of this approach which we will present in a forthcoming paper.

4. For the regression method in upscaling Lidar data, the authors show Figure 5. As
they mention in the text, the elevation is the best parameter and explains only 19% of
the variations. The rest of the variables explain another 10-12%. So, | am surprised to
see a very low RMSE in the application of the regression model.

Reply: As we noted in the original text, the regression model was fit only to pixels
classified as forest. Thus, the regression approach is hybridized with some minimal
stratification for non-forest regions where CLASIite demonstrates much higher confi-
dence than regression approaches. We have clarified this (revised lines 277-282).

5. The differences between the two upscaling approaches are interesting. One of the
main characteristics of regression models is the tendency to predict the mean value
over the domain of its application correctly. However, it may not predict the distribution
right. The fact that there is a general agreement between the two methods is related
to this effect (The difference over a large area is about 10-20% of the mean carbon
numbers. There is no surprise that you get 1.497 Pg and 1.499 Pg using the two
methods.

Reply: We agree with the reviewer, and we noted that it is not a surprise that the mean
values agree (lines 2460.15-18). However, there remains a need to present these
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results.
In fact, you need to also show that the Tier-1 method does not get you the right results.

Reply: Tier-1 mapping methods have been shown to fail for carbon predictions in pre-
vious studies because they are not high-resolution and may be biased (lines 2460.13-
15). Thus, we feel it unnecessary to continuously demonstrate this. Indeed, current
global biomass mapping techniques now substantially exceed Tier-1 capability (Saatchi
et al. 2011, Baccini et al. 2012).

6. | also suggest another approach to convince the readers that the methodologies
work. | would calculate the total carbon in all 136 final segmented areas from method 1
and 2 (stratification and regression) and plot them against each other. This plot will be
able to show a better comparison in terms of how the data are spread. You may have
bias in the estimation. Overestimation the low biomass values and underestimation of
high biomass values can always give you the right mean and no bias.

Reply: We recognize that regression methods often yield the correct mean but produce
bias in the spread of the data. We have added an analysis and a supplemental figure
(Figure R2, below) that compares the average carbon stocks of all 38 flight polygons,
which span a wide range of carbon stocks (but are more consistent in area). This
analysis suggests no bias in predicted carbon stocks from stratification, and only a
limited bias in the regression approaches. This analysis is also robust to a new, more
conservative error estimate as outlined below.

7. A best test of validation would be to use few of the Lidar data sets and predict the
pixel level forest biomass using their regression models. | am surprised the authors do
not show this. They have 38 areas and a total area of 462000 ha of Lidar coverage.
| would use 2/3 of the data to build the models and prediction and use of 1/3 as an
independent test and then show how well the predicted biomass from the regression
compares with biomass calculated from Lidar data. This will allow a more rigorous
estimate of errors and bias along the entire range of biomass variation.
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Reply: We have redesigned the error analysis based on a 75% - 25% (training-testing)
split of the LiDAR data. To do so, we limited all flight polygons to a width of 2600 m,
which provided 75% of our total LiDAR coverage. We used the training data to produce
both a stratification and regression-based regional carbon map (following the same
methodology as for our primary maps). We then assessed the effectiveness of each
technique in the 25% testing data that was set aside.

8. The uncertainty analysis requires some changes. These include: a. Reporting
uncertainty at 30 m and 100 m scales is a bit misleading. The authors refer to the
results shown in Figure 3 to estimate the 20% error at 0.28 ha. They need to use an
independent dataset to arrive at this error.

Reply: As we noted it the original text (lines 2455.22-24), we rely on a completely in-
dependent demonstration of LiDAR calibration error scaling patterns in a tropical forest
in Panama in order to estimate pixel level error. These data are derived from the same
sensor in similar forest. We have clarified this (revised lines 451-460).

11 data points used both as calibration and validation will always give good error esti-
mates regardless of what type of cross validation method is used.

Reply: We have clarified that the validation of the universal model was a validation of
a technique. For LiDAR calibration errors, we rely on the originally discussed empirical
analysis.

b. In addition, it is not clear how they calculate errors at 1-ha without having 1-ha plots.
They mention they have shown this in their previous paper and it seems all they have
done is to reduce the errors by dividing the error by sqrt(N), and N being the effective
number of pixels 0.28 ha pixels in a 1-ha pixel.

Reply: Mascaro et al. demonstrated that LiDAR-carbon errors scaled in this manner
empirically (to at least 1-ha resolution) in Panama using a large plot with mapped trees.
This pattern has subsequently been verified in a second completely independent large-
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scale plot, and these results confirm 10% error at 1-ha resolution. The results will be
presented in a forthcoming paper.

c. In the method section, they mention they have calculated errors by evaluating the
application of regression equation on Lidar pixels. However, they do not show any
results to demonstrate this. For regression models that can only explain 30% of the
variation cannot estimate the forest carbon with about 15% accuracy at 1-ha scale.
The authors need to justify the numbers in table 1.

Reply: As noted above, the regression modeling was applied only to forested pixels,
while non-forest carbon stocks were caried from the stratification technique. Thus, the
regression-based carbon map is more accurate than would be predicted from looking
at forested pixels alone. We have clarified this point (revised lines 277-282). We have
also modified the error analyses to include a more conservative estimation of upscaling
errors (i.e., with training and testing data as noted above).
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Figure R1. Selected variables used to stratify the study area: (a) digital elevation model
(DEM) derived from the NASA Shuttle Radar Topography Mission (STRM), (b) terrain
ruggedness index (TRI), (c) fractional cover of photosynthetic vegetation (PV) derived
from CLASIite, and (d) drainage catchments. Elevation and PV were also used as
inputs to the regression approach.

Figure R2. Mean aboveground carbon density (ACD; Mg/ha) as predicted by the strat-
ification and regression approaches to upscaling, compared to the observed estimate
derived from airborne LiDAR. Each point represents the validation region of one of 38
flight polygons. These areas comprise the 25% of the LiDAR coverage remaining after
excluding a 2600 m strip down the center of each polygon that was used to train the
upscaling models. The line depicts a 1:1 relationship.

Interactive comment on Biogeosciences Discuss., 9, 2445, 2012.
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