

Interactive
Comment

Interactive comment on “High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest” by C. A. Frieder et al.

F. Melzner (Referee)

fmelzner@geomar.de

Received and published: 29 May 2012

This is a very nice and carefully carried out study on the variability in DO and pH in a near shore kelp forest ecosystem at the California coast. The paper is timely, as there is little high resolution data available on coastal fluctuations in pH and DO. Such data is needed to understand the sensitivity of coastal organisms to ocean acidification. The data has been analyzed carefully and the paper is written well, I have only minor comments that are more conceptual in nature. I believe that the authors could make a greater effort to discuss more examples from the recent literature on coastal pH variability. Otherwise, this is a very nice paper. Good job!

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

General comments:

1) The authors should keep in mind that for most marine metazoans, CO₂ and O₂ partial pressures are the most important parameters that impact biological processes. Gas exchange of both carbon dioxide and oxygen is based on diffusion of dissolved CO₂ and O₂, increases in environmental pCO₂ thus lead to equivalent increases in pCO₂ in the organisms' extracellular fluids (blood, coelomic fluid or hemolymph) in order to maintain fluxes of respiratory CO₂ out of the organism. Body fluid pH is altered passively by the need to maintain higher pCO₂ (e.g. in mussels), while in some other organisms (e.g. fish) blood pH is stabilized at an increased pCO₂ by actively accumulating bicarbonate ions (see e.g. Melzner et al. 2009 Biogeosciences for a discussion of some concepts). This also implies that a change in pH by 0.2 units can have very different impacts on marine animals depending on whether one considers a change from e.g. 8.3 to 8.1 or one from 7.7 to 7.5, as the change in pCO₂ is very different between these two intervals. Hence, I would recommend to add a figure / table on estimated changes in pCO₂ calculated from measured alkalinity / dissolved inorganic carbon and / or pH.

2) Future changes in pCO₂ in CO₂ enriched habitats will be greater than in the open surface ocean. This has been highlighted by Brewer & Peltzer (2009 Science), Cai et al. (2011 Nature Geoscience), Thomsen et al. (2010 Biogeosciences). The authors might include some calculations on the magnitude of change in pCO₂ / pH to be expected in the future based on estimated increases in future dissolved inorganic carbon. For more details and some calculations for coastal systems see also: Melzner et al. (2012) Marine Biology, in press, DOI : 10.1007/s00227-012-1954-1.

Minor comments:

P4115, line 26: for many species that are poor at controlling extracellular pH it is clear that rapid changes in seawater pCO₂ rapidly translate into changes in extracellular pCO₂ and pH. E.g., mussels cannot control extracellular pH (Thomsen et al. 2010

BGD

9, C1554–C1556, 2012

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Biogeosciences), sea urchins (*Strongylocentrotus droebachiensis*, Stumpp et al. 2012 Aquatic Toxicology) need several days (4-10) to adjust to a new extracellular acid-base status when exposed to seawater acidification. Many fish and decapod crustaceans are able to rapidly regulate extracellular and intracellular pH (within hours, see e.g. Larsen et al. 1997 *Marine Biology*, papers by Heisler).

Figure 9 should be expanded to reflect full range of pH / pCO₂ changes observed in this study and should reference published examples of process sensitivity to the pH / pCO₂ / pO₂ changes depicted in the figure.

Papers that could be discussed:

Cai et al. 2011 *Nature Geoscience* (coastal pH / pO₂ variability) Feely et al. 2010 *Estuarine Coastal Shelf Science* (coastal pH / pO₂ variability) Haynert et al. 2011 *Mar Ecol –Prog Ser* (coastal pH / pO₂ variability, foraminifera) Thomsen et al. 2010 *Biogeosciences* (coastal pH / pO₂ variability, mussels) Bechmann et al. 2011 *J. Toxicol. Env. Heal. A* (*Mytilus* early life stage sensitivity) Gazeau et al. 2010 *Biogeosciences* (*Mytilus* early life stage sensitivity) Sunday et al. 2011 *PLoS ONE* (mussel adaptation potential to OA) Brewer & Peltzer 2009 *Science* (non-linear increase in future pCO₂ in CO₂ enriched regions)

Interactive comment on *Biogeosciences Discuss.*, 9, 4099, 2012.

BGD

9, C1554–C1556, 2012

Interactive
Comment

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Discussion Paper](#)

